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Abstract. The state ρ of a quantum system can be represented by a vector PM(ρ)

of outcome probabilities for a set of measurements M. Such representations appear

throughout physics, for example, in quantum field theory via correlation functions and

in quantum foundations within generalized probabilistic frameworks. In this work,

we identify an unavoidable tension: to enable operationally meaningful statements,

the map ρ 7→ PM(ρ) must be topologically robust—preserving the notion of closeness

between states. Yet, a probability representation that is topologically robust cannot

simultaneously retain other essential structure, such as the subsystem structure.

1 Introduction and a first example

Let PM (ρ) denote the probability distribution obtained by measuring a quantum state

ρ ∈ D(H) on a separable Hilbert space H. If one collects these probability distributions for

all measurementsM from a tomographically complete set M, the resulting tuple PM(ρ) :=(
PM (ρ)

)
M∈M uniquely specifies the quantum state ρ. Such probablity representations arise,

for instance, when considering correlation functions in quantum field theories [1], and are

also widespread in quantum information theory and quantum foundations [2–17].

In this work, we ask the following question: does PM(ρ) represent ρ faithfully? If

faithfulness meant injectivity, the answer would be yes, as this is precisely the notion

of tomographic completeness. However, this criterion is too weak. To be faithful in a

physically meaningful sense, a representation must also be topologically robust. A main

contribution of this paper is to define and explain what this means.

We begin with an example where the use of probability representations appears natural:

generating random bits R1, . . . , Rℓ from a quantum process. For concreteness, imagine a

protocol that produces each bit Ri as follows: prepare n unstable atoms and count the

number of decays within a fixed time interval (e.g., one second). Set Ri = 0 if this number

is even and Ri = 1 otherwise.

An ℓ-bit string R = R1 · · ·Rℓ is said to be random if it cannot be predicted with proba-

bility greater than 2−ℓ, even by an all-powerful agent with access to any side information E

available prior to the process, such as the internal state of the source supplying the atoms.

Formally, this means that the joint state ρ = ρRE of R and E belongs to the set

Σrand :=
{
Π̄

(ℓ)
R ⊗ σE

∣∣∣ℓ ∈ N, σE ∈ D(E)
}

(1.1)

where Π̄
(ℓ)
R is the uniform state on bit strings of length ℓ, and D(E) is the set of density

operators on E.
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In any practical randomness-generation protocol, the output R inevitably has residual

correlations with other systems. Moreover, since R is produced by a quantum process, it is

not automatically classical: in general, the joint state ρRE is not a cq-state. Consequently,

condition (1.1) cannot be achieved exactly, but only approached asymptotically by investing

additional resources [18–20], for instance by increasing the number n of atoms in our

example protocol. For this reason, it is standard to adopt an approximate condition of

the form

lim
n→∞

δ(ρ(n),Σrand) = 0, (1.2)

where δ(ρ(n),Σrand) := infσ∈Σrand δ(ρ(n), σ), with δ(·, ·) denoting the trace distance. Opera-

tionally, this quantifies the maximal probability with which an agent with access to both R

and E can distinguish ρ(n) from the ideal behaviour defined by Σrand [21, 22].

To work at the level of probability representations, one requires that such approximate

conditions be expressible via a distance measure defined directly on probability distri-

butions, such as the statistical distance. The non-triviality of this requirement is best

illustrated by a concrete example: a sequence of states ρ(n) that violates (1.2), while this

violation remains invisible in the corresponding probability representation.

Example. For any n ∈ N, let R and E be 2n-dimensional systems, and the joint state

of R and E after the randomness generation protocol be

ρ
(n)
RE ∝

∑
1≤u<v≤2n

πu,v (1.3)

where πu,v denotes the projector on the subspace of RE spanned by |u⟩R |v⟩E − |v⟩R |u⟩E,
for an arbitrary choice of orthonormal bases. This state is entangled and thus distinct from

the states in Σrand, which are separable. Concretely, as shown in [23, Example II.9.],

∀n ∈ N : δ(ρ(n),Σrand) ≥ 1

4
. (1.4)

Therefore, R is not approximately random according to criterion (1.2).

Before resuming this example at the level of the probability representation PM, we

must clarify the requirements on the underlying set M of measurements. While one could,

in principle, allow arbitrary measurements on the joint system RE, these generally fail to

respect the subsystem structure, thus erasing the distinction between R and E. Yet, this

distinction is precisely what allows us to phrase definitions like (1.1). Accordingly, it is

common to restrict M to measurements acting locally on R and E.

Example (continued). For illustrative purposes, we focus on measurements of the form

M ⊗M where M consists of rank-1 projectors only.1 Exploiting the antisymmetry of ρ
(n)
RE,

it is straightforward to verify that the joint probability distribution PM⊗M = PM⊗M (ρ
(n)
RE)

of the outcomes X and Y is given by

PM⊗M (x, y) =

 0 if x = y

1
2n(2n−1) else.

(1.5)

1The conclusions of this example can be easily generalized to any measurement acting locally on R and E.

For this, it suffices to observe that the state on E conditioned on any outcome of a rank-1 measurement

applied to R is maximally mixed on a subspace of dimension 2n − 1, which is 2−n-close to Π̄
(n)
E .
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Figure 1: Non-robustness of PM⊗. A region of the quantum state space D(H) is shown,

containing the sequence of states ρ(n) from the example (black) and the corresponding

closest points in Σ = Σrand (blue). Panel (a) uses the trace distance δ, for which the distance

to Σ stays constant. Panel (b) uses the metric dM⊗ induced by the product-measurement

representation PM⊗ , for which the distance to PM⊗(Σ) shrinks with increasing n.

From this, one finds that 1
2∥PM⊗M (ρ

(n)
RE) − P (n) × P (n)∥1 ≤ 2−n, where P (n) is the uni-

form distribution on an alphabet of size 2n. Consequently, at the level of such probability

representations, ρ
(n)
RE is approximately indistinguishable from Σrand; see also Fig. 1.

The result of the example means that, with respect to the metric defined by

dM(ρ, σ) :=
1

2
sup
M∈M

∥∥PM (ρ)− PM (σ)
∥∥
1
, (1.6)

when we choose M = M⊗ to be the set of local measurements, the sequence (ρ
(n)
RE)n∈N

converges to Σrand. Yet the same is not true for the metric δ. This motivates the following

definition. (Throughout, we assume that M is a tomographically complete measurement

set, i.e., the map PM from the space of density matrices D(H) to the representation space

is injective.)

Definition 1. We say that PM is topologically robust (or simply robust) if for all sub-

sets Σ and sequences (ρ(n))n∈N of states

lim
n→∞

dM(ρ(n),Σ) = 0 =⇒ lim
n→∞

δ(ρ(n),Σ) = 0. (1.7)

Because the opposite implication always holds, robustness implies that it does not

matter which metric one uses. However, the example showed that robustness does not

always hold. This raises the question: which of the two metrics is more operationally

relevant? To decide this, we use the principle of composability [24]. The principle demands

that the underlying distance measure is stable under the addition of auxiliary systems in

any state Ψ, i.e.,

δ(ρRE ,ΣRE) = δ(ρRE ⊗ΨR′E′ ,ΣRE ⊗ΨR′E′). (1.8)

To see the significance of this principle, consider an agent, Alice, with access to the

randomness R, and another agent, Eve, with access to side information E. If R is ap-

proximately random in the sense of (1.2), then criterion (1.8) ensures that this property is

preserved when Alice and Eve have access to additional systems R′ and E′, respectively.
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ρ δ(ρ,Σ) ≈ 0

PM(ρ) dM(ρ,Σ) ≈ 0

?

QIT arguments

Probability arguments

Figure 2: State-space versus representation-space approximations. Physical prop-

erties are often expressed by the proximity of a state ρ to a set Σ. The diagram illustrates

the requirement that approximate statements established at the level of a probability rep-

resentation remain valid when pulled back to the level of density operators. According to

Definition 1, this is the case whenever the representation is topologically robust.

While the trace distance δ satisfies the composability principle (1.8), the metric dM⊗

does not. The former is a consequence of the monotonicity of the trace distance under data-

processing [21, Theorem 9.2]. For the latter, note that our example implies dM⊗(ρ,Σ) ≪
δ(ρ ⊗ Ψ,Σ ⊗ Ψ); yet, as shown in [25], dM⊗(ρ⊗Ψ,Σ⊗Ψ) ≈ δ(ρ⊗Ψ,Σ⊗Ψ) when Ψ

contains sufficient entanglement. Therefore, the composability principle forbids the use

of dM⊗ as the operationally relevant distance to quantify approximations.

We have thus answered the question posed at the outset: injectivity alone does not

suffice to ensure that a representation PM is faithful; robustness in the sense of Definition 1

is also required. Without this property, approximate statements established at the level

of probability representations cannot, in general, be “pulled back” to the level of density

operators. This is illustrated by the commuting diagram in Fig. 2.2

2 A topological characterization of robustness

Definition 1 concerns the convergence of sequences and therefore has a topological character.

One might expect that a failure of robustness thus means that the topologies induced by

the metrics dM and δ are inequivalent. As we show next, this intuition is correct, but only

if one extends the analysis beyond the space of density operators D(H).

We begin with a proposition showing why we need to go beyond D(H). It applies to

any measurement set M satisfying a stability condition, which fails only in pathological

cases. Product measurements, in particular, are stable.3

Proposition 2. The topologies induced by dM and δ are identical on the space of density

matrices D(H), except when M is not stable.

While this proposition tells us that the topologies on D(H) are not an indicator of

robustness, we now show that a topological characterization is possible on the larger space

2This problem does not affect exact statements. These can be proved at the level of the probability

representation and then directly pulled back to density operators. A beautiful example is the proof of the

quantum de Finetti theorem for infinitely exchangeable states proposed in [26].
3See Definition A.1 and Remark A.2. Moreover, all technical proofs are deferred to the appendix.
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Open set containing

the state space

State space

Figure 3: Sketch of the topological problem. The state space D(H) (in blue) is

embedded into span(D(H)). While for stable M the topologies induced by ∥ · ∥M and ∥ · ∥1
agree on D(H), they generally disagree on an open region (in green) around it.

span(D(H)), on which we define the norm ∥ · ∥M := supM∈M ∥PM (·)∥1; see also Fig. 3.

Proposition 3. The following statements are equivalent:

(1) The representation PM is robust.

(2) The topologies induced by ∥ · ∥M and ∥ · ∥1 are identical on span(D(H)).4

(3) span(D(H)) is complete with respect to ∥ · ∥M.

Hence, whether a representation is robust is indeed a purely topological question.

3 Structure is incompatible with robustness

The example discussed above implies that representations based on the set of local measure-

ments M⊗ are not robust. This raises the question of whether the issue can be avoided by

relaxing the locality condition. As we show below, the answer is negative: non-robustness

is in fact a generic feature of any representation that preserves structure.

