arXiv:2601.18872v1 [quant-ph] 26 Jan 2026

Against probability:
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ABSTRACT. The state p of a quantum system can be represented by a vector P aq(p)
of outcome probabilities for a set of measurements M. Such representations appear
throughout physics, for example, in quantum field theory via correlation functions and
in quantum foundations within generalized probabilistic frameworks. In this work,
we identify an unavoidable tension: to enable operationally meaningful statements,
the map p — Paq(p) must be topologically robust—preserving the notion of closeness
between states. Yet, a probability representation that is topologically robust cannot
simultaneously retain other essential structure, such as the subsystem structure.

1 Introduction and a first example

Let Pps(p) denote the probability distribution obtained by measuring a quantum state
p € D(H) on a separable Hilbert space H. If one collects these probability distributions for
all measurements M from a tomographically complete set M, the resulting tuple P (p) =
(PM(p)) e uniquely specifies the quantum state p. Such probablity representations arise,
for instance, when considering correlation functions in quantum field theories [1], and are
also widespread in quantum information theory and quantum foundations [2-17].

In this work, we ask the following question: does Paq(p) represent p faithfully? If
faithfulness meant injectivity, the answer would be yes, as this is precisely the notion
of tomographic completeness. However, this criterion is too weak. To be faithful in a
physically meaningful sense, a representation must also be topologically robust. A main

contribution of this paper is to define and explain what this means.

We begin with an example where the use of probability representations appears natural:
generating random bits R1,..., Ry from a quantum process. For concreteness, imagine a
protocol that produces each bit R; as follows: prepare n unstable atoms and count the
number of decays within a fixed time interval (e.g., one second). Set R; = 0 if this number
is even and R; = 1 otherwise.

An /-bit string R = Ry - - - Ry is said to be random if it cannot be predicted with proba-
bility greater than 2~¢, even by an all-powerful agent with access to any side information E
available prior to the process, such as the internal state of the source supplying the atoms.
Formally, this means that the joint state p = prp of R and F belongs to the set

srand {ﬁﬁ? ® aE‘z eN,op € D(E)} (1.1)

where ﬁ%) is the uniform state on bit strings of length ¢, and D(F) is the set of density
operators on F.
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In any practical randomness-generation protocol, the output R inevitably has residual
correlations with other systems. Moreover, since R is produced by a quantum process, it is
not automatically classical: in general, the joint state prg is not a cqg-state. Consequently,
condition (1.1) cannot be achieved exactly, but only approached asymptotically by investing
additional resources [18-20], for instance by increasing the number n of atoms in our
example protocol. For this reason, it is standard to adopt an approximate condition of
the form

lim §(p™, xrand) = g, (1.2)

n—oo
where §(p™, £r0) = inf__rana §(p™), o), with §(-,-) denoting the trace distance. Opera-
tionally, this quantifies the maximal probability with which an agent with access to both R
and E can distinguish p(™ from the ideal behaviour defined by xr2d [21, 22].

To work at the level of probability representations, one requires that such approximate
conditions be expressible via a distance measure defined directly on probability distri-
butions, such as the statistical distance. The non-triviality of this requirement is best
illustrated by a concrete example: a sequence of states p(™ that violates (1.2), while this
violation remains invisible in the corresponding probability representation.

Example. For any n € N, let R and E be 2"-dimensional systems, and the joint state

of R and E after the randomness generation protocol be

pg% X Z Ty, v (13)

1<u<v<2n
where m,, denotes the projector on the subspace of RE spanned by |u)p [v)p — |0) g [u) g,
for an arbitrary choice of orthonormal bases. This state is entangled and thus distinct from

the states in X' which are separable. Concretely, as shown in [23, Example II.9.],

Wn e N : 5(p™, srand) > i (1.4)

Therefore, R is not approximately random according to criterion (1.2).

Before resuming this example at the level of the probability representation Paq, we
must clarify the requirements on the underlying set M of measurements. While one could,
in principle, allow arbitrary measurements on the joint system RFE, these generally fail to
respect the subsystem structure, thus erasing the distinction between R and E. Yet, this
distinction is precisely what allows us to phrase definitions like (1.1). Accordingly, it is
common to restrict M to measurements acting locally on R and E.

Example (continued). For illustrative purposes, we focus on measurements of the form
M ® M where M consists of rank-1 projectors only." Exploiting the antisymmetry of p(n) ,
it is straightforward to verify that the joint probability distribution Pyen = PM®M(p£E)
of the outcomes X and Y is given by

0 f x =
Pyem(z,y) = yr=y (1.5)

1
m else.

!The conclusions of this example can be easily generalized to any measurement acting locally on R and E.
For this, it suffices to observe that the state on E conditioned on any outcome of a rank-1 measurement
applied to R is maximally mixed on a subspace of dimension 2" — 1, which is 27 "-close to 1=[<E").
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Figure 1: Non-robustness of P . A region of the quantum state space D(H) is shown,
containing the sequence of states p(”) from the example (black) and the corresponding
closest points in ¥ = ¥ (blue). Panel (a) uses the trace distance d, for which the distance
to ¥ stays constant. Panel (b) uses the metric dyy, induced by the product-measurement
representation P 4, for which the distance to Py, (X) shrinks with increasing n.

From this, one finds that %HPM(@M(pg}E) — P x PM||; < 27" where P is the uni-
form distribution on an alphabet of size 2™. Consequently, at the level of such probability

(n)

representations, ppp s approzimately indistinguishable from yrand .

see also Fig. 1.

The result of the example means that, with respect to the metric defined by
1
dum(p,0) = 5 sup | Par(p) = Pr(o)]|, (1.6)
MeM

when we choose M = Mg to be the set of local measurements, the sequence (,Og%)neN
converges to X4, Yet the same is not true for the metric §. This motivates the following
definition. (Throughout, we assume that M is a tomographically complete measurement
set, i.e., the map P from the space of density matrices D(#) to the representation space
is injective.)
Definition 1. We say that P s is topologically robust (or simply robust) if for all sub-
sets ¥ and sequences (p"™)nen of states
lim day(p™,2) =0 = lim §(p"™, %) = 0. (1.7)
n—oo n—oo
Because the opposite implication always holds, robustness implies that it does not
matter which metric one uses. However, the example showed that robustness does not
always hold. This raises the question: which of the two metrics is more operationally
relevant? To decide this, we use the principle of composability [24]. The principle demands
that the underlying distance measure is stable under the addition of auxiliary systems in
any state U, i.e.,
6(prE,XRE) = 0(pRE ® VYR, XRE @ VRiEr). (1.8)

To see the significance of this principle, consider an agent, Alice, with access to the
randomness R, and another agent, Eve, with access to side information E. If R is ap-
proximately random in the sense of (1.2), then criterion (1.8) ensures that this property is
preserved when Alice and Eve have access to additional systems R’ and E’, respectively.
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Figure 2: State-space versus representation-space approximations. Physical prop-
erties are often expressed by the proximity of a state p to a set 3. The diagram illustrates
the requirement that approximate statements established at the level of a probability rep-
resentation remain valid when pulled back to the level of density operators. According to
Definition 1, this is the case whenever the representation is topologically robust.

While the trace distance ¢ satisfies the composability principle (1.8), the metric da4,
does not. The former is a consequence of the monotonicity of the trace distance under data-
processing [21, Theorem 9.2]. For the latter, note that our example implies d g, (p, X) <
d(p® ¥, X ® W¥); yet, as shown in [25], dpm, (p@ ¥, 2@ V) = 6(p@ ¥, X ® V) when W
contains sufficient entanglement. Therefore, the composability principle forbids the use
of dp, as the operationally relevant distance to quantify approximations.

We have thus answered the question posed at the outset: injectivity alone does not
suffice to ensure that a representation P 4 is faithful; robustness in the sense of Definition 1
is also required. Without this property, approximate statements established at the level
of probability representations cannot, in general, be “pulled back” to the level of density
operators. This is illustrated by the commuting diagram in Fig. 2.2

2 A topological characterization of robustness

Definition 1 concerns the convergence of sequences and therefore has a topological character.
One might expect that a failure of robustness thus means that the topologies induced by
the metrics dyq and § are inequivalent. As we show next, this intuition is correct, but only
if one extends the analysis beyond the space of density operators D(H).

We begin with a proposition showing why we need to go beyond D(H). It applies to
any measurement set M satisfying a stability condition, which fails only in pathological
cases. Product measurements, in particular, are stable.?

Proposition 2. The topologies induced by daq and § are identical on the space of density
matrices D(H), except when M is not stable.

