Wavefunction branches demand a definition!

Quantum Views 9, 85 (2025) [arXiv:2506.15663]

C. Jess Riedel

Physics & Informatics Laboratories

1 Dec 2025

Research Center for the Humanities, Budapest

Advertisement: **NTT Research** offers student internships, postdocs, and permanent research positions

If you are interested working on these topics in sunny Silicon Valley, California, let me know!

@Jess_Riedel, jessriedel.com, jessriedel@gmail.com

Many names for a constellation of problems

- "Preferred-basis problem"
- "Preferred-(sub)system problem"
- "Set-selection problem"
- "Quantum mereology"
- "Branch-definition problem"
- "Quantum-reality problem"

- Kent's "quantum reality problem" is arguably the most general formulation:
 - What is the sample space for which quantum theory is supposed to determine probabilities?
 - e.g., configurations of beables, events, histories, paths, etc.
- In other words: what is the set of things that can happen?

- I this talk I will sketch a heuristic framework for conceptually organizing historical progress on the reality problem. I categorize by
 - 1. the (foundational/axiomatic) mathematical structure they *presume*
 - 2. the (emergent) mathematical structure they derive
- Naturally, this framework emphasizes my preferred criteria for an ultimate(-ish) solution:
 - presume only spatial locality as axiomatic structure on Hilbert space
 - derive a preferred time-dependent decomposition of the wavefunction of the universe $\psi(t)$ into **orthogonal branches**
- Progress since Birkhoff-von Neumann (1936, 89 years) or Everett (1957, 68 years) has been slow but steady!
 - I'll focus on work since proto-decoherence ideas of Zeh (1970), but I do think the framing is useful for thinking about earlier stuff, e.g., the generalization from presumed measurement apparatus to presumed quasiclassical object
- I'll briefly describe work by myself and by Weingarten towards a solution, complementing work by Taylor & McCulloch recently presented at this seminar

Trivial example: Preferred histories → preferred branches

History "class" operator

$$C_{\alpha} = \hat{P}_{\alpha_N}(t_N) \cdots \hat{P}_{\alpha_1}(t_1)$$

with decoherence functional

$$D(\alpha, \beta) := \langle \psi | C_{\alpha}^{\dagger} C_{\beta} | \psi \rangle = p_{\alpha} \delta_{\alpha\beta}$$

These induce branches

$$|\psi_{\alpha}\rangle := C_{\alpha}|\psi\rangle$$

which are orthogonal

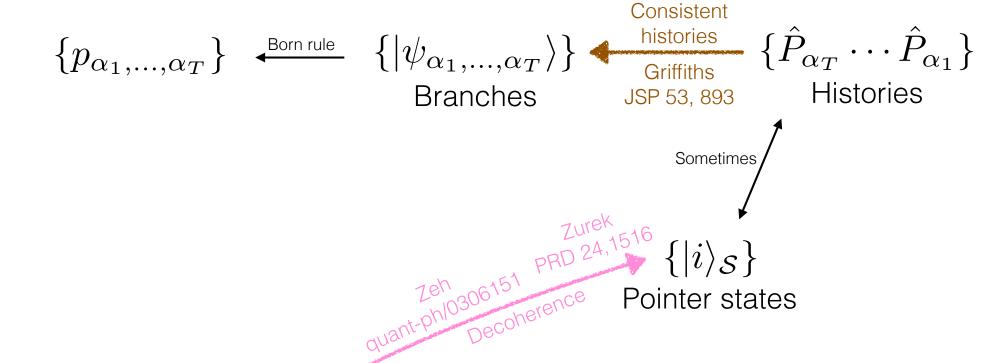
$$\langle \psi_{\alpha} | \psi_{\beta} \rangle = p_{\alpha} \delta_{\alpha\beta}$$

- But opposite direction is one-to-many
- Consistent histories "recovers" Everett

$$\{p_{\alpha_1,...,\alpha_T}\} \quad \stackrel{\text{Born rule}}{\longleftarrow} \quad \{|\psi_{\alpha_1,...,\alpha_T}\rangle\} \quad \stackrel{\text{Consistent}}{\longleftarrow} \quad \{\hat{P}_{\alpha_T} \cdots \hat{P}_{\alpha_1}\} \quad \text{Branches} \quad \text{JSP 53, 893} \quad \text{Histories}$$