To make this precise, we quantify the “structure” of a given measurement set M using

tools from information theory, in particular an appropriate notion of entropy. Entropy

characterizes the minimum size to which data can be compressed such that it remains re-

coverable via a decoding operation. This decoder must be selected from a set of “physically

allowed” operations. For instance, it must be completely positive for decoding quantum

information. The analogue at the level of probabilities are convex maps of the form

DM : (PE)E∈E 7→
(∑

E

p
(Mi)
E PE

)
Mi∈M

, (3.1)

where the sum runs over finitely many elements of E , and p
(Mi)
E ≥ 0. The input to the

decoder DM is compressed data in the form of a list of probabilities PE = tr(Eρ) stemming

from a quantum state ρ. For a given measurement M , one wants the output of DM to

4This is equivalent to requiring that the inverse of the linear extension of the map PM (correspond-

ing to the arrow labelled with “?” in Fig. 2) is continuous with respect to the norm on the probability

representation induced by ∥ · ∥M and the trace norm ∥ · ∥1 on span(D(H)).
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reproduce (up to a small error ε) the probability distribution PM (ρ) of the outcomes when

measuring ρ. This leads to the following definition.

Definition 4 (Informal5). Let M be a measurement and E a set of POVM elements. We

say that M can be ε-decoded from E if there exist a decoding operation DM such that

∀ρ ∈ D(H) :
∥∥DM

((
tr(Eρ)

)
E∈E

)
− PM (ρ)

∥∥
1
< ε. (3.2)

We now define the entropy of a representation PM by Hε := log(|E|), where |E| is the
minimum input size required for DM to ε-decode for all M ∈ M. For infinite-dimensional

Hilbert spaces this quantity is infinite. In this case, we consider its scaling for restricted

measurement sets M|Π, obtained by preceding each measurement in M by an orthogonal

finite-rank projector Π.

Definition 5. Let (En)n∈N be a sequence of sets of POVM elements, {Π2n}n∈N a nested

family of projectors with rank(Π2n) ≥ 2n, and (εn)n∈N a zero-sequence. We say the asym-

ptotic entropy of M is at most (log(|En|))n∈N if all M ∈ M|Π2n
are εn-decodable from En.

Remark 6. The asymptotic entropy of any M is at most (2n+log(n)+3)n∈N.

Structure in the measurement set M manifests itself in an entropy below the upper

bound. Theorem 7, our main technical result, therefore shows that the probability repre-

sentation PM cannot be robust when M has non-negligible structure.

Theorem 7. If M has asymptotic entropy at most (εn2
n)n∈N for a zero-sequence (εn)n∈N,

then the representation PM is not robust.

Product measurements provide a canonical example of a measurement set with signif-

icant structure. A straightforward calculation shows that the asymptotic entropy of M⊗
scales as (2n/2)n∈N. The conclusion of our introductory example then follows as a corollary.6

Corollary 8. The representation PM⊗ is not robust.

In the study of d-dimensional systems, one is often interested in fiducial representa-

tions PMd
that use a minimal measurement set Md [2, 3, 6, 10–14, 41]. SIC-POVMs are a

prominent example [42]. Additionally, d is chosen to be the smallest Hilbert space dimen-

sion with which the system can be described. For example, if one uses an atom as qubit

in a quantum computer, then one works with the corresponding 2-dimensional subspace

rather than the high-dimensional Hilbert space of the atom.

While this minimization of the dimension is often implicit, it involves a non-trivial

consistency assumption, which we adopt in the following: a dimensional restriction from

a D-dimensional to a d-dimensional Hilbert space should not weaken the representation.

Formally, using Definition 4 with ε = 0, we require that MD|Πd
is decodable from the

POVM elements of Md, where Πd is the projector onto the d-dimensional subspace.

To make an asymptotic statement, we consider the union M =
⋃
dMd of the minimal

measurement sets Md for all d. Because the state space for each d is (d2 − 1)-dimensional,

and therefore polynomial in d, such measurement sets satisfy the following definition.

5See Definition B.2 for the formal definition, which also applies to continuous measurements.
6Alternatively, the statement can also be derived from well-known data hiding results [27–40].
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Structure preservation

Robust Subsystems Efficient

Density operator

D(H) ✓ ✓ ✓
Probability representations

PMall
✓ × ×

PM⊗ × ✓ ×
Mefficient × depends on Mefficient ✓

Table 1: Density operator vs. probability representations. The density operator

representation of a quantum state is robust, in the sense that small deviations in the rep-

resentation are physically insignificant. Furthermore, it respects the subsystem structure,

and it is efficient, requiring only few real numbers. In contrast, probability representations

that are robust cannot have any such structural properties.

Definition 9. We say that M is efficient if there exists a nested family of rank-d pro-

jectors {Πd}d∈N and a sequence (Md)d∈N of measurement sets such that |
⋃
N∈MD

N | ≤
poly(D) and, for all D, M|ΠD

can be decoded from the POVM elements of
⋃D
d=1Md.

This definition directly implies that the entropy of any efficient measurement set M is

at most (constn)n∈N, which yields another corollary to Theorem 7.

Corollary 10. If M is efficient, the representation PM is not robust.

The results of this section show that the use of probability representations leads to a

fundamental dilemma, which is summarized in Table 1.

4 Beyond Quantum

In quantum foundations, one often studies generalizations of quantum theory where states

need not be representable by density operators. Probability representations are well suited

for this task, as they allow one to directly modify the constraints that quantum theory

imposes on the admissible lists of outcome probabilities. A widely used framework based

on this idea is that of generalized probabilistic theories (GPTs) [3, 5, 6, 8, 9, 15, 16, 43–46],

where each GPT is specified by the set of probability assignments corresponding to its valid

states. A brief introduction to the formalism is given in Appendix C.

Since probability representations are fundamental to the GPT framework, the issues

summarized in Table 1 also pose a challenge for GPTs. In fact, the situation is even

more severe, as Proposition 2 does not generalize to GPTs beyond quantum theory. To

state this result, we extend the trace distance to arbitrary GPTs by defining δ(ρ, σ) :=
1
2 supM ∥PM (ρ) − PM (σ)∥1 where the supremum ranges over all measurements M . Note

that, as in the quantum case, we allow for state spaces of unbounded dimension.

Theorem 11. There exists a GPT for which the topologies induced by dM⊗ and δ are

different on state space, despite M⊗ being stable.

7



5 Conclusion

We conclude with a discussion of the implications of our results for various areas of research

that use probability representations, starting with quantum foundations. Reconstruction

programmes seek to derive quantum theory from postulates with a clear and direct physical

meaning. A common postulate in this context is local tomography, which posits that the

state of a bipartite system is uniquely determined by the statistics of local measurements,

corresponding to a local representation PM⊗ [2, 3, 9, 10, 47, 48]. Yet, for this to be physi-

cally grounded, PM⊗ must be robust: infinitesimal statistical fluctuations must not imply

wildly different states. Corollary 8 shows that this requirement fails for quantum systems

of unbounded dimension.7 Consequently, even for prototypical physical systems—such as

those composed of harmonic oscillators or single particles—local tomography is not a viable

physical principle. This suggests that extending the current reconstruction programme to

such systems is not a mere mathematical formality but a substantial conceptual challenge.8

Probability representations also play a central role in quantum interpretations. A promi-

nent example is QBism, which regards a quantum state as a catalogue of an agent’s personal

degrees of belief, corresponding to a probability representation PM [11, 17]. To formulate

quantum theory—and specifically the state-update rule—entirely in probabilistic terms,

QBism requires a representation that is not overcomplete, implemented, for instance, by

SIC-POVMs [41]. However, Corollary 10 implies that, for systems of unbounded dimension,

such probability representations fail to be robust. Our results thus point to a fundamental

obstruction to extending the QBist programme beyond finite-dimensional systems.

In quantum information theory, probability representations are routinely employed to

enable the application of classical information-theoretic tools to quantum systems. An

operationally motivated approach to obtaining such a representation is to model the in-

teraction between agents and the experimental setup as an abstract box. For example, to

analyse bipartite entanglement, one may imagine two agents, Alice and Bob, who choose

measurements α and β, and observe the respective results, X and Y .

α β

X Y

(5.1)

The behaviour of this box is fully characterized by the conditional probability distribu-

tion PXY |αβ, which is required to be non-signalling.9 This corresponds precisely to the

probability representation PM⊗(ρAB) of the state ρAB shared by Alice and Bob.

7Given that local tomography fails to be robust, one may wonder how the state of a composite quantum

system can be determined in practice. This is achieved by imposing simplifying assumptions. For example,

in quantum optics one often restricts attention to Gaussian states or to states with a bounded photon

number.
8This contrasts with the expectation [10, 14] that generalizing such reconstructions to infinite dimensions

may be “only a small conceptual (though possibly mathematically challenging) step.”
9The non-signalling property ensures that neither party can communicate through their choice of mea-

surement. Technically, Alice’s marginal distribution PX|αβ is independent of β, and analogously for Bob’s.
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Our results, notably Corollary 8, thus apply directly to this setting, implying that the

box-based representation is not robust for systems of unbounded dimension. This failure

is critical in device-independent quantum cryptography, for instance. There, devices are

treated as adversarial, so that no bounds on their dimension can be assumed, yet robustness

is essential (cf. the randomness-generation example in the introduction). While it has been

proposed to establish cryptographic security directly at the level of boxes [43, 49], the

non-robustness of PM⊗ shows that this approach is not viable.

Quantum field theory (QFT) is another prominent domain in which probability repre-

sentations are employed. Instead of wave functions, states are typically characterized by

their n-point correlation functions.10 The injectivity of this representation follows from the

Wightman reconstruction theorem [51]. Our results, however, suggest that such represen-

tations are not robust.

While our treatment assumes that states can be represented as density operators and

thus is not directly applicable to general QFTs, theories satisfying the split property can

be well approximated by discretized models in which degrees of freedom are localized on

a lattice and the state space factorizes accordingly. In this regime, Corollary 8 shows that

correlation functions fail to provide a robust state representation. This becomes particularly

problematic when considering genuinely non-local observables. A notable example are

the observables necessary to test for the athermality of Hawking radiation, which would

manifest itself in complex non-local correlations.

One might assume that non-robustness occurs only in infinite-dimensional systems. In

finite dimensions, all norms—and hence their induced topologies—are equivalent. However,

non-robustness still appears through a dimension-dependent scaling factor between the

distances dM and δ. Our results can therefore be understood as the infinite-dimensional

culmination of a scaling problem that is already present in finite dimensions [27–40].

In summary, we have argued against probability-based representations: although ubiq-

uitous in physics, they face fundamental limitations, summarized by Table 1. This moti-

vates the search for an alternative framework for representing states that (i) is topologically

robust; (ii) preserves physically meaningful structure, such as the subsystem structure; and

(iii) allows generalizations beyond quantum theory, in the spirit of GPTs. Developing such

a framework is left for future work.
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A Topological properties

Definition A.1. A set M of measurements is stable if for every POVM element E with

finite-dimensional support the topologies induced by dM and dM∪{E,1−E} are identical.

Remark A.2. Let N be the set of POVM elements that appear in a measurement set M.

Then M is stable if any possible POVM element with finite support is in the closure of

span(N ) with respect to ∥ · ∥∞. This is, in particular, the case for M⊗.