While this proposition tells us that the topologies on D(#H) are not an indicator of
robustness, we now show that a topological characterization is possible on the larger space

2This problem does not affect exact statements. These can be proved at the level of the probability
representation and then directly pulled back to density operators. A beautiful example is the proof of the
quantum de Finetti theorem for infinitely exchangeable states proposed in [26].

3See Definition A.1 and Remark A.2. Moreover, all technical proofs are deferred to the appendix.
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Figure 3: Sketch of the topological problem. The state space D(H) (in blue) is
embedded into span(D(H)). While for stable M the topologies induced by || - || am and || -1
agree on D(H), they generally disagree on an open region (in green) around it.

span(D(#H)), on which we define the norm || - || s == supyreaq || Pas(+) |15 see also Fig. 3.

Proposition 3. The following statements are equivalent:

(1) The representation P aq is robust.

(2) The topologies induced by || - ||pm and || - ||1 are identical on span(D(H)).*

(3) span(D(H)) is complete with respect to || - | pm.-

Hence, whether a representation is robust is indeed a purely topological question.

3 Structure is incompatible with robustness

The example discussed above implies that representations based on the set of local measure-
ments M are not robust. This raises the question of whether the issue can be avoided by
relaxing the locality condition. As we show below, the answer is negative: non-robustness
is in fact a generic feature of any representation that preserves structure.

To make this precise, we quantify the “structure” of a given measurement set M using
tools from information theory, in particular an appropriate notion of entropy. Entropy
characterizes the minimum size to which data can be compressed such that it remains re-
coverable via a decoding operation. This decoder must be selected from a set of “physically
allowed” operations. For instance, it must be completely positive for decoding quantum

information. The analogue at the level of probabilities are convex maps of the form
M;
Dy : (Pg)Ees — (Zpﬁ; )PE)MiGM, (3.1)
E

where the sum runs over finitely many elements of &£, and pSEMi) > 0. The input to the

decoder D)y is compressed data in the form of a list of probabilities Pg = tr(Ep) stemming
from a quantum state p. For a given measurement M, one wants the output of Dj; to

4This is equivalent to requiring that the inverse of the linear extension of the map P (correspond-
ing to the arrow labelled with “?” in Fig. 2) is continuous with respect to the norm on the probability
representation induced by || - ||m and the trace norm || - |1 on span(D(H)).



reproduce (up to a small error €) the probability distribution Pys(p) of the outcomes when
measuring p. This leads to the following definition.

Definition 4 (Informal®). Let M be a measurement and € a set of POVM elements. We
say that M can be e-decoded from & if there exist a decoding operation Dys such that

Vpe D(H) : HDM((U"(EP))EEg) — PM(p)H]L <e. (3.2)

We now define the entropy of a representation P g by H® = log(|€|), where |£] is the
minimum input size required for Dy to e-decode for all M € M. For infinite-dimensional
Hilbert spaces this quantity is infinite. In this case, we consider its scaling for restricted
measurement sets M|, obtained by preceding each measurement in M by an orthogonal
finite-rank projector II.

Definition 5. Let (&,)nen be a sequence of sets of POVM elements, {Ilan}nen a nested
family of projectors with rank(Ilan) > 2", and (e, )nen a zero-sequence. We say the asym-
ptotic entropy of M is at most (log(|&n|))nen if all M € M|n,, are e,-decodable from &,.

Remark 6. The asymptotic entropy of any M is at most (2" T8 +3) .

Structure in the measurement set M manifests itself in an entropy below the upper
bound. Theorem 7, our main technical result, therefore shows that the probability repre-
sentation P cannot be robust when M has non-negligible structure.

Theorem 7. If M has asymptotic entropy at most (€,2")nen for a zero-sequence (€,)neN,
then the representation P aq is not robust.

Product measurements provide a canonical example of a measurement set with signif-
icant structure. A straightforward calculation shows that the asymptotic entropy of Mg

scales as (2"/ ) en. The conclusion of our introductory example then follows as a corollary.’

Corollary 8. The representation P aq, is not robust.

In the study of d-dimensional systems, one is often interested in fiducial representa-
tions P xq, that use a minimal measurement set M, [2, 3, 6, 10-14, 41]. SIC-POVMs are a
prominent example [42]. Additionally, d is chosen to be the smallest Hilbert space dimen-
sion with which the system can be described. For example, if one uses an atom as qubit
in a quantum computer, then one works with the corresponding 2-dimensional subspace

rather than the high-dimensional Hilbert space of the atom.

While this minimization of the dimension is often implicit, it involves a non-trivial
consistency assumption, which we adopt in the following: a dimensional restriction from
a D-dimensional to a d-dimensional Hilbert space should not weaken the representation.
Formally, using Definition 4 with ¢ = 0, we require that Mp|n, is decodable from the
POVM elements of M, where 11 is the projector onto the d-dimensional subspace.

To make an asymptotic statement, we consider the union M = |J,; Mg of the minimal
measurement sets My for all d. Because the state space for each d is (d? — 1)-dimensional,
and therefore polynomial in d, such measurement sets satisfy the following definition.

5See Definition B.2 for the formal definition, which also applies to continuous measurements.
6 Alternatively, the statement can also be derived from well-known data hiding results [27-40)].



Structure preservation

Robust Subsystems Efficient
Density operator
D(H) v v v
Probability representations
Py v X X
Prmg X v X
Meﬂicient X depends on Meﬂﬁcient v

Table 1: Density operator vs. probability representations. The density operator
representation of a quantum state is robust, in the sense that small deviations in the rep-
resentation are physically insignificant. Furthermore, it respects the subsystem structure,
and it is efficient, requiring only few real numbers. In contrast, probability representations
that are robust cannot have any such structural properties.

Definition 9. We say that M is efficient if there exists a nested family of rank-d pro-
jectors {Ila}tden and a sequence (Mg)aen of measurement sets such that |Uyerq, NI <
poly(D) and, for all D, M|, can be decoded from the POVM elements of UdDzl My.

This definition directly implies that the entropy of any efficient measurement set M is
at most (const n),ecn, which yields another corollary to Theorem 7.

Corollary 10. If M is efficient, the representation P xq is not robust.

The results of this section show that the use of probability representations leads to a
fundamental dilemma, which is summarized in Table 1.

4 Beyond Quantum

In quantum foundations, one often studies generalizations of quantum theory where states
need not be representable by density operators. Probability representations are well suited
for this task, as they allow one to directly modify the constraints that quantum theory
imposes on the admissible lists of outcome probabilities. A widely used framework based
on this idea is that of generalized probabilistic theories (GPTs) [3, 5, 6, 8, 9, 15, 16, 43—46],
where each GPT is specified by the set of probability assignments corresponding to its valid
states. A brief introduction to the formalism is given in Appendix C.

Since probability representations are fundamental to the GPT framework, the issues
summarized in Table 1 also pose a challenge for GPTs. In fact, the situation is even
more severe, as Proposition 2 does not generalize to GPTs beyond quantum theory. To
state this result, we extend the trace distance to arbitrary GPTs by defining §(p,0) =
3 supyy [|Par(p) — Pu(o)||1 where the supremum ranges over all measurements M. Note
that, as in the quantum case, we allow for state spaces of unbounded dimension.

Theorem 11. There exists a GPT for which the topologies induced by da, and 0 are
different on state space, despite Mg being stable.



5 Conclusion

We conclude with a discussion of the implications of our results for various areas of research
that use probability representations, starting with quantum foundations. Reconstruction
programmes seek to derive quantum theory from postulates with a clear and direct physical
meaning. A common postulate in this context is local tomography, which posits that the
state of a bipartite system is uniquely determined by the statistics of local measurements,
corresponding to a local representation P, [2, 3, 9, 10, 47, 48]. Yet, for this to be physi-
cally grounded, P rq, must be robust: infinitesimal statistical fluctuations must not imply
wildly different states. Corollary 8 shows that this requirement fails for quantum systems
of unbounded dimension.” Consequently, even for prototypical physical systems—such as
those composed of harmonic oscillators or single particles—local tomography is not a viable
physical principle. This suggests that extending the current reconstruction programme to

such systems is not a mere mathematical formality but a substantial conceptual challenge.®

Probability representations also play a central role in quantum interpretations. A promi-
nent example is QBism, which regards a quantum state as a catalogue of an agent’s personal
degrees of belief, corresponding to a probability representation P4 [11, 17]. To formulate
quantum theory—and specifically the state-update rule—entirely in probabilistic terms,
QBism requires a representation that is not overcomplete, implemented, for instance, by
SIC-POVMs [41]. However, Corollary 10 implies that, for systems of unbounded dimension,
such probability representations fail to be robust. Our results thus point to a fundamental
obstruction to extending the QBist programme beyond finite-dimensional systems.