Decoherence: subsystem → pointer states

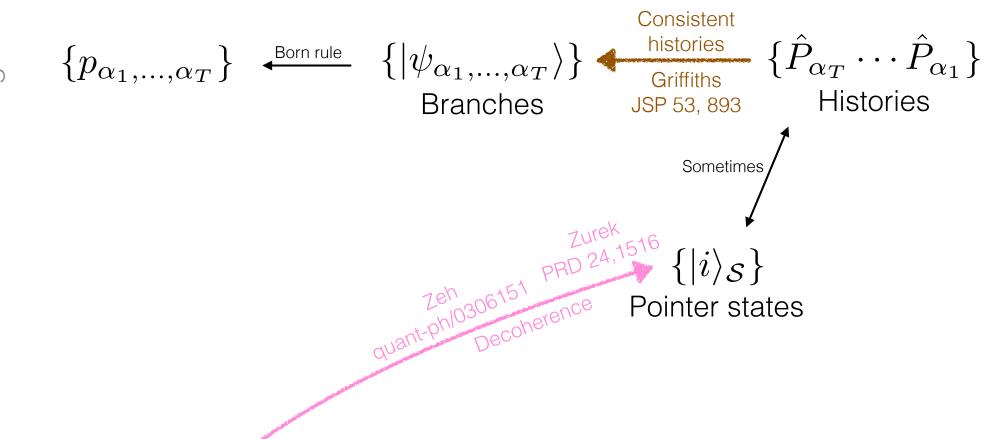
- Crudely, decoherence theory (Zeh, Zurek)
 - 1. presumes some preferred (sub)system S; and
 - 2. *derives* a preferred set of pointer states $|i\rangle_{\mathcal{S}}$
- Basic decoherence theory does not tell us what the system ${\mathcal S}$ we should focus on
- But the classical limit and desiderata of **predictability** (Zurek, Carroll & Singh) suggest we focus our attention on systems that are **Markovian** and **slow**, properties *determined by the Hamiltonian* \hat{H}



$$\mathcal{H} = \mathcal{S} \otimes \mathcal{E}$$
 Bipartition

 $\mathcal{H} = \mathcal{S} \otimes \mathcal{E}$

Bipartition



$$H = \sum_{\omega} \omega |\omega\rangle\langle\omega|$$
 Hamiltonian

Preferred hydro observable → preferred histories

Consider a fixed observable

$$\hat{A} = \sum_{i} a_i \Pi_i$$

that is hydrodynamic: it has approximately Markovian equations of motion because

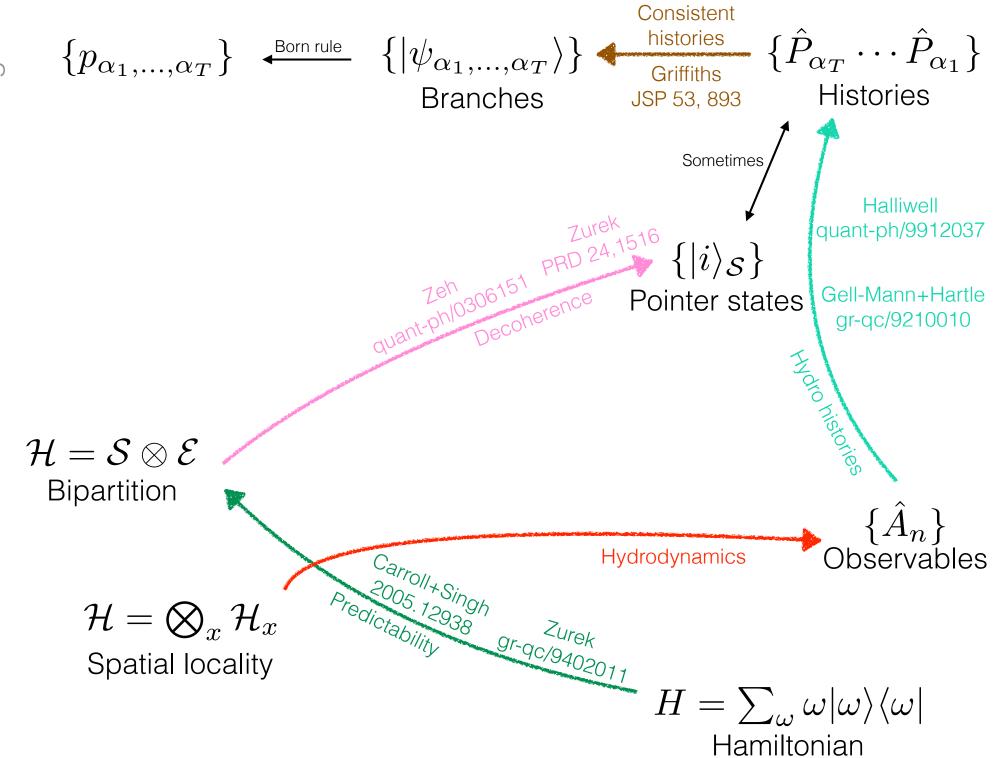
- it is the mesoscopic average of a density obeying a local continuity equation, so
- it evolves very slowly compared to microscopic degrees of freedoms which
- thermalize rapidly compare to evolution of the hydro variable
- Then generally (by Halliwell and Gell-Mann & Hartle), for appropriate coarse-graining timescale au and coarse-graining hydro scale δa , the coarse-grained histories of this observable are consistent:

$$C_{\alpha} = \hat{P}_{\alpha_N}(t_N) \cdots \hat{P}_{\alpha_1}(t_1) \qquad t_{n+1} - t_n = \tau$$

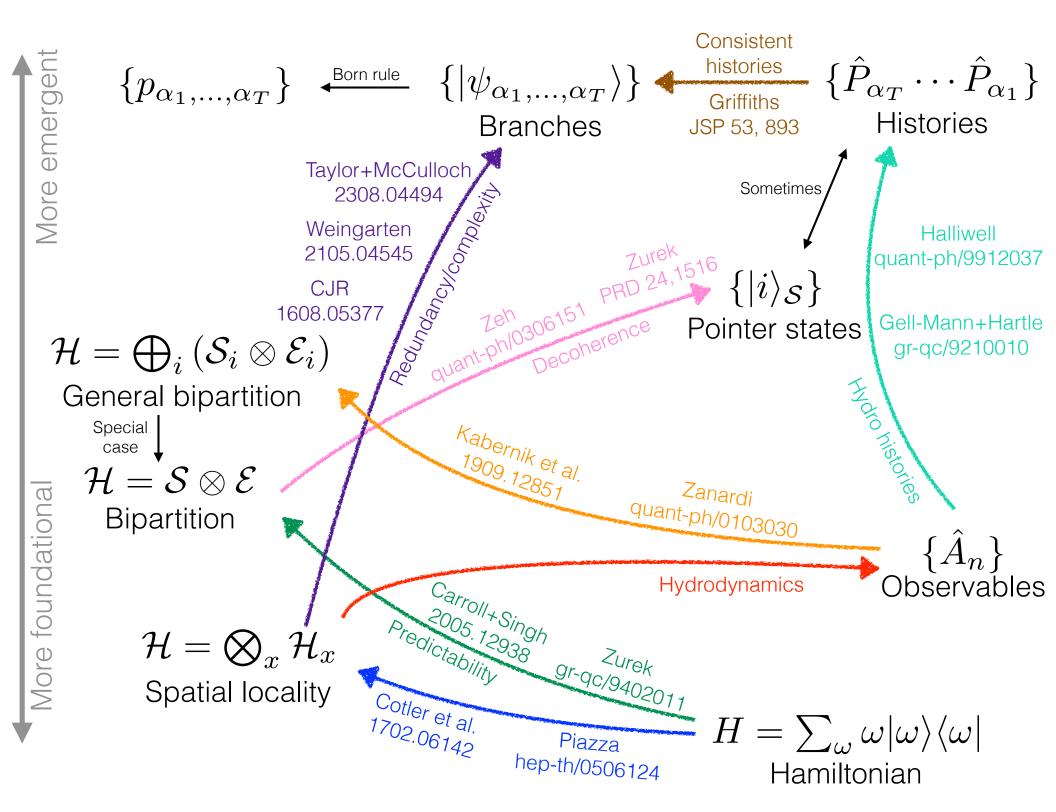
$$\hat{P}_{\alpha_n} = \sum_{i:|a_i - a(\alpha_n)| < \delta a} \Pi_j$$

$$D(\alpha, \beta) = \langle \psi | C_{\alpha}^{\dagger} C_{\beta} | \psi \rangle = p_{\alpha} \delta_{\alpha\beta}$$