Proof. Let E be a POVM element with finite support and (ρn)n∈N a sequence converging

to ρ with respect to dM. We first show that, under the assumption made in the remark,

the sequence also converges with respect to dM∪{E,1−E}.

To see this, take a sequence of POVM elements (En)n∈N in the span of the POVM

element of M that converges to E with respect to ∥ · ∥∞. For every ε > 0 there exists an

Em =
∑

i a
m
i N

m
i with Nm

i ∈ N such that ∥Em − E∥∞ ≤ ε. So we find

lim
n→∞

| tr(E(ρn − ρ))| ≤ lim
n→∞

∑
i

|ami | ·
∣∣tr(Ni(ρn − ρ))

∣∣+ ∣∣tr((Em − E)(ρn − ρ))
∣∣

≤ lim
n→∞

∑
i

|aki | · ∥ρn − ρ∥M + 2ε

= 2ε.

(A.1)

As this holds for every ε > 0, we have limn→∞ | tr(E(ρn − ρ))| = 0. This implies that the

sequence (ρn)n∈N converges to ρ also with respect to dM∪{E,1−E}.

We have thus established that every sequence (ρn)n∈N that converges with respect to

dM also converges with respect to dM∪{E,1−E}. Because, conversely, dM∪{E,1−E} domi-

nates dM, the topology induced by dM is equal to the topology induced by dM∪{E,1−E}.

The stability condition thus holds.

Because product POVM elements with finite support linearly span POVM elements

with finite support, the condition is met for M⊗.

Proposition 2. The topologies induced by dM and δ are identical on the space of density

matrices D(H), except when M is not stable.

Proof. We first show that, if the topologies induced by dM and δ are identical, then M
is stable. If these two topologies are identical, then the topology of dM∪{E,1−E} is finer

than the topology of δ. Furthermore, because dN ≤ δ holds for arbitrary measurement

sets N , the topology induced by dM∪{E,1−E} is coarser than that of δ. Consequently, the

topologies induced by dM∪{E,1−E} and δ are identical.

We now show that the stability of M implies that the topologies induced by dM and δ

are identical. Stability means that, for any POVM element E with finite support, the

topologies induced by dM∪{E,1−E} and dM are identical. Let {|n⟩}n∈N be an orthonormal

basis of H and PN =
∑N

i=0 |i⟩⟨i| projectors. For any measurements set M satisfying the

conditions of the proposition and N ∈ N, the map PN : ρ 7→ PNρPN , where ρ is a state, is

continuous with respect to ∥ · ∥M. To see this, let (ρn)n∈N be a sequence that converges to

ρ with respect to ∥ · ∥M and let E = {E1, . . . EN2} be a tomographically complete POVM
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on the support of PN . We define the norm ∥ρ∥E := supE∈E | tr(EA)| on the image of PN .

Since the topology induced by dM∪{E,1−E} is identical to that of dM it follows that

∀E ∈ E : lim
n→∞

| tr(EPN (ρn − ρ)PN )| = lim
n→∞

| tr(E(ρn − ρ))|

≤ lim
n→∞

dM∪{E,1−E}(ρn, ρ) = 0.
(A.2)

As |E| <∞, we find that PN (ρn) converges to PN (ρ) with respect to ∥ ·∥E , and because the

image of PN is finite-dimensional also with respect to ∥·∥M. As this holds for any converging

sequence, we have established that the map PN is continuous with respect to ∥ · ∥M.

Let (ρ(n))n∈N be a sequence of states such that limn→∞ dM(ρ(n), ρ) = 0. Then

0 = lim
n→∞

2dM(ρ(n), ρ)

= lim
N→∞

lim
n→∞

∥ρ(n) − ρ∥M + ∥ρ− PNρPN∥M

≥ lim
N→∞

lim
n→∞

∥ρ(n) − PNρPN∥M

= lim
N→∞

lim
n→∞

∥ρ(n) − PNρPN∥M + ∥PNρ(n)PN − PNρPN∥M

≥ lim
N→∞

lim
n→∞

∥ρ(n) − PNρ
(n)PN∥M

≥ lim
N→∞

lim
n→∞

∑
Ei∈M

| tr
(
Ei(PNρ

(n)PN − ρ(n))
)
|

≥ lim
N→∞

lim
n→∞

∣∣1− tr
(
PNρ

(n)PN

)∣∣

(A.3)

where M ∈ M is a measurement with POVM elements {Ei}i, and we used both the

continuity of PN with respect to ∥ · ∥M and that limN→∞ δ(PNρPN , ρ) = 0. Using this

result, we can calculate the limit with respect to ∥ · ∥1,

lim
n→∞

∥ρ(n) − ρ∥1 = lim
N→∞

lim
n→∞

∣∣∥ρ(n) − ρ∥1 − ∥PNρPN − ρ∥1
∣∣

≤ lim
N→∞

lim
n→∞

∥ρ(n) − PNρPN∥1

= lim
N→∞

lim
n→∞

∣∣∥ρ(n) − PNρPN∥1 − ∥PNρPN − PNρ
(n)PN∥1

∣∣
≤ lim

N→∞
lim
n→∞

∥ρ(n) − PNρ
(n)PN∥1

≤ lim
N→∞

lim
n→∞

2
√

1− tr
(
PNρ(n)PN

)
= 0

(A.4)

where in the last inequality we used the gentle measurement lemma [52, Lemma 9.4.2]. We

have thus shown that, if a sequence (ρn)n∈N converges with respect to ∥ · ∥M then it also

converges with respect to ∥ · ∥1. This, together with the fact that ∥ · ∥1 dominates ∥ · ∥M,

proves that the topologies induced by δ and dM are equal.

Remark A.3. There exists a tomographically complete measurement set M such that the

topologies induced by dM and δ are not the same on D(H).

Proof. Let {|n⟩}n∈N be a basis and P =
∑

n e
−n |n⟩⟨n|. We define

M =
{
{PEP,1− PEP}| ⟨0|E |0⟩ = 0, 0 ≤ E ≤ 1

}
∪
{
{1}

}
. (A.5)
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It can be readily verified that M is tomographically complete. To show that the topol-

ogy induced by dM is different from the topology induced by δ, we consider the se-

quence (|n⟩⟨n|)n∈N. This sequence obviously does not converge with respect to δ. However,

it converges with respect to dM. To see the latter, note first that the POVM element 1

cannot be used to distinguish |0⟩⟨0| from |n⟩⟨n|. Furthermore, for any POVM element E

with ⟨0|E |0⟩ = 0, it holds that tr(PEP (|n⟩⟨n| − |0⟩⟨0|)) = e−2n ⟨n|E |n⟩ ≤ e−2n.

Before proceeding with the proof of our next main statements, we need a technical

lemma. The lemma refers to norms that are defined on the space span(D(H)), which

contains all Hermitian trace-class operators onH. We also remark that any such operator A

can be written as a sum of a positive part A+ and a negative part A−.

Lemma A.4. If the norms ∥ · ∥1 and ∥ · ∥M do not induce the same topology then there

exists a sequence (A(n))n∈N of Hermitian trace-class operators from the set11

Odiff := {A : tr(A) = 0 ∧ tr(A+) ≤ 1
11}, (A.6)

such that

lim
n→∞

∥A(n)∥M = 0, (A.7)

whereas there exists µ > 0 such that

∀n ∈ N : ∥A(n)∥1 ≥ µ. (A.8)

Proof. The Hilbert space H is infinite-dimensional, as the norms ∥ · ∥1 and ∥ · ∥M, do not

induce the same topology. Furthermore, because ∥ · ∥1 dominates ∥ · ∥M, the inequivalence

of norms implies that there exists a sequence (A(n))n∈N of trace-class operators satisfy-

ing (A.7), while limn→∞ ∥A(n)∥1 ̸= 0. By restricting to a suitable subsequence, we can also

ensure that (A.8) holds.

In the remainder of the proof, we will show that, by appropriately modifying this

sequence, we can ensure that its elements lie in Odiff .

We first take care of the condition tr
(
A

(n)
+

)
≤ 1

11 . For this, consider the sequence

(B(n))n∈N defined by

B(n) :=
1

max(11∥A(n)∥1, 1)
A(n). (A.9)

As ∀n ∈ N : ∥B(n)∥M ≤ ∥A(n)∥M, the sequence (B(n))n∈N still converges with respect

to ∥ · ∥M. Furthermore, for all n it holds that ∥B(n)∥1 ≥ µ
11 . As ∥ · ∥1 is compatible with

data processing, it follows that (B(n))n∈N has the desired property

1

11
≥ ∥B(n)∥1 ≥ | tr

(
Π±B

(n)Π±

)
| = | tr

(
B

(n)
±

)
| (A.10)

where Π± is the projector on the positive (negative) part of B(n). This shows that we can,

without loss of generality, assume that tr
(
A

(n)
+

)
≤ 1

11 .

11The choice of 1
11

is due to a preference for prime numbers of at least one of the authors.
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Next, we turn to the property tr
(
A(n)

)
= 0. Let |e0⟩ be an eigenvector of A(n) such

that the corresponding eigenvalue λ0 satisfies 0 ≤ λ0 ≤ 1
n . Such an eigenvector exists

as tr(A
(n)
+ ) ≤ 1 and the Hilbert space H is infinite dimensional. Note that the sequence

(B(n))n∈N defined by B(n) = A(n)− tr
(
A(n)

)
|e0⟩⟨e0| does not converge with respect to ∥ · ∥1

because, for all n ∈ N,

∥B(n)∥1 = tr
(
A

(n)
+

)
− tr

(
A

(n)
−

)
− λ0 + |λ0 − tr

(
A(n)

)
| ≥ µ− 1

n
. (A.11)

However, it still converges with respect to ∥ · ∥M as

∥B(n)∥M ≤ ∥A(n)∥M + | tr
(
A(n)

)
| ≤ 2∥A(n)∥M (A.12)

where we used that | tr(A)| ≤ ∥A∥M in the last inequality.

Proposition 3. The following statements are equivalent:

(1) The representation PM is robust.

(2) The topologies induced by ∥ · ∥M and ∥ · ∥1 are identical on span(D(H)).12

(3) span(D(H)) is complete with respect to ∥ · ∥M.

Proof. (2) =⇒ (1): Let Σ be a subset of the state space and (ρ(n))n∈N a sequence such

that limn→∞ dM(ρ(n),Σ) = 0. Then there exists a sequence (σ(n))n∈N ⊂ Σ such that

limn→∞ dM(ρ(n), σ(n)) = limn→∞ ∥ρ(n) − σ(n)∥M = 0. As the norms induce the same

topology, it follows that limn→∞ ∥ρ(n) − σ(n)∥1 = 0, which implies limn→∞ δ(ρ(n),Σ) = 0.

(1) =⇒ (2): Assume by contradiction that (2) does not hold. Then the underlying

Hilbert space must be infinite-dimensional, because all norms on a finite-dimensional vector

space are equivalent. Let {|n⟩}n∈N be an orthonormal basis of this Hilbert space and

(A(n))n∈N the sequence of operators in Odiff as defined by Lemma A.4. From this, we can

build sequences (ρ(n))n∈N and (σ(n))n∈N of states by

ρ(n) := |n⟩⟨n|
(
1− tr

(
A

(n)
+

))
+A

(n)
+ , σ(n) := |n⟩⟨n|

(
1 + tr

(
A

(n)
−

))
−A

(n)
− . (A.13)

Note that, because all operators from Odiff satisfy tr(A+) ≤ 1, these are valid states.