In quantum information theory, probability representations are routinely employed to
enable the application of classical information-theoretic tools to quantum systems. An
operationally motivated approach to obtaining such a representation is to model the in-
teraction between agents and the experimental setup as an abstract box. For example, to
analyse bipartite entanglement, one may imagine two agents, Alice and Bob, who choose
measurements « and 3, and observe the respective results, X and Y.

a B
| |

(5.1)

{ {
X Y

The behaviour of this box is fully characterized by the conditional probability distribu-
tion Pxy|qg, which is required to be non-signalling.® This corresponds precisely to the
probability representation Py, (pap) of the state psp shared by Alice and Bob.

"Given that local tomography fails to be robust, one may wonder how the state of a composite quantum
system can be determined in practice. This is achieved by imposing simplifying assumptions. For example,
in quantum optics one often restricts attention to Gaussian states or to states with a bounded photon
number.

8This contrasts with the expectation [10, 14] that generalizing such reconstructions to infinite dimensions
may be “only a small conceptual (though possibly mathematically challenging) step.”

9The non-signalling property ensures that neither party can communicate through their choice of mea-
surement. Technically, Alice’s marginal distribution Px|s is independent of 3, and analogously for Bob’s.



Our results, notably Corollary 8, thus apply directly to this setting, implying that the
box-based representation is not robust for systems of unbounded dimension. This failure
is critical in device-independent quantum cryptography, for instance. There, devices are
treated as adversarial, so that no bounds on their dimension can be assumed, yet robustness
is essential (cf. the randomness-generation example in the introduction). While it has been
proposed to establish cryptographic security directly at the level of boxes [43, 49], the
non-robustness of P ¢, shows that this approach is not viable.

Quantum field theory (QFT) is another prominent domain in which probability repre-
sentations are employed. Instead of wave functions, states are typically characterized by
their n-point correlation functions.!” The injectivity of this representation follows from the
Wightman reconstruction theorem [51]. Our results, however, suggest that such represen-
tations are not robust.

While our treatment assumes that states can be represented as density operators and
thus is not directly applicable to general QFTs, theories satisfying the split property can
be well approximated by discretized models in which degrees of freedom are localized on
a lattice and the state space factorizes accordingly. In this regime, Corollary 8 shows that
correlation functions fail to provide a robust state representation. This becomes particularly
problematic when considering genuinely non-local observables. A notable example are
the observables necessary to test for the athermality of Hawking radiation, which would

manifest itself in complex non-local correlations.

One might assume that non-robustness occurs only in infinite-dimensional systems. In
finite dimensions, all norms—and hence their induced topologies—are equivalent. However,
non-robustness still appears through a dimension-dependent scaling factor between the
distances das and 0. Our results can therefore be understood as the infinite-dimensional
culmination of a scaling problem that is already present in finite dimensions [27-40].

In summary, we have argued against probability-based representations: although ubig-
uitous in physics, they face fundamental limitations, summarized by Table 1. This moti-
vates the search for an alternative framework for representing states that (i) is topologically
robust; (ii) preserves physically meaningful structure, such as the subsystem structure; and
(iii) allows generalizations beyond quantum theory, in the spirit of GPTs. Developing such
a framework is left for future work.
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A Topological properties

Definition A.1. A set M of measurements is stable if for every POVM element E with
finite-dimensional support the topologies induced by dag and dyuqp1—gy are identical.

Remark A.2. Let N be the set of POVM elements that appear in a measurement set M.
Then M is stable if any possible POVM element with finite support is in the closure of
span(N) with respect to || - ||co. This is, in particular, the case for Mg.

Proof. Let E be a POVM element with finite support and (py)nen a sequence converging
to p with respect to das. We first show that, under the assumption made in the remark,
the sequence also converges with respect to dyu(g,1-g)-

To see this, take a sequence of POVM elements (E,),en in the span of the POVM
element of M that converges to E with respect to || - ||oo. For every e > 0 there exists an
En =3, al"N/" with N™ € N such that ||E,, — E||o <e. So we find

n—oo

lin [te(E(p, — p))| < lim 3 1a7"|- [66(N; (0 — )] + [66(En = E)(p — 0))

- By Al
< Jim > lafl - lpn = pllac+ 22 (A1)
= 2¢.

As this holds for every € > 0, we have lim,,_, | tr(E(p, — p))| = 0. This implies that the
sequence (pn)nen converges to p also with respect to dyuig,1-E}-

We have thus established that every sequence (p)nen that converges with respect to
dpm also converges with respect to dyugr,1—py- Because, conversely, dyp1-p) domi-
nates dq, the topology induced by daq is equal to the topology induced by dyu(g,1-E}-
The stability condition thus holds.

Because product POVM elements with finite support linearly span POVM elements
with finite support, the condition is met for Mg. O

Proposition 2. The topologies induced by dag and § are identical on the space of density
matrices D(H), except when M is not stable.

Proof. We first show that, if the topologies induced by das and § are identical, then M
is stable. If these two topologies are identical, then the topology of dau(g,1-g) 18 finer
than the topology of §. Furthermore, because dys < ¢ holds for arbitrary measurement
sets NV, the topology induced by d MU{E,1-E} 1s coarser than that of 6. Consequently, the
topologies induced by dqu(p,1-F) and ¢ are identical.

We now show that the stability of M implies that the topologies induced by d¢ and &
are identical. Stability means that, for any POVM element E with finite support, the
topologies induced by dy¢p,1—py and da are identical. Let {|n)}nen be an orthonormal
basis of H and Py = ZZJ\L o |2)(@| projectors. For any measurements set M satisfying the
conditions of the proposition and N € N, the map Py : p — PnpPy, where p is a state, is
continuous with respect to || - [|a¢. To see this, let (p,)nen be a sequence that converges to
p with respect to || - || s and let £ = {E4,... Ex2} be a tomographically complete POVM
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on the support of Py. We define the norm ||p||¢ = supgce | tr(EA)| on the image of Py.
Since the topology induced by du(g,1-F) is identical to that of d, it follows that

VE € £: lim |tr(EPn(pn — p)Pn)| = lim |tr(E(pn — p))|
< lim dyu(p,1-£}(ons p) = 0.

As |€] < 00, we find that Py (p,) converges to Py (p) with respect to || - ||¢, and because the
image of P is finite-dimensional also with respect to ||-|[o¢. As this holds for any converging
sequence, we have established that the map Py is continuous with respect to || - || .-

Let (p(™),en be a sequence of states such that lim,, .o daq(p™, p) = 0. Then

— T (n)
0= lim 2dum(p"", p)
= lim lim [|p™ = p|lp + [0 = PvpPy |l m
N—o0 n—o0

> lim lim [|p™ — PypPy|m

N —00 N—00

— i ; (n) _ (n) p,, —
Jm lim [|p" — Py pPy | p + 1Py p™ Py — PPl m (A.3)

> lim lim [p™ — Pyp™ Py ag

N—o0 n—o0

> Lm ki . (n) p. _ (n))
i 3w R )

S 1 . _ (n) )
2 Jimfim 1=t (Puo® Py )|
where M € M is a measurement with POVM elements {E;};, and we used both the
continuity of Py with respect to || - || s and that limy_, d(PnpPn,p) = 0. Using this
result, we can calculate the limit with respect to || - |1,

lim [|p™ —plls = lim lim [[|o"™ — plly — [Py pPy — pl1]

n— 00 N —o00 n—00

< lim lim [|p™ — PypPy|s

N—oon—oo

= lim lim |||p(") — PnpPyn|l1 — ||PvpPN — PNp(")PNHl} (A.4)

N—00 n—00

< lim lim [|p™ — Pyp™ Pyl

~ N—oon—oo

< lim lim 24/1 —tr(PNp(”)PN) =0

T N—oon—oo

where in the last inequality we used the gentle measurement lemma [52, Lemma 9.4.2]. We

have thus shown that, if a sequence (p,,)nen converges with respect to || - || a then it also
converges with respect to || - ||;. This, together with the fact that || - ||; dominates || - || s,
proves that the topologies induced by § and d4 are equal. O

Remark A.3. There exists a tomographically complete measurement set M such that the
topologies induced by daq and 6 are not the same on D(H).