Hydro variables are crucially local average: picked out by spatial locality



Hamiltonian



 $\{\hat{P}_{\alpha_T}\cdots\hat{P}_{\alpha_1}\}$ $\{p_{\alpha_1,...,\alpha_T}\}$ Born rule $\{|\psi_{\alpha_1,...,\alpha_T}\rangle\}$ Histories Branches Taylor+McCulloch Sometimes

2308.04494

Weingarten 2105.04545

CJR 1608.05377

$$\mathcal{H} = \bigoplus_i \left(\mathcal{S}_i \otimes \mathcal{E}_i \right)$$

General bipartition

$$\mathcal{H} = \mathcal{S} \otimes \mathcal{E}$$

Bipartition

$$\mathcal{H} = \bigotimes_x \mathcal{H}_x$$
 Spatial locality

 $\{|i\rangle_{\mathcal{S}}\}$ Pointer states

$$\{\hat{A}_n\}$$

Observables

$$H = \sum_{\omega} \omega |\omega\rangle\langle\omega|$$
 Hamiltonian

Defining (many-body) branches

- As mentioned, there are different names for slightly different formulations of the quantum reality problem based on what is assumed and what is derived
- "Defining many-body branches" is just shorthand for assuming spatial locality and deriving an orthogonal decomposition

$$\mathcal{H} = \bigotimes_x \mathcal{H}_x$$
 Spatial locality $\{|\psi_{\alpha_1,...,\alpha_T}\rangle\}$ Branches

Defining (many-body) branches

$$\mathcal{H} = \bigotimes_x \mathcal{H}_x$$
 Spatial locality $\{|\psi_{\alpha_1,...,\alpha_T}\rangle\}$ Branches

- This is essentially the most fundamental version of the quantum reality problem, with these caveats:
 - You might think the spectrum is more fundamental than spatial locality (a philosophical question), but if you buy Cotler et al. then the former recovers the latter.
 - You might think something else (neither spatial locality or the spectrum) is more fundamental. I haven't seen viable proposals, but I'm all ears.
 - It's nonrelativistic. A fundamental solution would be relativistic, relying instead on spacetime locality (an assumption of QFT). My framing with the nonrelativistic case is just the way to get started. Weingarten shows a potential way to generalize to relativistic case.
 - It might be *strategically* helpful to think about operators (history projectors, or delocalized algebras), rather than orthogonal decompositions, but the former recovers the latter.

Three approaches

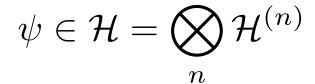
- I think there have been basically three attempts to solve this so far
 - 1. CJR as simultaneous eigenstates of *records* [1608.05377]
 - See also follow-up by Ollivier [2202.06832]
 - 2. Wiengarten: minimize difference of average branch complexity and decomposition entropy [2105.04545]
 - See also follow-up by Wiengarten [2308.05569]
 - 3. Taylor & McCulloch by maximizing difference of *interference* complexity and distinguishability complexity [2308.04494]
- You've heard about Taylor & McCulloch so I will talk mostly about CJR and Wiengarten