We calculate the distance between any two states of the two sequences. For n ̸= m, we

have

2δ(ρ(n), σ(m)) = ∥ρ(n) − σ(m)∥1

=
∥∥|n⟩⟨n|(1− tr

(
A

(n)
+

))
+A

(n)
+ − |m⟩⟨m|

(
1 + tr

(
A

(m)
−

))
+A

(m)
−
∥∥
1

≥
∣∣1− tr

(
A

(n)
+

)
+ ⟨n|A(n)

+ |n⟩+ ⟨n|A(m)
− |n⟩

∣∣
≥ 1− tr

(
A

(n)
+

)
+ tr

(
A

(m)
−

)
≥ 1− 2

11
(A.14)

12This is equivalent to requiring that the inverse of the linear extension of the map PM (correspond-

ing to the arrow labelled with “?” in Fig. 2) is continuous with respect to the norm on the probability

representation induced by ∥ · ∥M and the trace norm ∥ · ∥1 on span(D(H)).
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where, in the first inequality, we used that the 1-norm is non-increasing under any trace

non-increasing completely positive map. For n = m, we have ρ(n) − σ(n) = A(n). There-

fore, ∀n ∈ N : δ(ρ(n), σ(n)) ≥ µ. Define the set Σ = {σ(n)|n ∈ N}. By definition,

limn→∞ dM(ρ(n),Σ) ≤ limn→∞ dM(ρ(n), σ(n)) = 0. Furthermore, for all n ∈ N, the bound

δ(ρ(n),Σ) ≥ min(1− 2
11 , µ) holds. Therefore, PM is not robust.

(2) =⇒ (3): Assume that the topologies induced by ∥ · ∥M and ∥ · ∥1 are identical.

Then there exists a constant C > 0 such that C∥·∥1 ≤ ∥·∥M ≤ ∥·∥1. Therefore, a sequence

is Cauchy or converges with respect to ∥ · ∥M if and only if it is Cauchy or converges with

respect to ∥ · ∥1. The space span(D(H)) is the set of Hermitian trace-class operators, which

is complete with respect to ∥·∥1 [53, 4.2.2. Corollary] and, thus, also with respect to ∥·∥M.

(3) =⇒ (2): Assume the space span(D(H)) with the topology induced by∥ · ∥M is

complete and, thus, a Banach space. Consider the identity map (span(D(H)), ∥ · ∥1) →
(span(D(H)), ∥ · ∥M). This map is continuous as ∥ · ∥M ≤ ∥ · ∥1. By the open mapping

theorem for continuous linear functions on Banach spaces [54, Theorem III.11], the inverse

of this map is also continuous. Thus, the topologies induced by ∥ · ∥M and ∥ · ∥1 are

identical.

Remark A.5. The representation PM being robust is also equivalent to span(D(H)) not

being meagre13 with respect to the topology induced by ∥ · ∥M.

Proof. If the topologies induced by ∥ · ∥M and ∥ · ∥1 are identical then, by Proposition 3,

span(D(H)) equipped with ∥ · ∥M is a Banach space. It follows directly from the Baire

category theorem [54, Theorem III.8] that a Banach space is not meagre.

Conversely, assume the space span(D(H)) with the topology induced by ∥ · ∥M is not

meagre. Consider the family of functionals F := {A ∈ span(D(H)) 7→ tr(EA)|0 ≤ E ≤ 1}.
This family of functionals is pointwise bounded on span(D(H)):

∀A ∈ span(D(H)) : sup
0≤E≤1

tr(EA) = ∥A∥1 <∞. (A.15)

As span(D(H)) is not meagre with respect to the topology induced by ∥ · ∥M, we can

apply Banach-Steinhaus [55, Theorem 2.5], which implies that the family of functionals F
is pointwise equicontinous with respect to ∥ · ∥M. Therefore, for every ε > 0, there is a

δ > 0 such that ∥A∥M ≤ δ =⇒ ∥A∥1 ≤ ε. Thus, any sequence that converges with respect

to ∥ · ∥M also converges with respect to ∥ · ∥1. The reverse is also true as ∥ · ∥M ≤ ∥ · ∥1.
Thus, the topologies induced by ∥ · ∥M and ∥ · ∥1 are identical.

B Asymptotic entropy

Here we give the formal version of Definition 4. First, we define the allowed decoding

operations.

Definition B.1. Let E be a collection of POVM elements and M a POVM on a measurable

space (O,ΣM ). A decoding operation DM for M maps lists of probabilities (PE)E∈E to a

13A topological space X is meagre if it is the countable union of nowhere dense sets, i.e., sets whose

closures have an empty interior.
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function

DM ((PE)E∈E) : F ∈ S 7→
∑
E

pE(F )PE ∈ R (B.1)

where the sum runs over finitely many elements of E, {pE}E∈E ⊂ R+, and S is a semi-

algebra that generates ΣM and is closed under finite disjoint unions.

To define ε-decoding, we use the following norm on functions P : S → R:

∥P∥ := sup
F∈S

|P (F )|. (B.2)

Definition B.2. Let E be a collection of POVM elements. We say that M can be ε-decoded

from E if for every M ∈ M there exists a sequence of decoding operations (D(n)
M )n∈N such

that

∀ρ ∈ D(H) : lim sup
n→∞

sup
M∈M

∥∥∥D(n)
M

((
tr(Eρ)

)
E∈E

)
− PM (ρ)

∥∥∥ < ε. (B.3)

Lemma B.3. Let M be ε-decodable from a set of POVM elements E and let ρ and σ be

states. Then for every M ∈ M there exists a semi-algebra SM generating ΣM such that

for every F ∈ SM there exists an operator NM
F in the positive span of E satisfying

tr
(
NM
F ρ
)
≤ 1 + ε, tr

(
NM
F σ

)
≤ 1 + ε, (B.4)∣∣| tr(M(F )(ρ− σ))| − | tr

(
NM
F (ρ− σ)

)
|
∣∣ ≤ 2ϵ. (B.5)

Proof. Let (D(n)
M )n∈N,M∈M be the decoding operations that exist because M can be ε-

decoded from E , and let k ∈ N be such that

sup
M∈M

∥∥∥D(k)
M

((
tr(Eρ)

)
E∈E

)
− PM (ρ)

∥∥∥ ≤ ε and sup
M∈M

∥∥∥D(k)
M

((
tr(Eσ)

)
E∈E

)
− PM (σ)

∥∥∥ ≤ ε.

(B.6)

Then, for everyM ∈ M, consider the decoding operation D(k)
M . Let SM be the semi-algebra

specified by the decoding operation D(k)
M , and let NM

F =
∑

E∈E p
M
E (F )E, where pME (F ) is

also specified by the decoding operation. Then, by Definition B.2, it follows that for all

M ∈ M and F ∈ SM∣∣| tr(PM (F )(ρ− σ))| − | tr
(
NM
F (ρ− σ)

)
|
∣∣ ≤ | tr(PM (F )(ρ− σ))− tr

(
NM
F (ρ− σ)

)
|

≤ | tr(PM (F )ρ)− tr
(
NM
F ρ
)
|

+ | tr(PM (F )σ)− tr
(
NM
F σ

)
|

≤ 2ε.

(B.7)

Furthermore, (B.3) ensures that for all M ∈ M and F ∈ SM

tr
(
NM
F ρ
)
≤ tr(PM (F )ρ) + ε ≤ 1 + ε. (B.8)

The same argument also applies to σ.
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B.1 Proof of Theorem 7

LetH be a d-dimensional Hilbert space, |ψ⟩ ∈ H and ρ ∈ D(H). For the proof of Theorem 7,

the following function is useful

Dρ
|ψ⟩ : U(H) → R

U 7→
∣∣⟨ψ|UρU † |ψ⟩ − 1

d

∣∣. (B.9)

Let us now prove some properties of this function.

Lemma B.4. For every |ψ⟩ ∈ H, the function Dρ
|ψ⟩ is 2−Hmin(ρ)+

3
2 -Lipschitz with respect

to the 2-norm on the group U(H) of unitaries on H.

Proof. First note that it suffices to show for every |ψ⟩ that

|Dρ
|ψ⟩(U)−Dρ

|ψ⟩(1)| ≤ 2−Hmin(ρ)+
3
2 ∥U − 1∥2, (B.10)

as then the lemma follows from

|Dρ
|ψ⟩(U)−Dρ

|ψ⟩(U
′)| = |Dρ

(U ′)†|ψ⟩((U
′)†U)−Dρ

(U ′)†|ψ⟩(1)|, (B.11)

and the fact that, for all X ∈ Herm(L) and U ∈ U(L) it holds that ∥UX∥2 = ∥X∥2.

We define θ ∈ [0, π) by

cos(θ) = | ⟨ψ|U |ψ⟩ | (B.12)

and a state |ψ̄⟩ such that ⟨ψ̄|ψ⟩ = 0, as well as

U |ψ⟩ = eiφ(cos(θ) |ψ⟩+ sin(θ) |ψ̄⟩). (B.13)

Then, we find that

|Dρ
|ψ⟩(U)−Dρ

|ψ⟩(1)| ≤ | ⟨ψ| ρ |ψ⟩ − ⟨ψ|UρU † |ψ⟩ |

= |(1− cos(θ)2) ⟨ψ| ρ |ψ⟩ − sin(θ)2 ⟨ψ̄| ρ |ψ̄⟩ − 2 sin(θ) cos(θ)Re( ⟨ψ̄| ρ |ψ⟩)|
≤ sin(θ)2(⟨ψ| ρ |ψ⟩+ ⟨ψ̄| ρ |ψ̄⟩) + |2 sin(θ) cos(θ)||Re( ⟨ψ̄| ρ |ψ⟩)|

(B.14)

We estimate ⟨ψ| ρ |ψ⟩,
〈
ψ̄
∣∣ ρ ∣∣ψ̄〉 and |Re( ⟨ψ̄| ρ |ψ⟩)|. By definition of the min-entropy,

it holds that ρ ≤ 2−Hmin(ρ)1. Thus, we find that ⟨ψ| ρ |ψ⟩ ≤ 2−Hmin(ρ) and
〈
ψ̄
∣∣ ρ ∣∣ψ̄〉 ≤

2−Hmin(ρ). To bound |Re( ⟨ψ̄| ρ |ψ⟩)|, we observe that

|Re( ⟨ψ̄| ρ |ψ⟩)|2 ≤ | ⟨ψ̄| ρ |ψ⟩ |2

= ⟨ψ̄| ρ |ψ⟩⟨ψ| ρ
∣∣ψ̄〉

≤ ⟨ψ̄| ρ2
∣∣ψ̄〉

≤ 2−2Hmin(ρ).