Proof. Let {|n)}nen be a basis and P =) e " |n)n|. We define

M= {{PEP,1—-PEP}(0|E[0)=0,0< E<1}U{{1}}. (A.5)
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It can be readily verified that M is tomographically complete. To show that the topol-
ogy induced by da, is different from the topology induced by §, we consider the se-
quence (|n)Xn|)nen. This sequence obviously does not converge with respect to 6. However,
it converges with respect to dag. To see the latter, note first that the POVM element 1
cannot be used to distinguish |0)0| from |n)n|. Furthermore, for any POVM element E
with (0] E|0) = 0, it holds that tr(PEP(|n)n| — [0)0])) = e~2" (n| E|n) < e~2". O

Before proceeding with the proof of our next main statements, we need a technical
lemma. The lemma refers to norms that are defined on the space span(D(H)), which
contains all Hermitian trace-class operators on H. We also remark that any such operator A
can be written as a sum of a positive part A, and a negative part A_.

Lemma A.4. If the norms || - |1 and || - ||m do not induce the same topology then there
exists a sequence (AM™), ey of Hermitian trace-class operators from the set'!

Oaier == {A: tr(4) = 0Atr(Ay) < 4} (A.6)
such that
lim |A™ o =0, (A7)
n—oo
whereas there exists > 0 such that
VneN: [[A™|; > u. (A.8)
Proof. The Hilbert space H is infinite-dimensional, as the norms || - ||; and || - [| a1, do not
induce the same topology. Furthermore, because || - ||; dominates | - || o, the inequivalence

of norms implies that there exists a sequence (A(n))neN of trace-class operators satisfy-
ing (A.7), while lim,, o [|A™ |1 # 0. By restricting to a suitable subsequence, we can also
ensure that (A.8) holds.

In the remainder of the proof, we will show that, by appropriately modifying this
sequence, we can ensure that its elements lie in Og;g.

We first take care of the condition tr (Agfl)) < ﬁ For this, consider the sequence
(B™),,cn defined by

1
B — A, A9
max(11[|AM|[;, 1) (A-9)

As Vn € N : ||[BM™||y < ||A™]|z, the sequence (B™),en still converges with respect

to || - ||a¢. Furthermore, for all n it holds that ||[B™||; > 4. As || - |1 is compatible with

data processing, it follows that (B(™),cx has the desired property

1
Lo pm ) [ = (e B™
= > By > [t (LB )| = | (BY)) (A.10)

where IIy is the projector on the positive (negative) part of B This shows that we can,

without loss of generality, assume that tr (AS:”) < iy

HThe choice of ﬁ is due to a preference for prime numbers of at least one of the authors.
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Next, we turn to the property tr(A(”)) = 0. Let |eg) be an eigenvector of A such
that the corresponding eigenvalue Ay satisfies 0 < )y < % Such an eigenvector exists
as tr(Agf)) < 1 and the Hilbert space H is infinite dimensional. Note that the sequence
(B™),en defined by BM™ = AM™ —tr(A™) |e)ep| does not converge with respect to || - |1

because, for all n € N,

n n n n 1
IB®|), = tr(AQ) - tr(A(_)) “ o+ ho— tr(A( >)| > - (A.11)
However, it still converges with respect to || - || as
1B e < A g + o (A < 2 A pq (A.12)

where we used that |tr(A)| < ||A]|am in the last inequality.

Proposition 3. The following statements are equivalent:
(1) The representation P aq is robust.
(2) The topologies induced by || - ||a and || - ||1 are identical on span(D(H)).'?
(3) span(D(H)) is complete with respect to || - | m.-

Proof. (2) = (1): Let ¥ be a subset of the state space and (p(™),ecn a sequence such
that lim, oo daq(p™, ) = 0. Then there exists a sequence (c(™),en C ¥ such that
limy, o0 dM(p(”),a(”)) = lim;,—eo Hp(”) — a(”)HM = 0. As the norms induce the same
topology, it follows that lim,, s ||p™ — ¢™||; = 0, which implies lim,, . 6(p(™, ) = 0.

(1) = (2): Assume by contradiction that (2) does not hold. Then the underlying
Hilbert space must be infinite-dimensional, because all norms on a finite-dimensional vector
space are equivalent. Let {|n)},en be an orthonormal basis of this Hilbert space and
(A(”))neN the sequence of operators in Og;¢ as defined by Lemma A.4. From this, we can
build sequences (p(™),en and (0(™), ey of states by

p™ = [n)n] (1—tr(A(ﬁ>))+A@, o™ = |n)(n| (1+tr(A£"))) A (A13)

Note that, because all operators from Ogig satisfy tr(A4) < 1, these are valid states.

We calculate the distance between any two states of the two sequences. For n # m, we
have

2(5(p(n)70(m)) — Hp(n) _ U(m)Hl
= [llmnl (1~ t(AL)) + AL~ pmhom] (14 (40 )) - A
> ‘1 — tr(ASf‘)) + (n] Agf‘) In) + (n| A(_m) |n)‘

>1- tr(AE:L)) +tr (A(_m))

2
>1- —
=1

(A.14)

12This is equivalent to requiring that the inverse of the linear extension of the map P aq (correspond-
ing to the arrow labelled with “?” in Fig. 2) is continuous with respect to the norm on the probability
representation induced by || - ||m and the trace norm || - |1 on span(D(H)).
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where, in the first inequality, we used that the 1-norm is non-increasing under any trace
non-increasing completely positive map. For n = m, we have p(® — ¢(® = A(™  There-
fore, Vn € N : §(p(™,0™) > . Define the set ¥ = {¢™|n € N}. By definition,
limy, o0 dag(p™, Y) < limp—o0 g (p("),a(")) = 0. Furthermore, for all n € N, the bound

5(p™, ) > min(1 — Z,

1) holds. Therefore, P4 is not robust.

(2) = (3): Assume that the topologies induced by || - [|s and || - |1 are identical.
Then there exists a constant C' > 0 such that C||- ||y < ||-||m < ||-]|1. Therefore, a sequence
is Cauchy or converges with respect to || - || s if and only if it is Cauchy or converges with
respect to ||-|1. The space span(D(#H)) is the set of Hermitian trace-class operators, which

is complete with respect to ||-||1 [53, 4.2.2. Corollary] and, thus, also with respect to || - || -

(3) = (2): Assume the space span(D(H)) with the topology induced by]|| - || is
complete and, thus, a Banach space. Consider the identity map (span(D(H)),| - |l1) —
(span(D(H)), || - [|m). This map is continuous as || - ||m < || - |l1. By the open mapping
theorem for continuous linear functions on Banach spaces [54, Theorem III.11], the inverse
of this map is also continuous. Thus, the topologies induced by || - [[o¢ and || - |1 are
identical. O

Remark A.5. The representation P g being robust is also equivalent to span(D(H)) not
being meagre'® with respect to the topology induced by || - || pm-

Proof. 1f the topologies induced by || - [[sm4 and || - ||1 are identical then, by Proposition 3,
span(D(H)) equipped with || - ||o is a Banach space. It follows directly from the Baire
category theorem [54, Theorem II1.8] that a Banach space is not meagre.

Conversely, assume the space span(D(H)) with the topology induced by || - || a4 is not
meagre. Consider the family of functionals F := {A € span(D(H)) — tr(FA)|0 < E < 1}.
This family of functionals is pointwise bounded on span(D(H)):

VA € span(D(H)): sup tr(EA) = |Al:1 < oco. (A.15)
0<E<1

As span(D(H)) is not meagre with respect to the topology induced by || - || s, we can
apply Banach-Steinhaus [55, Theorem 2.5], which implies that the family of functionals F
is pointwise equicontinous with respect to || - ||s. Therefore, for every £ > 0, there is a
d > 0 such that ||A||m <6 = ||A]j1 < e. Thus, any sequence that converges with respect
to || - ||m also converges with respect to || - ||1. The reverse is also true as || - [[a < || - |l1-
Thus, the topologies induced by || - ||pm and || - ||1 are identical. O

B Asymptotic entropy
Here we give the formal version of Definition 4. First, we define the allowed decoding
operations.

Definition B.1. Let £ be a collection of POVM elements and M a POVM on a measurable
space (O,%X)r). A decoding operation Dys for M maps lists of probabilities (Pg)ges to a

13 A topological space X is meagre if it is the countable union of nowhere dense sets, i.e., sets whose
closures have an empty interior.
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function

Du((Pe)pee) : F €S Y pp(F)Pp € R (B.1)
E

where the sum runs over finitely many elements of €, {pp}trpcs C Ry, and S is a semi-

algebra that generates Xp; and is closed under finite disjoint unions.