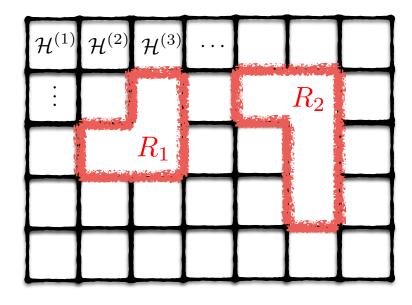
Defining recorded PVMs

- Assume a state ψ on a lattice (any microscopic tensor-product structure):
- A region is subsets of the lattice:
- A projection-valued measure on a region (local PVM) is a complete set of orthogonal projectors localized to the region:

$$(P_i^{\mathbf{R}})^{\dagger} = P_i^{\mathbf{R}} = P_i^{\mathbf{R}} \otimes I^{\mathbf{\bar{R}}}$$

$$\sum_{i} P_i^{\mathbf{R}} = I \qquad P_i^{\mathbf{R}} P_j^{\mathbf{R}} = \delta_{ij} P_i^{\mathbf{R}}$$





• Two local PVMs on disjoint regions record each other (with respect to ψ) when their projectors are fully (classically) correlated:

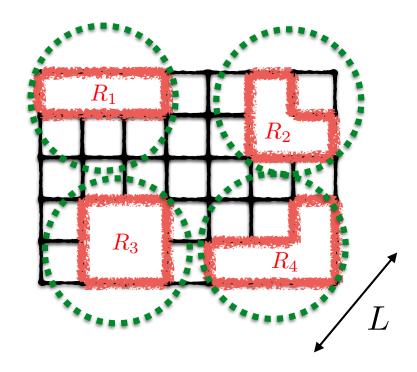
$$P_i^{R_1}|\psi\rangle = P_i^{R_2}|\psi\rangle$$

Defining redundant record

 Let a redundant record be a set of 3 or more local PVMs that all record each other

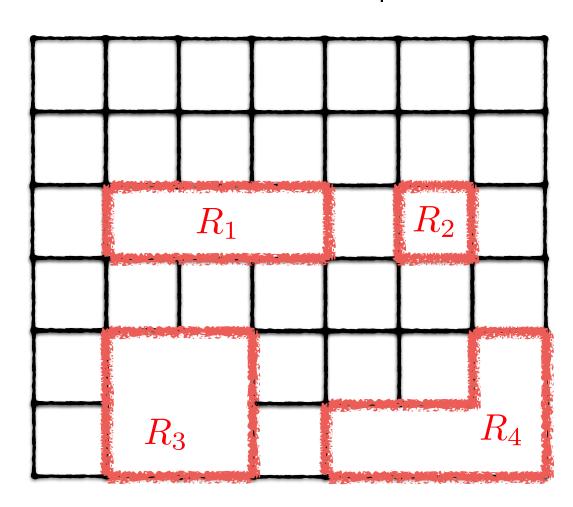
$$P_j^{R_1}|\Psi\rangle = P_j^{R_2}|\Psi\rangle = P_j^{R_3}|\Psi\rangle = \cdots$$

 Let a redundant record at scale L be a redundant record where the regions fit in disjoint spheres of diameter L



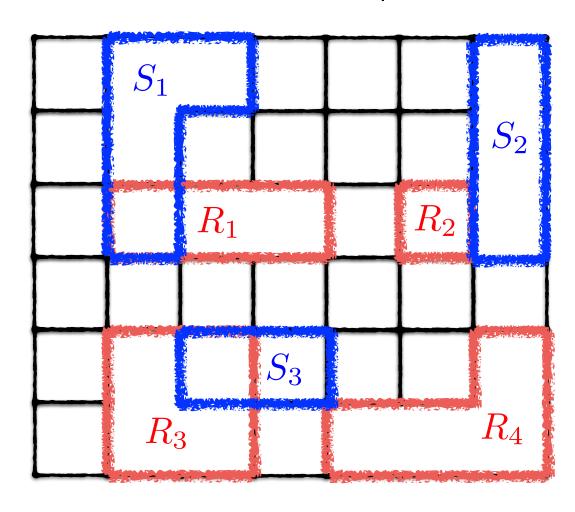
Compatible recorded observables

 Now consider multiple redundant records, e.g., for different classical macroscopic outcomes