(B.15)
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Thus, also |Re( ⟨ψ̄| ρ |ψ⟩)| ≤ 2−Hmin(ρ). Plugging this result into the previous calculation,

we find that

|Dρ
|ψ⟩(U)−Dρ

|ψ⟩(1)| ≤ 2−Hmin(ρ)+1
(
sin(θ)2 + | cos(θ) sin(θ)|

)
= 2−Hmin(ρ)+1

√
sin(θ)4 + cos(θ)2 sin(θ)2 + 2 sin(θ)2| cos(θ) sin(θ)|

≤ 2−Hmin(ρ)+1
√
sin(θ)4 + cos(θ)2 sin(θ)2 + sin(θ)2

= 2−Hmin(ρ)+
3
2

√
sin(θ)2 = 2−Hmin(ρ)+

3
2

√
1− cos(θ)2

(B.16)

Let us now relate this result to the 2-norm. First, we observe that

∥ |ψ⟩ − U |ψ⟩ ∥2 = 2− 2Re(⟨ψ|U |ψ⟩)
= 2− 2 cos(φ) cos(θ)− (1− cos(θ)2) + (1− cos(θ)2)

≥ cos(φ)2 − 2 cos(φ) cos(θ) + cos(θ)2 + (1− cos(θ)2)

= (cos(φ)− cos(θ))2 + (1− cos(θ)2)

≥ 1− cos(θ)2 .

(B.17)

Furthermore, ∥ |ψ⟩ − U |ψ⟩ ∥2 can be bounded by ∥1− U∥22

∥ |ψ⟩ − U |ψ⟩ ∥2 = 2− 2Re(⟨ψ|U |ψ⟩)

= tr
(
|ψ⟩⟨ψ| (21− U − U †)

)
= tr

(
|ψ⟩⟨ψ| (1− U)†(1− U)

)
≤ tr

(
(1− U)†(1− U)

)
= ∥1− U∥22

(B.18)

where in the last inequality we used that (1− U)†(1− U) is a positive operator. Thus,

|Dρ
|ψ⟩(U)−Dρ

|ψ⟩(1)| ≤ 2−Hmin(ρ)+
3
2 ∥ |ψ⟩ − U |ψ⟩ ∥ ≤ 2−Hmin(ρ)+

3
2 ∥1− U∥22. (B.19)

Lemma B.5. The average of Dρ
|ψ⟩(U) over U chosen according to the Haar measure sat-

isfies

⟨Dρ
|ψ⟩⟩ =

∫
Dρ

|ψ⟩(U) dU ≤ 2− log(d)− 1
2
Hmin(ρ). (B.20)

Proof. To calculate this average, we use [56, Theorem 3.3], from which it follows that∫
| ⟨ψ|UρU † |ψ⟩ − 1

d
| dU ≤ 2−

1
2
(H2(ρ)+H2(τ)) (B.21)

where H2(ρ) := − log
(
tr
(
ρ2
))

≤ Hmin(ρ) and τ = 1
d |ψ⟩⟨ψ|. Thus, we find∫

| ⟨ψ|UρU † |ψ⟩ − 1

d
| dU ≤ 2− log(d)− 1

2
Hmin(ρ). (B.22)
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Lemma B.6. Let H be an infinite-dimensional Hilbert space, { |n⟩}n∈N an orthonormal

basis of H, and (ρ(m))m∈N, (σ
(n))n∈N two sequences of states defined by

ρ(m) :=
1

m

m−1∑
k=0

|k⟩⟨k| , σ(n) =
n−1∑
k=0

2(n− k)

n(n+ 1)
|k⟩⟨k| , (B.23)

then there is an N ∈ N such for all ∀m ∈ N, n ≥ N : ∥spec(σ(n))− spec(ρ(m))∥1 ≥ 2
11 .

Proof. We distinguish different cases.

Case m ≥ n− 1: In this case, we can write

∥spec(σ(n))− spec(ρ(m))∥1 =

(
n−1∑
k=0

∣∣∣∣2(n− k)

n(n+ 1)
− 1

m

∣∣∣∣+ ∣∣∣∣0− (m− n)
1

m

∣∣∣∣
)
. (B.24)

The sum can be divided into two parts of equal magnitude: the part where the terms in

the absolute value are positive and one where they are negative. The former is the case

when k ∈ {0, . . . , kmax} with kmax := n − n(n+1)
2m . Therefore, we find by a straightforward

but tedious calculation14

1

2
∥spec(σ(n))− spec(ρ(m))∥1 =

kmax∑
k=0

∣∣∣∣2(n− k)

n(n+ 1)
− 1

m

∣∣∣∣+ ∣∣∣∣0− (m− n)
1

m

∣∣∣∣
≥ 1

4
+O

(
1

n

)
.

(B.25)

Case m < n− 1: In this case, we can write

∥spec(σ(n))− spec(ρ(m))∥1 =
1

2

m∑
k=0

∣∣∣∣2(n− k)

n(n+ 1)
− 1

m

∣∣∣∣+ 1

2

n−1∑
k=m+1

∣∣∣∣2(n− k)

n(n+ 1)
− 0

∣∣∣∣ . (B.26)

We consider two subcases.

Case kmax ≥ 0: In this case n − n(n+1)
2m ≥ 0 ⇐⇒ m ≥ n+1

2 . As before, we divide the

sum into two parts of equal magnitude: the part where the terms in the absolute value are

positive and where they are negative. The latter is the case if m ≥ k ≥ kmax. Thus, we

find by a straightforward but tedious calculation:

1

2
∥spec(σ(n))− spec(ρ(m))∥1 =

m∑
k=kmax

∣∣∣∣2(n− k)

n(n+ 1)
− 1

m

∣∣∣∣
≥
(
1− m

n

)2
+
(
1− n

2m

)2
+O

(
1

n

)
.

(B.27)

Consider the function f(x) := (1− 1
x)

2+(1− x
2 )

2. To find the minimum of this function,

we set its derivative to zero

2
1

x2

(
1− 1

x

)
−
(
1− x

2

)
= 0. (B.28)

This equation is solved by x =
√
2. Therefore, the minimum of this function is f(

√
2) =

2(1− 1√
2
)2 ≈ 0.17 > 1

11 , which puts a lower bound on (B.27).

14To see the tedious calculations in this proof, download the source code and enable the option “showcalc”.
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Case kmax < 0: In this case n − n(n+1)
2m < 0 ⇐⇒ m < n+1

2 and we find by another

tedious calculation

1

2
∥spec(σ(n))− spec(ρ(m))∥1 =

m∑
k=0

∣∣∣∣2(n− k)

n(n+ 1)
− 1

m

∣∣∣∣
≥ 1

4
+O

(
1

n

) (B.29)

Theorem 7. If M has asymptotic entropy at most (εn2
n)n∈N for a zero-sequence (εn)n∈N,

then the representation PM is not robust.

Proof. Let {Π2n}n∈N be the family of projectors, {En}n∈N the sequence of sets of POVM ele-

ments, and (ηn)n∈N the zero-sequence that yield the asymptotic entropy at most (εn2
n)n∈N.

The family of projectors {Π2n}n∈N commutes. Therefore, there exists a basis { |n⟩}n∈N such

that the span of the first 2n basis elements is contained in the support of Π2n . Using this

basis we define the projectors Pn =
∑n−1

i=0 |i⟩⟨i|, the sequence

σ(n) :=
2n−1∑
k=0

2(2n − k)

2n(2n + 1)
|k⟩⟨k| , (B.30)

and the set

Σ :=
∞⋃
n=0

B
1
13

(
Pn
n

)
, (B.31)

where Bε(ρ) := {σ ∈ D(H)|δ(σ, ρ) < ε}. Furthermore, we denote by Hn the Hilbert space

spanned by {|0⟩ , . . . , |n⟩}.

Next we show, that there is an N ∈ N such that for all n > N and unitaries U on H2n

it holds that Uσ(n)U † /∈ Σ. To show this, we use [57, Lemma IV.3.1]

∀ρ, σ : ∥ρ− σ∥1 ≥ ∥spec(σ)− spec(ρ)∥1 (B.32)

where spec(ρ) is the probability distribution defined by the ordered list of eigenvalues

of ρ. As the spectrum of an operator is invariant under unitary operations, it follows from

Lemma B.6 that there is an N ∈ N such that ∀U ∈ U(H2n), n > N : δ(Uσ(n)U †,Σ) ≥ 1
11 .

Therefore, ∀U ∈ U(H2n) : limn→∞ δ(Uσ(n)U †,Σ) ̸= 0.

Our goal is now to show that there exists a sequence of unitaries {U (n)}n∈N such

that U (n) has support on H2n and limn→∞ dM(U (n)σ(n)(U (n))†, 2−nP2n) = 0. If such a se-

quence of unitaries exists, this implies immediately that limn→∞ dM(U (n)σ(n)(U (n))†,Σ) =

0 and, by the above result about δ, the representation PM is not robust.

Because the support of P2n and σ(n) is contained in the support of Π2n , for any mea-

surement M ∈ M and unitary U ∈ U(H2n) it holds that

∥PM (Uσ(n)U †)− PM (2−nP2n)∥1 = ∥PM |Π2n
(Uσ(n)U †)− PM |Π2n

(2−nP2n)∥1. (B.33)

Therefore, it suffices to consider measurements in M|Π2n
, which, by assumption of the

theorem, can be ηn-decododed from En. Therefore, we can apply Lemma B.3 to the
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states Uσ(n)U † and 2−nP2n . Let SM be the semi-algebra and let NM
F be the operator

from Lemma B.3 associated to M ∈ M and F ∈ SM , then

dM(Uσ(n)U †,2−nP2n) = sup
M∈M

sup
F∈SM

| tr
(
M(F )(2−nP2n − Uσ(n)U †)

)
|

≤ 2ηn + sup
M∈M

sup
F∈SM

| tr
(
NM
F (2−nP2n − Uσ(n)U †)

)
|

= 2ηn + sup
M∈M

sup
F∈SM

| tr
(
P2nN

M
F P2n(2

−nP2n − Uσ(n)U †)
)
|

≤ 2ηn + sup
M∈M

sup
F∈SM

∑
E∈E

pME (F )| tr
(
P2nEP2n(2

−nP2n − Uσ(n)U †)
)
|, (B.34)

where the sum over E goes over finitely many pME (F ) > 0. For every Ē =
∑

j pj |ψj⟩⟨ψj | ∈
P2nEnP2n we define a function

DĒ : U →
∑
j

pj D
σ(n)

|ψj⟩ (U) (B.35)

where Dσ(n)

|ψj⟩ (U) is given by (B.9). Diagonalizing P2nEP2n and applying the triangle in-

equality for the absolute value yields

dM(Uσ(n)U †, 2−nP2n) ≤ 2ηn + sup
M∈M

sup
F∈SM

∑
E∈E

pME (F )DP2nEP2n
(U). (B.36)

We now turn to finding upper bounds on DĒ(U). To do so, the following two observa-

tions are useful. The function DĒ is 2−n+
5
2 tr
(
Ē
)
-Lipschitz continuous with respect to the

2-norm on U(H2n), as

|DĒ(U)−DĒ(U
′)| ≤

∑
j

pj |Dσ(n)

|ψj⟩ (U)−D
σ(n)
|ψj⟩ (U

′)|

≤
∑
j

pj
4
√
2

2n + 1
∥U − U ′∥2

≤ 2−n+
5
2 tr
(
Ē
)
∥U − U ′∥2

(B.37)

where for the second inequality we used Lemma B.4 and that Hmin(σ
(n)) = − log

(
2

2n+1

)
.