To define e-decoding, we use the following norm on functions P : S — R:
| P|| := sup [P(F)]. (B.2)
FeS

Definition B.2. Let & be a collection of POVM elements. We say that M can be e-decoded
from & if for every M € M there exists a sequence of decoding operations (D](\Z))neN such
that

Vpe D(H): limsup sup HDE\Z)((tr(Ep))EEg) - PM(p)H <e. (B.3)

n—oo MeM

Lemma B.3. Let M be e-decodable from a set of POVM elements £ and let p and o be
states. Then for every M € M there exists a semi-algebra Syy generating Xpr such that
for every F' € Spr there exists an operator NI{YI in the positive span of € satisfying

tr(Np'p) <1+e, tr(Np'o) <1+e, (B.4)
|| te(M(F)(p = 0))| = [tr (N (p — 0)) || < 2e. (B.5)

Proof. Let (Dz(\q/;))neN, Mem be the decoding operations that exist because M can be e-
decoded from &, and let k£ € N be such that

J\/Sfléfx)/l HDE\IZ,)((tr(Ep))Eeg) - PM(p)H < ¢ and 1\/811515\)/( HD](\];)((tr(EJ))Eeg) — PM(O')H <e.
(B.6)
(k)

Then, for every M € M, consider the decoding operation D, . Let Sy; be the semi-algebra
specified by the decoding operation D](\]f[), and let NM = Bee PY(F)E, where pM (F) is
also specified by the decoding operation. Then, by Definition B.2, it follows that for all
MeMand F € Sy

[t (Par(F)(p = o)) = [tr(NE (p = 0)|| < [tr(Prs(F)(p — o)) — tx(NF (p — 0))]

)
)

< |tr(Par(F)p) — tr(N# p)| B
+ | tr(Py(F)o) — tr(Nplo)|
< 2e.
Furthermore, (B.3) ensures that for all M € M and F € Sy,
tr(prV[p) <tr(Py(F)p)+e<1+e. (B.8)
The same argument also applies to o. O
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B.1 Proof of Theorem 7

Let ‘H be a d-dimensional Hilbert space, |¢) € H and p € D(H). For the proof of Theorem 7,
the following function is useful

D|p1/1 :UH) =R

.
' 1 (B.9)
U | @l UpU ) - .

Let us now prove some properties of this function.

Lemma B.4. For every |[¢) € H, the function Dliﬁ) is 27Hmi“(p)+%—Lipschitz with respect

to the 2-norm on the group U(H) of unitaries on H.

Proof. First note that it suffices to show for every [¢)) that

_ . 3
Dl (U) = Dfy,y ()] < 27 FenP2 U — 1), (B.10)

)
[¢
as then the lemma follows from

and the fact that, for all X € Herm(L) and U € U(L) it holds that [|[UX]||2 = || X]|2.

We define 6 € [0, 7) by
cos(0) = | (Y| U [¢) | (B.12)

and a state [t)) such that (i[)) = 0, as well as

U [ip) = e'(cos(6) [) + sin(6) [¢)). (B.13)
Then, we find that

(D0, (U) = D2, (1)] < | (@] p ) — W UpUT o) |
= |(1 — cos(0)?) (] p 1) — sin(6)* (%] p|F) — 2sin(9) cos(B)Re( (] p 1))

< sin(0)((w] p ) + (6] p[4)) + [2sin(8) cos(8) [Re( (6] p|1))
(B.14)

We estimate (¢| p |¢), <1/;| p w> and |Re( (1| p|¥))|. By definition of the min-entropy,
it holds that p < 2~ Hwin(P)1, Thus, we find that (| p|¢) < 27 Hmin(P) and <1Z’p|¢_}> <
2~ Hwin(P) " To bound |Re( (1| p|tb))|, we observe that

IRe( (@] p[v))” < | (@] ply) [?
= (| p )Xy p|v)
W] p” [¥)

2*2Hmin(P)‘

(B.15)

IAIA
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Thus, also |Re( (¥ p 1)) < 2~ Hmin(e) | Plugging this result into the previous calculation,
we find that

D0,y (U) = Dfy, (1)] < 27 Hmino)+1 (sm(9)2 + | cos(8) sm(e)|)
= 2~ Hmin(p)+1 \/sin
S 2_Hmin(p)+1 \/Sln

=92~ Hmm(p)+ Sln(9)2 — 2_Hmin(p)+% 1— COS(9)2

0)* + cos(6)? sin(h)* + 2sin()?| cos(8) sin(6)|
n(¢

0)* + cos(#)? sin(0)? + sin(6)?

(B.16)

Let us now relate this result to the 2-norm. First, we observe that

119) = U} 12 = 2 — 2Re({9] U )
= 2 — 2cos(ip) cos(0) — (1 — cos(0)?) + (1 — cos(6)?)
> cos(p)? — 2 cos(p) cos(8) + cos(0)* + (1 — cos(h)?) (B.17)
= (cos(p) — cos(#))? + (1 — cos(6)?)
> 1—cos()? .

Furthermore, || [¢)) — U |¢) ||> can be bounded by ||1 — U||3

| 16) = U 1) |2 = 2 = 2Re((@] U |4))
= tr(juel 21 - U - U")
— (el (1 - )} (1 - V)
<t(@-0)'a-0)) =1 - Ul

(B.18)

where in the last inequality we used that (1 — U)f(1 — U) is a positive operator. Thus,

U) = Dfy (1)] < 27 Hu® 3| jg) — U ) || < 27 @+ 51— U3, (B.19)

p
[ Dl (
O
Lemma B.5. The average of Dﬁp)(U) over U chosen according to the Haar measure sat-
isfies

Df,) = /DW )dU < 2 08(d)= 3 Humin(p), (B.20)

Proof. To calculate this average, we use [56, Theorem 3.3], from which it follows that

1

/| (W UpUT ¢p) — 414U < 9~ 3 (Ha(p)+Hz(r)) (B.21)

where Hy(p) :== —log(tr(p?)) < Hmin(p) and 7 = 2 |4)¥1p|. Thus, we find

/ (| UpUT |9) — 7‘ dU < 27 los(d)=5 Hmin(p) (B.22)
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Lemma B.6. Let H be an infinite-dimensional Hilbert space, { |n)}nen an orthonormal
basis of H, and (p"™)men, (6" )pen two sequences of states defined by

m—1
1
o™ = ST k], o) = 3=k, (5.23)
k=0

then there is an N € N such for all ¥m € N;n > N : [|spec(c(™) — spec(p™)||; > &.

Proof. We distinguish different cases.

Case m > n — 1: In this case, we can write

n—1
[spec(c™) — spec(p™)]|; = <Z fm — % + ‘0 —(m — n);D . (B.24)
k=0

The sum can be divided into two parts of equal magnitude: the part where the terms in

the absolute value are positive and one where they are negative. The former is the case
when k € {0,..., knax} With kpax = n — w Therefore, we find by a straightforward

m
but tedious calculation'*

1 2(n — k 1 1
Jllspecto™) —spec(p™) s = 3 | 20— L o - )
k=0 (B.25)
1 1
> - i
> 140 <n>
Case m < n — 1: In this case, we can write
m n—1
1 2n—k) 1 1 2(n—k)
(n)y _ (MmO, = = B S A — B.2
Jspec(o™) — spec(p ™) = 5 S |ZEA - e 5 DT TR 0l (B26)
k=0 k=m+1
We consider two subcases.
Case kpax > 0: In this case n — % >0 < m> ”T‘H As before, we divide the

sum into two parts of equal magnitude: the part where the terms in the absolute value are
positive and where they are negative. The latter is the case if m > k > kpax. Thus, we
find by a straightforward but tedious calculation:

1 n m %
5llspec(a™) —spec(p™)[1 = )
k=kmax (B.27)

Y4
N
|
S |3
N———

[\
+
VR
—_
|
[\&)
SE
N——
[\
+
@)
N
S|
N—

Consider the function f(x) == (1— %)2 +(1—%)2. To find the minimum of this function,

we set its derivative to zero
1 1 T
2f<1—7) - (1—7) —0. B.28
2 T 2 ( )

This equation is solved by z = /2. Therefore, the minimum of this function is f(v/2) =

2(1— \%)2 ~ 0.17 > £, which puts a lower bound on (B.27).

14To see the tedious calculations in this proof, download the source code and enable the option “showcalc”.
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Case kpax < 0: In this case n — n(n+1) <0 < m < 2L and we find by another

2m 2
tedious calculation

1 (n)y _ MmN, = — - —
2Hspec(0 ) —spec(p'™)|l1 Z n(n+1) m
k=0 (B.29)
1 1
> - _
>1+0(3)
O

Theorem 7. If M has asymptotic entropy at most (€,2™)nen for a zero-sequence (€,)neN,
then the representation P aq is not robust.