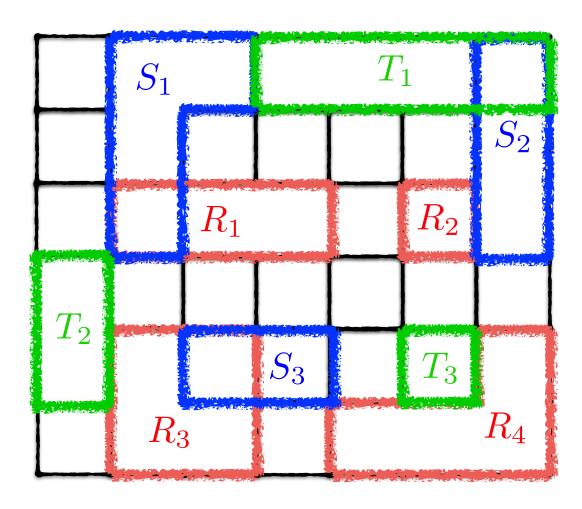
Compatible recorded observables

 Now consider multiple redundant records, e.g., for different classical macroscopic outcomes



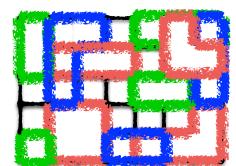
Compatible recorded observables

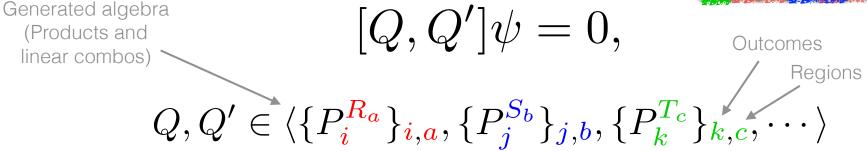
 Now consider multiple redundant records, e.g., for different classical macroscopic outcomes



Uniqueness of branch structure at fixed scale

• **Theorem**: All projectors in all PVMs of all redundant records at the same scale are necessarily commuting *on the state*:





 Define redundancy branches at scale L to be the simultaneous eigenstates:

$$\psi_{(\mathbf{i},\mathbf{j},k,\ldots)} := P_{\mathbf{i}}^{\mathbf{R}_a} P_{\mathbf{j}}^{\mathbf{S}_b} P_{k}^{\mathbf{T}_c} \cdots \psi$$

$$\psi = \sum_{I=(\mathbf{i},\mathbf{j},k,\ldots)} \psi_{I} = \sum_{\mathbf{i}} \sum_{\mathbf{j}} \sum_{k} \cdots \psi_{(\mathbf{i},\mathbf{j},k,\ldots)}$$

Comments on redundancy branches

- For $L \approx 10$ cm, these branches are eigenstates of "everything known to at least three human brains"
 - Different L can in principle give different decompositions, although it requires ψ to be a really weird error-correction-code type state
- This is not viable fundamental candidate mainly because
 - *L*-dependence is ugly
 - It doesn't capture irreversibility; (huge) matter interferometers are incorrectly "branched"
- But shows that it's possible to construct a preferred decomposition based only many-body entanglement structure with no reference to a preferred system

Complexity for branches

- Both Weingarten and Taylor & McCulloch use quantum state complexity to construct branches
 - (Weingarten uses Nielsen complexity and Taylor & McCulloch use traditional circuit complexity, but I will elide the difference.)
- They rely crucially on some form of the the generic asymptotic linear growth of complexity ("2nd law of quantum complexity"), forms of which have very recently been proven rigorously.
 - This is a quantum correlate of the generic linear growth of entropy in classical non-integrable systems
- Definition: Fix a set of "elementary" unitary operations. The **relative complexity** $C(\phi,\chi)$ between state vectors ϕ and χ is the *minimum* number of elementary operations needed to compose a unitary operator U that maps ϕ and χ up to some accuracy $\Delta \in [0,1]$:

$$|\langle \phi | U | \chi \rangle| \ge \Delta$$

- On a lattice, the elementary operations are usually N-qubit operators (e.g., N=2), thereby encoding the notion of spatial locality
- There is yet no principled choice single obvious choice of elementary set in the continuum limit relevant to QFT, but Brown et al. have some results suggesting the renormalization-group ideas dramatically narrow down the plausible candidates