Furthermore, from Lemma B.5, it follows that for a unitary U chosen according to the Haar

measure ⟨DĒ(U)⟩ ≤ 2−
3
2
n+ 1

2 tr
(
Ē
)
.

These two observations about DĒ(U) allow us to apply [58, Theorem 5.16 and Theorem

5.9], which states that, for any d-dimensional Hilbert space H, for any function f : U(H) →
R that is κ-Lipschitz with respect to the 2-norm, and for a unitary U chosen according to

the Haar measure we have

Pr (f(U) ≥ ⟨f⟩+ ε) ≤ e−
ε2d
24κ2 . (B.38)

Applying this theorem yields

Pr
(
DĒ(U) ≥ ∆(Ē)

)
≤ e

− δ2n2n

24(4
√
2)2 (B.39)
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where ∆(Ē) := 2−n tr
(
Ē
) (

2−
n
2
+ 1

2 + δn

)
and δ2n :=

24(4
√
2)

2

2n (1 + ln(|En|)). Combined with

the union bound this yields

Pr
(
∃Ē ∈ P2nEnP2n : DĒ(U) ≥ ∆(Ē)

)
≤ |P2nEnP2n |e

− δ2n2n

24(4
√
2)2 ≤ |En|e

− δ2n2n

24(4
√
2)2 . (B.40)

As, |En| exp(− δ2n2
n

24(4
√
2)

2 ) = e−1 < 1, we have that

Pr(∀Ē ∈ P2nEnP2n : DĒ(U) ≤ ∆(Ē)) > 0 (B.41)

and, thus, there exists a unitary such that ∀Ē ∈ P2nEnP2n : DĒ(U) ≤ ∆(Ē). We now

define U (n) to be a unitary with this property. From this definition and (B.36), we find

dM(U (n)σ(n)(U (n))†, 2−nP2n) ≤ 2ηn + sup
M∈M

sup
F∈SM

∑
E∈E

pME (F )∆(P2nEP2n)

≤ 2ηn +
(√

2× 2−
n
2 + δn

)
sup
M∈M

sup
F∈SM

tr
(
2−nP2nN

M
F

)
≤ 3ηn +

(√
2× 2−

n
2 + δn

)
(B.42)

By assumption of the theorem, we know that limn→∞
ln(|En|)

2n = ln(2) limn→∞ εn = 0, which

implies that limn→∞ δn = 0. Therefore, limn→∞ dM(U (n)σ(n)(U (n))†, 2−nP2n) = 0, which

was what remained to prove the theorem.

B.2 Proof of Remark 6

Before proving Theorem 7, we recall the definition of ε-nets and one of their properties.

Definition B.7 (ε-net of states). Let H be a Hilbert space. Then we call a set of states

N ⊂ H an ε-net if

∀ |φ⟩ ∈ H ∃ |φ̄⟩ ∈ N : ∥ |φ⟩ − |φ̄⟩ ∥ ≤ ε. (B.43)

Lemma B.8 (Size of ε-Net). Let H be a d-dimensional Hilbert space, then there exists a

ε-net N on H such that

|N | ≤
(
1 +

2

ε

)2d

. (B.44)

Proof. [59, Theorem 1.8]

Lemma B.9. Let H be a Hilbert space, then for any two pure states |ϕ⟩ , |ψ⟩ ∈ H it holds

that

∥ |ϕ⟩⟨ϕ| − |ψ⟩⟨ψ| ∥1 ≤ 2∥ |ϕ⟩ − |ψ⟩ ∥. (B.45)
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Proof. First note that

∥ |ψ⟩ − |ϕ⟩ ∥2 = 2− 2Re(⟨ψ|ϕ⟩)
= 2− 2Re(⟨ψ|ϕ⟩)− 1 + | ⟨ψ|ϕ⟩ |2 + (1− | ⟨ψ|ϕ⟩ |2)

≥ 2− 2
√
Re(⟨ψ|ϕ⟩)2 + Im(⟨ψ|ϕ⟩)2 − 1 + | ⟨ψ|ϕ⟩ |2 + (1− | ⟨ψ|ϕ⟩ |2)

≥ 1− 2| ⟨ψ|ϕ⟩ |+ | ⟨ψ|ϕ⟩ |2 + (1− | ⟨ψ|ϕ⟩ |2)
= (1− | ⟨ψ|ϕ⟩ |)2 + (1− | ⟨ψ|ϕ⟩ |2)
≥ 1− | ⟨ψ|ϕ⟩ |2

=
1

2
∥ |ψ⟩⟨ψ| − |ϕ⟩⟨ϕ| ∥22.

(B.46)

Note that |ψ⟩⟨ψ|− |ϕ⟩⟨ϕ| is a Hermitian rank-2 operator, thus there exist states |e1⟩ , |e2⟩
such that

|ψ⟩⟨ψ| − |ϕ⟩⟨ϕ| = a1 |e1⟩⟨e1|+ a2 |e2⟩⟨e2| (B.47)

and, we find that

∥ |ψ⟩⟨ψ| − |ϕ⟩⟨ϕ| ∥1 = |a1|+ |a2|
= ⟨(1, 1), (|a1|, |a2|)⟩
≤

√
2(|a1|2 + |a2|2)1/2

=
√
2∥ |ψ⟩⟨ψ| − |ϕ⟩⟨ϕ| ∥2.

(B.48)

Combining this result with the above, we find

∥ |ϕ⟩⟨ϕ| − |ψ⟩⟨ψ| ∥1 ≤ 2∥ |ϕ⟩ − |ψ⟩ ∥. (B.49)

Lemma B.10. The set of all measurements has asymptotic entropy at most (2n+log(n)+3)n∈N.

Proof. Let {|n⟩}n∈N be a basis, H2n the span of the first 2n basis elements, Π2n =∑2n−1
n=0 |n⟩⟨n|,M a measurement,M |Π2n

the restriction ofM to the support of Π2n , and Nn

a (2−2n)-net on H2n .

For any measurable set F ∈ ΣM , consider M |Π2n
(F ), which has support only on H2n .

We decompose M |Π2n
(F ) into its eigenbasis M |Π2n

(F ) =
∑

i pi |ψi⟩⟨ψi|. Let |ϕi⟩ ∈ Nn be

such that ∥ |ϕi⟩−|ψi⟩ ∥ ≤ 2−2n and define EMF =
∑

i pi |ϕi⟩⟨ϕi|. The corresponding decoding

operation DM is defined in the obvious way. We find

| tr
(
(M |Π2n

(F )− EMF )ρ
)
| ≤ ∥M |Π2n

(F )− EMF ∥1
≤
∑
i

pi∥ |ψi⟩⟨ψi| − |ϕi⟩⟨ϕi| ∥1

≤ 2−2n+1 tr(M |Π2n
(F )) ≤ 2−n+1

(B.50)

where we used Lemma B.9 in the second to last inequality.

The same argument can be applied for every measurement M and every F ∈ ΣM .

Thus, Mall|Π2n
can be 2−n+2-decoded from Nn, where one understands the elements of
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Nn as the corresponding rank-1 projectors. From Lemma B.8 it follows that there is a

2−2n-net Nn such that

log(|Nn|) = 2n+1 log
(
1 + 22n+1

)
≤ (2n+ 2)2n+1 = 2n+log(n)+3. (B.51)

Therefore, the asymptotic entropy of Mall is at most (2n+log(n)+3)n∈N.

Remark 6. The asymptotic entropy of any M is at most (2n+log(n)+3)n∈N.

Proof. We observe that the asymptotic entropy is monotonic under set inclusion: if the

asymptotic entropy of M′ is at most (Hn)n∈N and M ⊆ M′ then the asymptotic entropy

of M is also at most (Hn)n∈N. The remark then follows from applying this observation to

the result of Lemma B.10.

B.3 Proof of Corollary 8

Corollary 8. The representation PM⊗ is not robust.

Proof. Denote the two subsystems relative to whichM⊗ is product to by A and B. Further-

more, let {|n⟩A}n∈N, {|n⟩B}n∈N be orthonormal bases of HA and HB respectively. We de-

note byHN,A the span of the firstN basis vectors and by ΠN,A the projector ontoHN,A, and

analogously for HN,B and ΠN,B. On the joint system AB, we define the family of projec-

tors {Π2n}n∈N as Π2n = Π(2n/2),A⊗Π(2n/2),B if n is even and Π2n = Π2(n+1)/2,A⊗Π(2(n−1)/2),B

if n is odd. Let N (n)
A and N (n)

B be 2−2n-nets on the supports of the corresonding subspaces.

Using these nets, we define the set of POVM elements

En :=
{
|ψ⟩⟨ψ|A ⊗ |ϕ⟩⟨ϕ|A | |ψ⟩A ∈ N (n)

A , |ϕ⟩B ∈ N (n)
B

}
. (B.52)

For any measurement M = MA ⊗ MB ∈ M⊗, the associated σ-algebra, ΣMA⊗MB
,

is the product σ-algebra of the σ-algebras associated to the measurements MA and MB,

i.e., ΣMA⊗MB
= ΣMA

⊗ ΣMB
. A product σ-algebra admits a semi-algebra of rectangles

SAB := {A×B|A ∈ ΣMA
, B ∈ ΣMB

}. Denote by S∗
AB the semi-algebra which corresponds

to the closure of SAB under finite disjoint unions. Any F ∈ S∗
AB is the finite disjoint union

of rectangles, i.e., F =
⊔k
i=0Ai × Bi. Therefore, the POVM element M |Π2n

(F ) can be

written as

M |Π2n
(F ) =

ℓ∑
k=1

EA,k ⊗ EB,k, (B.53)

with EA,k and EB,k POVM elements, such that the support of EA,k ⊗ EB,k is contained

in the support of Π2n . Based on their diagonalization EA,k ⊗ EB,k =
∑

i pi,k |ψi⟩⟨ψi|A,k ⊗∑
j qj,k |ϕi⟩⟨ϕi|B,k, with pi,k, qi,k ≥ 0, we define

NM
F =

ℓ∑
k=1

∑
i

pi,k |ψ̄i⟩⟨ψ̄i|A,k ⊗
∑
j

qj,k |ϕ̄i⟩⟨ϕ̄i|B,k (B.54)

where |ψ̄i⟩⟨ψ̄i|A,k ∈ N (n)
A and |ϕ̄i⟩⟨ϕ̄i|B,k ∈ N (n)

B such that ∥ |ψ̄i⟩A,k−|ψi⟩ ∥ ≤ 2−2n and anal-

ogously for |ϕ̄i⟩B,k. The collection of operators {NM
F }F∈S∗

AB
defines a decoding operation
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DM ((PE)E∈En) in the obvious way. Then we find that for all F ∈ S∗
AB

| tr
(
(M |Π2n

(F )−NM
F )ρ

)
| ≤ ∥M |Π2n

(F )−NM
F ∥1

≤
∑
i,j,k

pi,kqj,k∥ |ψi⟩⟨ψi|A,k ⊗ |ϕi⟩⟨ϕi|B,k − |ψ̄i⟩⟨ψ̄i|A,k ⊗ |ϕ̄i⟩⟨ϕ̄i|A,k ∥1

≤
∑
i,j,k

pi,kqj,k
(
∥ |ψi⟩⟨ψi|A,k ⊗

(
|ϕj⟩⟨ϕj |B,k − |ϕ̄j⟩⟨ϕ̄j |B,k)∥1

+ ∥(|ψi⟩⟨ψi|A,k − |ψ̄i⟩⟨ψ̄i|A,k)⊗ |ϕ̄j⟩⟨ϕ̄j |B,k ∥1
)

≤ 2−2n+2 tr(M |Π2n
(F )) ≤ 2−n+2.