Proof. Let {IIon } e be the family of projectors, {&, }nen the sequence of sets of POVM ele-
ments, and (7, )nen the zero-sequence that yield the asymptotic entropy at most (£,2")pen.
The family of projectors {IIan },ey commutes. Therefore, there exists a basis { |n) }nen such
that the span of the first 2" basis elements is contained in the support of Ilon. Using this

basis we define the projectors P, = Z?:_ol i)(i|, the sequence

2" —1

o) kz_o m )] (B.30)

and the set -
2= B e (B.31)
n=0 n ’

where B¢ (p) := {0 € D(H)|0(o, p) < €}. Furthermore, we denote by H,, the Hilbert space
spanned by {|0),...,|n)}.

Next we show, that there is an N € N such that for all n > N and unitaries U on Hon
it holds that Uo(™UT ¢ ¥. To show this, we use [57, Lemma IV.3.1]

Vp,o ¢ |l — ol > spec(o) — spec(p)ll: (B.32)

where spec(p) is the probability distribution defined by the ordered list of eigenvalues
of p. As the spectrum of an operator is invariant under unitary operations, it follows from
Lemma B.6 that there is an N € N such that YU € U(Han),n > N : §(UcMUT,E) > L.
Therefore, YU € U(Han) : lim, o0 6(Ua™UT, X)) #£ 0.

Our goal is now to show that there exists a sequence of unitaries {U (")}neN such
that U™ has support on Hon and limy, e dM(U(”)U(”)(U(”))T, 27" Pyn) = 0. If such a se-
quence of unitaries exists, this implies immediately that lim,, .. dag(U™ e (UM ) =
0 and, by the above result about ¢, the representation P is not robust.

Because the support of Pon and ¢ is contained in the support of IIyn, for any mea-
surement M € M and unitary U € U(Han) it holds that

1Par(Ua™UT) = Pag(27" Pen) |1 = || Pagyy,,,, (Uo™UT) = Py (27" Pon) |1 (B.33)

Therefore, it suffices to consider measurements in M|,,, which, by assumption of the
theorem, can be 7,-decododed from &,. Therefore, we can apply Lemma B.3 to the
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states Uo™ Ut and 27" Pyn. Let Sy be the semi-algebra and let NI{Y[ be the operator
from Lemma B.3 associated to M € M and F € Sy, then

dp(Uo™UT 27" Py) = sup sup |tr (M(F)(T”Pgn - Ua<”>UT))|
MeM FeSy

<2, + sup sup |tr (N]{V (27" Pyn — Ua(”>UT))|
MeM FeSy

=21, + sup sup |tr (PQnNI{Y[PZn(Q—"PQ,L — Ua(")UT)>|
MeM FeSy

<21, + sup sup Zp]\E/[(Fﬂtr(PQnEPQn(Q_”PQn - Ua(”)UT)>|, (B.34)
MeM FeS)y EcE

where the sum over F goes over finitely many p%[(F) > 0. For every E = Zj pj ;] €
Por &, Por we define a function

o(m)
Dp:U = p Dy, (U) (B.35)
J

where chz/fjn; (U) is given by (B.9). Diagonalizing Pon EPy» and applying the triangle in-
equality for the absolute value yields

dp(Uoc™UT 27" Pyn) < 2, + sup  sup Zp%(F)DpWEan (U). (B.36)
MeM FeSy EcE

We now turn to finding upper bounds on Dy (U). To do so, the following two observa-
tions are useful. The function Dy is 23 tr (E)—Lipschitz continuous with respect to the
2-norm on U(Han), as

o(n) o(n
[Dp(U) = De(U")| < > ps1 DR,y (U) = DI (U)]
J
4v/2 ,
< V2 W — (B.37)
< ij%nﬂnv Ul

<2775 e (E)||U = U

where for the second inequality we used Lemma B.4 and that Hmin(a(”)) = — log(ﬁ).
Furthermore, from Lemma B.5, it follows that for a unitary U chosen according to the Haar
measure (D5 (U)) < 92-3nt3 tr(E).

These two observations about Dz(U) allow us to apply [58, Theorem 5.16 and Theorem
5.9], which states that, for any d-dimensional Hilbert space H, for any function f : U(H) —
R that is x-Lipschitz with respect to the 2-norm, and for a unitary U chosen according to
the Haar measure we have

24

Pr(f(U) 2 {f) +¢) < e 3. (B.38)
Applying this theorem yields
_52om
Pr (Dp(U) > A(E)) < e 24(4v2)° (B.39)
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2
where A(E) :=2""tr(E) <2_%+% + 5n) and 42 = 24(27{2)(1 +1In(|&,])). Combined with

the union bound this yields

62am _§2am
Pr(3E € Pon&yPon : Dp(U) > A(E)) < |Pon&pPonle #(VD < |E, le #6v)° . (B.40)
As, |E,| exp(— ba2 ) = e~ ! <1, we have that
) n 24(4\/5)2 9
Pr(VE € Pyn&,Pon : D(U) < A(E)) >0 (B.41)

and, thus, there exists a unitary such that VE € Pyn&,Pyn : Dg(U) < A(E). We now
define U™ to be a unitary with this property. From this definition and (B.36), we find

dpm(UM (U M)T 27" Py ) < 2 + sup  sup > pi (F)A(Pan EPyn)
MeM FeS)y Fe&

< 2n, + (\@ X273 4 (5n) sup sup tr(2_”P2nNZ{l4)
MeM FeSy,

§3nn+(\/§x2—%+5n) o
B.42

By assumption of the theorem, we know that lim,,_, ln(gi"‘) = In(2) limy,— 00 £, = 0, which

implies that lim,_ s d,, = 0. Therefore, lim,, o dM(U(”)a(” (U(”))T,2_”Pgn) = 0, which
was what remained to prove the theorem. O

B.2 Proof of Remark 6

Before proving Theorem 7, we recall the definition of e-nets and one of their properties.

Definition B.7 (e-net of states). Let H be a Hilbert space. Then we call a set of states
N C H an e-net if
Vip) e H 3[p) € N: o) — |@) [ <e (B.43)

Lemma B.8 (Size of e-Net). Let H be a d-dimensional Hilbert space, then there exists a
e-net N' on H such that

9 2d
V] < (1 + 6) . (B.44)
Proof. [59, Theorem 1.8]
O

Lemma B.9. Let H be a Hilbert space, then for any two pure states |¢) , |1) € H it holds
that

HoXSl — 1)l [l < 21 |¢) — [4) |- (B.45)
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Proof. First note that

1) = 18) > = 2 — 2Re((¥)|¢))
=2 - 2Re((1)]$)) — 1+ | (]¢) [* + (1 — | (]¢) |*)
> 2= 2y/Re((1]¢))? + Im((|¢))2 — 1+ | (]8) |* + (L — | (|9) [*)

> 1 =20 ()[d) |+ [ (W]o) >+ (1= | (¥[) *) (B.46)
= (1| (l¢) N)* + (1= (lo) )
>1—|(¥]¢)

1

= SlHXel = Xl I3

Note that |¢)(v)| — [¢)#| is a Hermitian rank-2 operator, thus there exist states |e;) , |e2)
such that

[UXY[ — oXo| = a1 [er)e1] + a2 e2)ez] (B.47)
and, we find that

[ToXe] = 16Xl |1 = |ax| + |az]
= <(171)7(’a1|7|a2‘)>

B.48
< V(i + lao) .
= V2| [9)3] — [0 [l2-
Combining this result with the above, we find
o)l — 10Xyl I < 2 1é) — [¥) |- (B.49)
O

Lemma B.10. The set of all measurements has asymptotic entropy at most (2”+log(")+3)neN.

Proof. Let {|n)}nen be a basis, Han the span of the first 2" basis elements, Ilon =
Ein:f)l In)(n|, M a measurement, M|, the restriction of M to the support of ITsn, and N,
a (272")-net on Han.

For any measurable set F' € ¥, consider M |, (F'), which has support only on Han.
We decompose M|, (F) into its eigenbasis M|, (F) = >, pi [¢i)i|. Let |¢;) € N, be
such that || |¢;) —|:) || < 272" and define EM = 3", p; |#:)}¢i|. The corresponding decoding
operation Dy is defined in the obvious way. We find

|t (M, (F) = B )p)| < 1M |11, (F) = E3
< sz‘H [P )(1bi| — 19i)X il 11 (B.50)
< 2—2n+1 tl"(M|H2n (F)) < 2—n+1

where we used Lemma B.9 in the second to last inequality.