• Weingarten propose that the proper branch decomposition of a state ψ is the orthogonal decomposition $\psi = \sum_{\alpha} \psi_{\alpha}$ that minimizes a weighted sum of the expected squared complexity of the branches and the Shannon entropy of their squared norms:

$$Q(\{\psi_{\alpha}\}) := \sum_{\alpha} |\psi_{\alpha}|^2 \left[C(\psi_{\alpha}, \Omega)^2 - b|\psi_{\alpha}|^2 \right]$$
$$= \bar{C}^2(\{\psi_{\alpha}\}) + b S(\{\psi_{\alpha}\})$$

- Here,
 - Ω is the QFT vacuum state
 - $\bar{C}^2(\{\psi_\alpha\}):=\sum_\alpha |\psi_\alpha|^2 C(\psi_\alpha,\Omega)^2$ is the mean squared branch complexity
 - $S(\{\psi_\alpha\}):=-\sum_\alpha |\psi_\alpha|^2 \ln |\psi_\alpha|^2$ is the Shannon entropy of the branch decomposition
 - b is weakly constrained new constant of nature

$$Q(\{\psi_{\alpha}\}) := \sum_{\alpha} |\psi_{\alpha}|^2 \left[C(\psi_{\alpha}, \Omega)^2 - b|\psi_{\alpha}|^2 \right]$$
$$= \bar{C}^2(\{\psi_{\alpha}\}) + b S(\{\psi_{\alpha}\})$$

- Q is better motivated than it first appears:
 - We want a way of decomposing the highly entangled global state into branches
 that are less entangled, but we don't want to simply decompose it into product
 states with zero entanglement: there is a trade off between complicatedness of
 the decomposition and the complicatedness of the components
 - Complexity is used because, by the 2nd law, that's the thing that reliably increases under unitary time evolution
 - Shannon entropy (rather than, e.g., Rényi entropy) and the additive form are used to guarantee independent branching on uncorrelated regions

- The decomposition is manifestly invariant under translations, rotation, and internal symmetries
- Weingarten gives evidence that...
 - The definition can be made Lorentz covariant by using Kent's asymptotic late-time construction
 - The decomposition is stable in the continuum limit! This allows for a branch decomposition in quantum field theory by taking the limit of lattice QFT
 - Branches are exceedingly unlikely to recombine at a later time; first case of using 2nd law of complexity to capture irreversibility in branching

- Issue #1: Depends on a preferred length scale b. Weingarten proposes this as a new constant of the universe, but I am very skeptical
- Issue #2: Still lots of work to be done to tell whether this actually recovers existing knowledge of branches, e.g., all of decoherence theory
- Issue #3: Inefficient to compute. Would need heuristics to use for simulation
- Nevertheless, I think this is a very impressive result that should be studied carefully. Read it!
- D. Weingarten, "Macroscopic Reality from Quantum Complexity" Foundations of Physics 52, 45, (2022) [2105.04545]

Objections to branches generally

- Objection: such-and-such interpretation of QM says I don't have to worry about this
 - Response: OK, forget interpretation if you must. I am pointing to a beautiful mathematical phenomenon with global applicability. Let's understand it!
- Objection: This doesn't have applications
 - Response: There's reason to think this could allow classical simulation of real world quantum systems
 - Jordan Taylor presented our numerical evidence; it will be in his thesis and our forthcoming paper

Best objection

- The best objection I hear: this is too hard
- Yes. It looks hard.
- But hardly anyone has tried! This is not quantum gravity or P≠NP!
- The prize is potentially immense: removing a fundamental ambiguity in the axioms of QM, speeding up numerical simulations, and understanding beautiful ubiquitous structure
- If you think it's soooooo hard that no progress can be made, then prove a no-go theorem! Or just elucidate the problems with existing attempts.
- Consider: do the objections about how hard it must be to make progress apply to pre-decoherence quantum mechanics?

The End

- CJR, "Wavefunction branches demand a definition!" *Quantum Views* 9, 85 (2025) [2506.15663]
- CJR, "Classical branch structure from spatial redundancy in a many-body wavefunction", *Physical Review Letters* 118, 120402 (2017) [1608.05377]
 - D. Weingarten, "Macroscopic Reality from Quantum Complexity" Foundations of Physics 52, 45, (2022) [2105.04545]
- J. Taylor & I. McCulloch, "Wavefunction branching: when you can't tell pure states from mixed states", *Quantum* 9, 1670 (2025) [2308.04494]