(B.55)

As M ∈ M⊗ was arbitrary, M⊗|Π2n can be 2−n+3-decoded from En.

By Lemma B.8 there exist nets N (n)
A ,N (n)

B such that

log(|En|) ≤ (2n+ 2)2
n+1
2

+2 =
(
(2n+ 2)2−

n−1
2

+2
)
2n. (B.56)

This implies that the asymptotic entropy of M⊗ is at most (((2n + 2)2−
n−1
2

+2)2n)n∈N.

Thus, by Theorem 7, the representation PM⊗ is not robust.

Remark B.11. Note that an analogous proof also shows that the set Msep of measurements

whose POVM elements are separable does not lead to a robust representation.

B.4 Related results

Theorem 7 characterized the robustness of a set of measurement M by how compressible

the representation PM is. Using [35, Theorem 1] one can find a characterization that is

based on the asymptotic number of measurements.

Definition B.12. Let {Π2n}n∈N be a nested family of projectors with rank(Π2n) ≥ 2n, then

the asymptotic size of M is at most (log(|M|Π2n
|))n∈N.

Theorem B.13. If there exists a zero-sequence (εn)n∈N such that M has asymptotic size

at most (εn2
2n)n∈N, then PM is not robust.

Proof. If log(|MΠ2n
|) ≤ εn2

2n, then |MΠ2n
| ≤ eln(2)εn2

2n
. From [35, Theorem 1] it follows

that there are constants C, c > 0 such that there exists a Hermitian trace-class operator

A(n) with ∥A(n)∥M ≤ ∆n∥A(n)∥1 where ∆n = max(

√
ln(2)cεn
, C2−

n
2 ). Therefore, the norms

∥ · ∥M and ∥ · ∥1 are not equivalent. By Proposition 3, it follows that PM is not robust.

Combined with Remark 6, this theorem shows that a robust representation PM is highly

compressible: the number of measurements in MΠ2n
, and thus also the number of entries

in PM, needs to scale at least as 22
2n
, but there exists an encoding into a set E with only

of the order of 2n2
n
POVM elements.

C Proof of Theorem 11

Before we go on to prove Theorem 11, we review the necessary aspects of GPTs for this

paper.
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C.1 GPTs

States and measurements. Operationally, a state of a GPT system is understood as a

particular preparation procedure. Consequently, the state space is the set of all preparation

procedures. It is assumed that the state space is convex. The convex mixture pρ+(1−p)σ of

two states ρ, σ is operationally understood as the procedure that prepares ρ with probability

p and σ with probability (1− p).15 Furthermore, two preparation procedures that lead to

the same probability distributions for all measurements that can be performed on this

system, are treated as the same state. This motivates the following definitions.

Definition C.1. The state space of a system A is a convex subset SA ⊂ VA of an R-
vector space VA

16 such that there exists a linear function 1A : VA → R with the property

1A(SA) = 1.

The set of effects EA of system A are a subset of the dual space EA ⊆ V ∗
A such that

∀E ∈ EA : E(SA) ⊆ [0, 1] and

∀ω1, ω2 ∈ SA : (∀E ∈ EA : E(ω1) = E(ω2)) =⇒ ω1 = ω2 (C.1)

as well as

∀E1, E2 ∈ EA : (∀ω ∈ SA : E1(ω) = E2(ω)) =⇒ E1 = E2. (C.2)

We call a set of effects {Ei}Ni=1 ⊆ EA a measurement if

N∑
i=1

Ei = 1A. (C.3)

As in quantum theory, we define a tomographically complete set of measurements.

Definition C.2. A set of measurements M is tomographically complete if the map

v ∈ SA 7→ (PM (v))M∈M (C.4)

is injective, where PM (ρ) is the probability distribution of the measurement M.

System composition. There is no single rule how the state spaces of two systems A

and B compose that applies to any GPT. The only requirement is that states can be

independently composed. Technically, this means that for any two systems A,B there

exists a bilinear map

ı : VA × VB → VAB,

(ωA, ωB) 7→ ωAωB,
(C.5)

such that Im(ı|SA×SB
) ⊂ SAB and for any two effects EA ∈ EA, EB ∈ EB there is an effect

EAEB ∈ EAB such that

(EAEB)(ωAωB) = EA(ωA)EB(ωB). (C.6)

Often one additionally requires that the composition rule satisfies the so-called local tomog-

raphy assumption.

15An important assumption here is that the randomness that determines whether σ or ρ is prepared is

independent of any randomness that is used in the preparation procedure of ρ or σ.
16The dimension of this vector space may be unbounded.
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Definition C.3. A GPT satisfies the local tomography assumption if, for any two systems

A and B, the set of product measurements M⊗ is tomographically complete.

Metric. In most treatments of GPTs there is no explicit metric defined on the state

space. Motivated by the trace distance, we use a metric defined in analogy to the trace

distance. A similar metric was already introduced in [8, 9, 15] for operational probabilistic

theories, a close relative to GPTs.

Definition C.4. The trace distance δ on the state space SA is defined by

δ(ρ, σ) :=
1

2
sup

M∈MA

∥PM (ρ)− PM (σ)∥1. (C.7)

This metric δ satisfies the composability criterion (1.8) if the system A has the property

that for all systems B

∀ρB ∈ SB,M ∈ MAB : M(· ⊗ ρB) ∈ MA. (C.8)

As we did in quantum theory, we can also define a metric associated to a tomographically

complete measurement set M.

Definition C.5. For any tomographically complete set of measurements M we define the

metric

dM(ρ, σ) :=
1

2
sup
M∈M

∥PM (ρ)− PM (σ)∥1. (C.9)

As in quantum theory, we define the notion of a stable measurement set M.

Definition C.6. A measurement set M on a system A, is called stable if for all effects

M ∈ EA the topologies induced by dM and dM∪{(E,1A−E)} are identical.

C.2 Constructing the GPT for Theorem 11

We now construct the GPT that proves Theorem 11. This GPT has two elementary types

of systems: keys and locks. All other types of systems are obtained by composing key and

lock systems. We start by introducing the elementary systems.

Lock systems. Before we give the formal definition, we give the intuition behind a lock

system: A lock system acts like a lock that takes a bit string as input and opens if this

bit string matches an internally stored one. More technically, we model a lock as a system

where for every17 bit string s ∈ {0, 1}∗, corresponding to the input to the lock, there is

a measurement consisting of two effects Es→✓
L and Es→×

L , corresponding to the outcome

that the lock opens or stays closed, respectively. Furthermore, for every bit string k there

is a state of the lock σ
(k)
L where the lock opens upon the input k. Graphically, we depict a

17We denote by {0, 1}∗ the set of all bit strings, including the empty bit string.
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measurement with input s on this state by

Es→✓
L (σ

(k)
L ) =

L
k

s

✓

= 1. (C.10)

To fully specify the state σ
(k)
L , we also need to define the behaviour of the lock when the

input s is different from k. If the input bit string s is longer than k, the lock opens if the

first |k| bits of s match with those of k — the lock simply ignores the superfluous input. If

s is shorter than k, then the lock just randomly generates more bits, appends them to s,

and checks if this new bit string agrees with k. In summary,

Es→✓
L (σ

(k)
L ) =

L
k

s

✓

=

δs,k if |s| ≥ |k|,
δs,k

2|k|−|s| else
(C.11)

where | · | denotes the length of a bit string and δs,k = 1 if deleting the trailing bits of the

longer bit string results in two identical bit strings, and δs,k = 0 otherwise. Sometimes

locks can be stubborn, and they do not open no matter what you do.18 We model this

behaviour by a state σ
(⊥)
L that does not open for any input, i.e.,

∀s ∈ {0, 1}∗ : Es→✓
L (σ

(⊥)
L ) =

L
⊥

s

✓

= 0. (C.12)

The state space of a lock system is then the convex hull of {σ(k)L }k∈{0,1}∗∪{⊥}.

Before we state the formal definition, we must introduce some notation. We denote

by χI is the characteristic function of the set I. For a bit string s ∈ {0, 1}n, we define the

interval Is = [0.s, 0.s+ 2−n] where 0.s understood as the rational number r with 0.s as its

binary expansion.

Definition C.7. The state space is of a lock system is

SL = {(f, 1)|f ∈ conv({χIs |s ∈ {0, 1}∗} ∪ {0})} ⊂ VL (C.13)

with VL = L1([0, 1])⊕ R and the 1L-effect is given by 1L(f, c) = c.

For every s ∈ {0, 1}∗ and r ∈ {✓,×} there is an effect Es→r
L . The set of effects EL

is given by all convex combination of these effects. The action of the effect Es→r
L on an

element of VL is

Es→✓
L (f, c) =

1

|Is|

∫
Is

f(r) dr (C.14)

Es→×
L = 1L − Es→✓

L (C.15)
18Maybe an angle grinder would open it, but we do not want to harm our object of study.
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It is easy to see that this combination of states and effects satisfies Definition C.1. The

states σ
(k)
L and σ

(⊥)
L we intuitively introduced before, are formally given by

σ
(k)
L := (χIk , 1) (C.16)

σ
(⊥)
L := (0, 1). (C.17)

Indeed, these states have the desired behaviour when measured, as

Es→✓
L (σ

(⊥)
L ) = 0 (C.18)

Es→✓
L (σ

(k)
K ) =

1

|Is|

∫
Is

χk dx =
|Is ∩ Ik|

|Is|
=

δs,k if |s| ≥ |k|
δs,k

2|k|−|s| else
. (C.19)

Key systems. Intuitively, a key system is a system that has an internally stored bit

string, the key. The system can be queried to output the first n bits of the key, where n

is any natural number (including 0). More technically speaking, there is a measurement

consisting of 2n effects {En→s
K }s∈{0,1}n , corresponding to the 2n possibilities for the first n

bits of the key. For every bit string k ∈ {0, 1}∗, there is a state of the key σ
(k)
K , such that

if the first n bits of the key are measured, the output is the first n bits of k. In particular,

if n = |k|, we have

E
|k|→k
K (σ

(k)
K ) =

K
k

|k|

k

= 1. (C.20)

If n > |k|, the key system randomly generates bits and appends them to k until the

resulting bit string has length n. In particular, if a key system has no key stored, i.e., it

is in state σ
(∅)
K , measuring the first n bits of the key yields a uniform distribution over all

n-bit strings. We summarize the behaviour of these states

En→s
K (σ

(k)
K ) =

K
k

n

s

=

δs,k if |k| ≥ n
δs,k

2n−|k| else
. (C.21)

The state space of a key system is then defined as the convex hull of {σ(k)K }k∈{0,1}∗ . To

make this a valid state space, we need to ensure that states which cannot be distinguished

by two measurements are identical. The following formal definition takes care of this.