The same argument can be applied for every measurement M and every F € Xj;.
Thus, Man|m,. can be 27"+ 2-decoded from A, where one understands the elements of
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N, as the corresponding rank-1 projectors. From Lemma B.8 it follows that there is a
272"_net N, such that

log(|Ny|) = 2" log (1 + 227F1) < (20 4 2)2nH! = gntlos()+3, (B.51)
Therefore, the asymptotic entropy of M,y is at most (2708003 . O

Remark 6. The asymptotic entropy of any M is at most (2”+log(”)+3)neN.

Proof. We observe that the asymptotic entropy is monotonic under set inclusion: if the
asymptotic entropy of M’ is at most (H,)neny and M C M’ then the asymptotic entropy
of M is also at most (H,)nen. The remark then follows from applying this observation to
the result of Lemma B.10. O

B.3 Proof of Corollary 8

Corollary 8. The representation Py, is not robust.

Proof. Denote the two subsystems relative to which Mg, is product to by A and B. Further-
more, let {|n) 4 }nen, {|n) g }nen be orthonormal bases of H4 and Hp respectively. We de-
note by H 4 the span of the first IV basis vectors and by Il 4 the projector onto Hy 4, and
analogously for Hy g and Il g. On the joint system AB, we define the family of projec-
tors {Ilgn }pen as Hgn = H(Qn/z) A®H(2n/2) g ifnis even and Ilon = Ily(ni1)/2 A®H(2(n 1/2).B
if n is odd. Let /\/ A ") and N ") he 2-2"_nets on the supports of the corresonding subspaces.
Using these nets, we define the set of POVM elements

En = {[WNW14 ® [6X814 |10) 4 € NI, 16) 5 € NV} (B.52)

For any measurement M = My ® Mp € Mg, the associated o-algebra, X, org,

is the product o-algebra of the o-algebras associated to the measurements M4 and Mp,
€., UM,eMp = LM, @ Xymp- A product o-algebra admits a semi-algebra of rectangles
Sap ={A x B|A € ¥p,,B € X, }. Denote by S% 5 the semi-algebra which corresponds
to the closure of S4p under finite disjoint unions. Any F' € S 5 is the finite disjoint union
of rectangles, i.e., F = |_|§:O A; x Bj. Therefore, the POVM element M|, (F) can be

written as
¢

My, (F) =) Ear ® Epy, (B.53)
k=1

with F4 ; and Fpjp POVM elements, such that the support of F4 ; ® Ep ), is contained
in the support of IIo». Based on their diagonalization F4, ® Ep i = Y, Pik [Vi)wil 4 1 ®
> Gk |i)XBil g g» With pig, qik > 0, we define

¢
= ik 0Nl ap © Dtk [6i) il s (B.54)
=1 7

where [(i)il 4 5 € Ny and |63l € N such that || [}  ,—[3) | < 272" and anal-
ogously for |¢;)p . The collection of operators {IV M Fesy,, defines a decoding operation
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Dy ((Pg)Eece,) in the obvious way. Then we find that for all F' € S5
| tr (M0 (F) = Ni)p) | < [1M]n,0 (F) = N[
< pininll i)Wl 4 g, @ 10N Bil g g — [ )ahil g @ 16X il a g |1

1,5,k
<> pindik ([0l a g, @ (18505151 = 165)Xb515,0) 1

NNk — B Lag) © 16Xl )
< 2722 (Mg, (F)) < 272,

(B.55)
As M € Mg was arbitrary, Mg|IIa» can be 27" "3-decoded from &,.
By Lemma B.8 there exist nets j\/;(‘n),/\/' ](3”) such that
log([€,]) < (2n+2)2"F 2 = ((2n +2)277+2) 27, (B.56)

This implies that the asymptotic entropy of Mg is at most (((2n + 2)2_%1“)2")”61\;.
Thus, by Theorem 7, the representation P, is not robust. ]

Remark B.11. Note that an analogous proof also shows that the set Mgep of measurements

whose POVM elements are separable does not lead to a robust representation.

B.4 Related results

Theorem 7 characterized the robustness of a set of measurement M by how compressible
the representation P4 is. Using [35, Theorem 1] one can find a characterization that is
based on the asymptotic number of measurements.

Definition B.12. Let {Ilon }nen be a nested family of projectors with rank(Ilan) > 2™, then
the asymptotic size of M is at most (log(| M|, |))nen-

Theorem B.13. If there exists a zero-sequence (£p)neN Such that M has asymptotic size
at most (£,2%")en, then Py is not robust.

Proof. If log(| M, |) < €,22", then |[Miy,, | < em(@=n2”"  From [35, Theorem 1] it follows
that there are constants C,c¢ > 0 such that there exists a Hermitian trace-class operator

AP with |AM™ || p < Ap|A™|; where A, = max(ivln(%’027%). Therefore, the norms
|| -|la and || - [|1 are not equivalent. By Proposition 3, it follows that P x4 is not robust. [

Combined with Remark 6, this theorem shows that a robust representation P 4 is highly
compressible: the number of measurements in My, , and thus also the number of entries

in P4, needs to scale at least as 222n, but there exists an encoding into a set £ with only
of the order of 2"?" POVM elements.

C Proof of Theorem 11

Before we go on to prove Theorem 11, we review the necessary aspects of GPTs for this
paper.

28



C.1 GPTs

States and measurements. Operationally, a state of a GPT system is understood as a
particular preparation procedure. Consequently, the state space is the set of all preparation
procedures. It is assumed that the state space is convex. The convex mixture pp+(1—p)o of
two states p, o is operationally understood as the procedure that prepares p with probability
p and o with probability (1 — p).'® Furthermore, two preparation procedures that lead to
the same probability distributions for all measurements that can be performed on this
system, are treated as the same state. This motivates the following definitions.

Definition C.1. The state space of a system A is a conver subset S4 C V4 of an R-
vector space Va' such that there exists a linear function 14 : V4 — R with the property
14(S4)=1.

The set of effects £4 of system A are a subset of the dual space E4 C V) such that
VE € E4: E(Sa) C[0,1] and

le,wg S SA : (VE € SA : E(wl) = E(LUQ)) — W1 = Wy (Cl)

as well as
VEl,EQ S 5,4 . (Vw € SA : El(w) = EQ(LU)) — E1 = EQ. (02)

We call a set of effects {E;}IX.; C £4 a measurement if
N
> Ei=1a (C.3)
i=1

As in quantum theory, we define a tomographically complete set of measurements.

Definition C.2. A set of measurements M is tomographically complete if the map

vE Sy~ (PM(U))MGM (C.4)

is injective, where Pyr(p) is the probability distribution of the measurement M.

System composition. There is no single rule how the state spaces of two systems A
and B compose that applies to any GPT. The only requirement is that states can be
independently composed. Technically, this means that for any two systems A, B there

exists a bilinear map
Z:VAXVB—>VAB,
(C.5)
(wa,wp) = waws,

such that Im(¢|s, xs;) C Sap and for any two effects E4 € €4, Ep € Ep there is an effect
E Ep € E4p such that

(EAEB)(WAWB) :EA(wA) EB((,UB). (CG)

Often one additionally requires that the composition rule satisfies the so-called local tomog-
raphy assumption.

15 An important assumption here is that the randomness that determines whether o or p is prepared is
independent of any randomness that is used in the preparation procedure of p or o.
The dimension of this vector space may be unbounded.
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Definition C.3. A GPT satisfies the local tomography assumption if, for any two systems

A and B, the set of product measurements Mg, is tomographically complete.

Metric. In most treatments of GPTs there is no explicit metric defined on the state
space. Motivated by the trace distance, we use a metric defined in analogy to the trace
distance. A similar metric was already introduced in [8, 9, 15] for operational probabilistic
theories, a close relative to GPTs.

Definition C.4. The trace distance § on the state space Sa is defined by

5(p.0) = ;MS‘SE 1Par(p) — Par(o)1. ()

This metric ¢ satisfies the composability criterion (1.8) if the system A has the property
that for all systems B

Vo € Sp,M € Map: M(-® pp) € May. (C.8)

As we did in quantum theory, we can also define a metric associated to a tomographically
complete measurement set M.

Definition C.5. For any tomographically complete set of measurements M we define the
metric

dpa(p.0) = ;]5;2% 1Pa(p) — Par(o)s. (C.9)

As in quantum theory, we define the notion of a stable measurement set M.