Definition C.8 (Key systems K). The state space SK is

SK = conv

({
χIs
|Is|

∣∣∣s ∈ {0, 1}∗
})

⊂ L1([0, 1]) (C.22)

The unit effect 1K is 1K(f) =
∫
[0,1] f(x) dx. The set of effects EK is the convex hull of

effects of the form
∑

s∈R⊂{0,1}n E
n→s
K . The action of an effect En→s

K on f ∈ L1([0, 1]) is

En→s
K (f) =

∫
Is

f(x) dx. (C.23)
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It is easy to see that, Definition C.1 is satisfied by this state space and set of effects.

The states σ
(k)
K and σ

(∅)
K we have intuitively introduced are formally given by

σ
(k)
K :=

1

|Ik|
χIk (C.24)

where for k = ∅, Ik = [0, 1]. These states indeed have the desired behaviour when measured

En→s
K (σ

(k)
K ) =

∫
Is

χIk(x) dx =
|Is ∩ Ik|
|Ik|

=

δs,k if |k| ≥ n
δs,k

2n−|k| else.
(C.25)

Composition of keys and locks. To define the composition of key and lock systems,

we consider the smallest possible composed state space that still satisfies the requirements

of the GPT framework. This means that we only allow for mixtures of product states. On

the measurement side, we allow only product measurements and measurements that can be

implemented by first measuring one system and then determine the measurement on the

next system based on this outcome.

Definition C.9 (Composition rule). When composing a key and a lock system the func-

tion ı is the tensor product ⊗ : VK×VL → VK⊗VL. The state space of the composed system

is defined as the convex hull of SKL := conv(SK⊗SL). The identity effect is 1KL := 1K⊗1L.

The set of effects EKL are all linear functionals E such that E(SKL) ⊆ [0, 1] and

∃n ∈ N, {pi}i∈{1,...,n} ∈ R+, {EK,i}i∈{1,...,n} ⊂ EK , {EL,i}i∈{1,...,n} ⊂ EL :

E =
n∑
i=1

piEK,i ⊗ EL,i

or E = 1KL −
n∑
i=1

piEK,i ⊗ EL,i

(C.26)

The composition of multiple keys and of multiple lock systems is defined analogously.

One important measurement of a key-lock system is the measurement that uses the

output of a measurement on the K system to determine the input on the L system. It

essentially measures whether the input that opens the lock is the key that is stored in the

key system. Mathematically, this measurement is given by the effects

En→✓
KL :=

∑
s∈{0,1}n

En→s
K ⊗ Es→✓

L

En→×
KL := 1KL − En→✓

KL .

(C.27)

On a state σ
(k)
K ⊗ σ

(k′)
L with k, k′ ∈ {0, 1}n this measurement acts as

En→✓
KL (σ

(k)
K ⊗ σ

(k′)
L ) =

n

K
k

s

⊗
L
k′

✓

= δk,k′ . (C.28)
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Remark C.10. The metric δ satisfies the composability property of (1.8). This follows

from (C.8) because any measurement is a sum of product effects with positive coefficients.

The following lemma shows that this GPT satisfies local tomography.

Lemma C.11. Consider a GPT where for every bipartite system AB the joint state space

is given by linear combinations of product states, i.e.,

SAB ⊂ span(ı(SA,SB)), (C.29)

then this GPT satisfies local tomography.

Proof. For every system A the linear map

MA : v ∈ span(SA) 7→ (E(v))E∈EA (C.30)

is invertible. We define the map MAMB on the joint state space by

MAMBı(σA, σB) = (EA(σA)EB(σB))EA∈EA,EB∈EB (C.31)

and demanding linearity. Note that the vector space spanned by (EA(σA)EB(σB))EA∈EA,EB∈EB
is isomorphic to the vector space spanned by (EA(σA))EA∈EA ⊗ (EB(σB))EB∈EB . Let us

denote the isomorphism by Φ. We then find that

M−1
A ⊗M−1

B ◦ Φ ◦MAMBı(σA, σB) = σA ⊗ σB. (C.32)

By definition of the tensor product there exists a linear map h such that h(σA ⊗ σB) =

ı(σA, σB). Thus, as all maps are linear, h◦M−1
A ⊗M−1

B ◦Φ is the inverse ofMAMB. Hence,

a state of the system AB is uniquely determined by the statistics of local measurements.

As the systems AB were generic, the theory is locally tomographic.

The topology of keys and locks. We are now ready to show that for this GPT the

topology induced by dM⊗ on the state space is different form the topology induced by δ.

The intuition behind this proof to consider the sequence of states (ρ
(n)
KL)n∈N given by

ρ
(n)
KL :=

∑
k∈{0,1}n

K
k ⊗

L
k . (C.33)

Using only product measurements this state is close to the state σ
(∅)
K ⊗ σ

(⊥)
L . Intuitively,

to distinguish these two states, one tries to provoke an opening of the lock. Using only

product measurements, one needs to guess the input that opens the lock. This guess is

correct only with probability 2−n. Therefore, the distance between ρ
(n)
KL and σ

(∅)
K ⊗ σ

(⊥)
L

measured by dM⊗ vanishes as n → ∞. However, if any measurement can be used, then

the measurement that reads out the first n bits of the key and uses this as an input to

the lock opens the lock with certainty. Therefore, for any n the distance between ρ
(n)
LK

and σ
(∅)
K ⊗ σ

(⊥)
L measured by δ is 1. We have thus constructed a sequence that converges

with respect to dM⊗ , but not with respect to δ. This immediately implies that these two

metrics induce different topologies. We formalize this intuitive argument by the following

proposition. Theorem 11 then follows from Proposition C.12 and Lemma C.13.
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Proposition C.12. The metrics dM⊗ and δ do not induce the same topology on SKL.

Proof. Consider the sequence of states (ρ
(n)
KL)n∈N given by

ρ
(n)
KL :=

1

2n

∑
k∈{0,1}n

σ
(k)
K ⊗ σ

(k)
L . (C.34)

First note that, ∀n ∈ N : δ(ρ
(n)
KL, σ

(∅)
K ⊗ σ

(⊥)
L ) = 1. To see this, consider the measurement

given by {En→✓
KL ,1KL − En→✓

KL }; see (C.27). For this measurement, we find that

En→✓
KL (ρ

(n)
KL) =

1

2n

∑
k,s∈{0,1}n

En→s
K (σ

(k)
K )Es→✓

L (σ
(k)
L )

=
1

2n

∑
k,s∈{0,1}n

δs,kE
s→✓
L (σ

(k)
L ) = 1

(C.35)

whereas

En→✓
KL (σ

(∅)
K ⊗ σ

(⊥)
L ) =

∑
s∈{0,1}n

En→s
K (σ

(∅)
K )Es→✓

L (σ
(⊥)
L ) = 0. (C.36)

Thus, δ(ρ
(n)
KL, σ

(∅)
K ⊗ σ

(⊥)
L ) = 1.

Let us now show that with respect to dM⊗ the sequence ρ
(n)
KL converges to σ

(∅)
K ⊗ σ

(⊥)
L .

Product measurements of key and lock systems are convex mixtures of measurements of

the form MK ⊗ML = {
∑

ℓ∈Ji⊂{0,1}n E
n→ℓ
K ⊗Es→r

L }i,r where ∪iJi = {0, 1}n and s ∈ {0, 1}∗.
Therefore, it suffices to consider these measurements to calculate dM⊗(ρ

(n)
KL, σ

(∅)
K ⊗ σ

(⊥)
L ).

Furthermore, note that when |s| < n, the measurement {
∑

ℓ∈Ij⊂{0,1}n E
n→ℓ
K ⊗Es→r

L }j,r is a
convex mixture of measurements with |s| = n. Moreover, when a measurement is applied

to the states ρ
(n)
KL, σ

(∅)
K ⊗σ(⊥)

L and |s| > n, the resulting probability distribution is the same

as when s is replaced by the bit string s′ given by the first n bits of s. Therefore, we only

need to consider bit strings s of length n. It is also useful to note that

|En→s
K ⊗ 1L(ρ

(n)
KL − σ

(∅)
K ⊗ σ

(⊥)
L )| = |2−n

∑
k∈{0,1}n

En→s
K (σ

(k)
K − σ

(∅)
K )| = 0. (C.37)

Thus, for any such measurement MK ⊗ML

∥PMK⊗ML
(ρ

(n)
KL)−PMK⊗ML

(σ
(∅)
K ⊗ σ

(⊥)
L )∥1

≤
∑

ℓ∈{0,1}n

∑
r∈{✓,×}

∣∣En→ℓ
K ⊗ Es→r

L (ρ
(n)
KL − σ

(∅)
K ⊗ σ

(⊥)
L )

∣∣
= 2

∑
ℓ∈{0,1}n

En→ℓ
K ⊗ Es→✓

L (ρ
(n)
KL)

≤ 2−n+1
∑

ℓ∈{0,1}n,k∈{0,1}n
En→ℓ
K ⊗ Es→✓

L (σ
(k)
K ⊗ σ

(k)
L )

= 2−n+1
∑

ℓ∈{0,1}n
En→ℓ
K (σ

(s)
K ) = 2−n+1

(C.38)

where in the first equality we used (C.37), Es→×
L = 1L−Es→✓

L and Es→✓
L (σ

(∅)
K ⊗σ(⊥)

L ) = 0.

Thus, limn→∞ dM⊗(ρ
(n)
KL, σ

(∅)
K ⊗ σ

(⊥)
L ) = 0.
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In summary, we have found a sequence (ρ
(n)
KL)n∈N of states that converges with respect

to dM⊗ , but not with respect to δ. So, the topologies induced by these two metrics are not

identical on the state space.

Lemma C.13. The measurement set M⊗ is stable.

Proof. For any effect E ∈ ESK there exists an n ∈ N such that E =
∑m

i=1 piEK,i ⊗ EL,i.

Let (ρn)n∈N be a sequence that converges to ρ with respect to dM⊗ . Then this sequence

also converges with respect to dM⊗∪{E,1SK−E}, as

lim
n→∞

dM⊗∪{E,1SK−E}(ρn, ρ) ≤ lim
n→∞

dM⊗(ρn, ρ) + lim
n→∞

|E(ρn − ρ)|

≤ lim
n→∞

m∑
i=1

pi(EK,i ⊗ EL,i)(ρn)

≤
m∑
i=1

pi lim
n→∞

dM⊗(ρn, ρ) = 0,

(C.39)

where we used in the last inequality that for any product effect EK ⊗EL the measurement

M = {EK ⊗ EL, (1K − EK)⊗ EL, EK ⊗ (1L − EL), (1K − EK)⊗ (1L − EL)} is a product

measurement.
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