Definition C.6. A measurement set M on a system A, is called stable if for all effects
M € &4 the topologies induced by dag and dyuq(p,1,—E)) are identical.

C.2 Constructing the GPT for Theorem 11

We now construct the GPT that proves Theorem 11. This GPT has two elementary types
of systems: keys and locks. All other types of systems are obtained by composing key and
lock systems. We start by introducing the elementary systems.

Lock systems. Before we give the formal definition, we give the intuition behind a lock
system: A lock system acts like a lock that takes a bit string as input and opens if this
bit string matches an internally stored one. More technically, we model a lock as a system
where for every!” bit string s € {0,1}*, corresponding to the input to the lock, there is
a measurement consisting of two effects Ei_)/ and Ez—w, corresponding to the outcome
that the lock opens or stays closed, respectively. Furthermore, for every bit string k there

is a state of the lock U(Lk) where the lock opens upon the input k. Graphically, we depict a

"We denote by {0,1}* the set of all bit strings, including the empty bit string.
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measurement with input s on this state by

S
|
B (o) =], & |=1 (C.10)
]
v

To fully specify the state J(Lk), we also need to define the behaviour of the lock when the

input s is different from k. If the input bit string s is longer than k, the lock opens if the
first |k| bits of s match with those of K — the lock simply ignores the superfluous input. If
s is shorter than k, then the lock just randomly generates more bits, appends them to s,
and checks if this new bit string agrees with k. In summary,

s
| .
Os k if |s| > |k
s k s, )
By =, & |=9 . (C.11)
T Q‘kf’_ i else
v

where | - | denotes the length of a bit string and d,j = 1 if deleting the trailing bits of the
longer bit string results in two identical bit strings, and 65, = 0 otherwise. Sometimes
locks can be stubborn, and they do not open no matter what you do.'® We model this

behaviour by a state O'EL) that does not open for any input, i.e.,

L

|
Vse {01} : E57Y (oM =| 1 |=0. (C.12)
I

v

The state space of a lock system is then the convex hull of {O'(Lk)}ke{071}*u{J_}.

Before we state the formal definition, we must introduce some notation. We denote
by x7 is the characteristic function of the set I. For a bit string s € {0,1}", we define the
interval I = [0.s,0.s + 27"] where 0.s understood as the rational number r with 0.s as its

binary expansion.

Definition C.7. The state space is of a lock system is
Sp={(f, DIf € conv({xu|s € {0,1}"} U {0})} C V¢ (C.13)

with Vi, = L([0,1]) ® R and the 1p-effect is given by 11(f,c) = c.
For every s € {0,1}* and r € {v', X} there is an effect E7". The set of effects £,

is given by all convex combination of these effects. The action of the effect E{~" on an

element of Vi, is

1
E37 (fe) = ARA f(r)dr (C.14)
B =1, - EY (C.15)

¥Maybe an angle grinder would open it, but we do not want to harm our object of study.
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It is easy to see that this combination of states and effects satisfies Definition C.1. The

states aék) and a%) we intuitively introduced before, are formally given by

o = (x1, 1) (C.16)
o= (0,1). (C.17)

Indeed, these states have the desired behaviour when measured, as

E57 (o) =0 (C.18)
s ¢ (k) 1 [Is N | ] Os if |s| > |K]
R TAN Rk A B P (C.19)
s TFT=T5!

Key systems. Intuitively, a key system is a system that has an internally stored bit
string, the key. The system can be queried to output the first n bits of the key, where n
is any natural number (including 0). More technically speaking, there is a measurement
consisting of 2" effects { E77°} se{0,1n, corresponding to the 2" possibilities for the first n
bits of the key. For every bit string k& € {0,1}*, there is a state of the key 0’%), such that
if the first n bits of the key are measured, the output is the first n bits of k. In particular,
if n = |k|, we have

k|
|
B o) =k |=1 (C.20)

If n > |k|, the key system randomly generates bits and appends them to & until the
resulting bit string has length n. In particular, if a key system has no key stored, i.e., it
)

is in state o, measuring the first n bits of the key yields a uniform distribution over all
n-bit strings. We summarize the behaviour of these states

n
l
Os k if |[k| >n
Erseihy = ko [={" : C.21)
K K 7228_’11\ else (
v
s

The state space of a key system is then defined as the convex hull of {Ug)}ke{o,l}*- To
make this a valid state space, we need to ensure that states which cannot be distinguished

by two measurements are identical. The following formal definition takes care of this.

Definition C.8 (Key systems K). The state space Sk is

Sk = conv <{

The unit effect 1x is 1x(f f[o 1] x)dx. The set of effects Ek is the convexr hull of
effects of the form ZSERC{OJ}" E%7s. The action of an effect E%% on f € L([0,1]) is

se€{0,1}* }) c L'(]0,1]) (C.22)

B (f) = | S da (C.23)
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It is easy to see that, Definition C.1 is satisfied by this state space and set of effects.

The states agf) and ag) we have intuitively introduced are formally given by

1
a%) = —XI, (C.24)

where for k = (), I;, = [0, 1]. These states indeed have the desired behaviour when measured

s k Ism-[k (537145 lf’k’ZTl/
EY%” (UE()) :/ X1, (z) dx = 7‘ 7 | =19 5. (C.25)
I k| s else.

Composition of keys and locks. To define the composition of key and lock systems,
we consider the smallest possible composed state space that still satisfies the requirements
of the GPT framework. This means that we only allow for mixtures of product states. On
the measurement side, we allow only product measurements and measurements that can be
implemented by first measuring one system and then determine the measurement on the
next system based on this outcome.

Definition C.9 (Composition rule). When composing a key and a lock system the func-
tion v is the tensor product ® : Vi x Vi, — Vi @Vy. The state space of the composed system
is defined as the convex hull of Sk, = conv(Sx®Sr). The identity effect is 1, = 1x®1p.
The set of effects Ex 1, are all linear functionals E such that E(Skr) C [0,1] and

In € N, {pitieqr,..ny € Ris {Ekiticqr,..ny C €, {ELi}ieqt,..ny CEL:

n
E = ZPZEKz ® Er;
P (C.26)

n
or E=1gp— ZpiEK,i ® Er;

i=1

The composition of multiple keys and of multiple lock systems is defined analogously.

One important measurement of a key-lock system is the measurement that uses the
output of a measurement on the K system to determine the input on the L system. It
essentially measures whether the input that opens the lock is the key that is stored in the
key system. Mathematically, this measurement is given by the effects

E?[m(z%/ — Z E?{—)S ® Ei—h/
se{0,1}n (C.27)
E?(?X = ]—KL — E?(?‘/

On a state U%C) ® U%k/) with &, k" € {0,1}" this measurement acts as

" k K
B (o)) @op ) =

= S (C.28)
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Remark C.10. The metric § satisfies the composability property of (1.8). This follows

from (C.8) because any measurement is a sum of product effects with positive coefficients.

The following lemma shows that this GPT satisfies local tomography.

Lemma C.11. Consider a GPT where for every bipartite system AB the joint state space

1s given by linear combinations of product states, i.e.,
SAB C span(z(SA,SB)), (0.29)

then this GPT satisfies local tomography.

Proof. For every system A the linear map
My :v € span(Sa) — (E(v))ges, (C.30)
is invertible. We define the map M4 Mp on the joint state space by

MaMpi(oa,0p) = (Ea(0A)EB(0B))E et Epces (C.31)

and demanding linearity. Note that the vector space spanned by (Ea(04)EB(0B))E e, Encen
is isomorphic to the vector space spanned by (E4(c4))g,ec, @ (EB(0B))Eges,- Let us
denote the isomorphism by ®. We then find that

M;1®M§10(I)OMAMBZ(O'A,O'B) =04AR0RB. (C.32)

By definition of the tensor product there exists a linear map h such that h(cq ® op) =
1(ca,0p). Thus, as all maps are linear, hoMZ1 ®M§1 o ® is the inverse of M4 Mp. Hence,
a state of the system AB is uniquely determined by the statistics of local measurements.
As the systems AB were generic, the theory is locally tomographic. O

The topology of keys and locks. We are now ready to show that for this GPT the
topology induced by daq, on the state space is different form the topology induced by 4.
The intuition behind this proof to consider the sequence of states (p%}/)nEN given by

pg?)L = Z koel k| (C.33)
ke{0,1}" Jl Jl

Using only product measurements this state is close to the state ag) ® U(LJ'). Intuitively,

to distinguish these two states, one tries to provoke an opening of the lock. Using only
product measurements, one needs to guess the input that opens the lock. This guess is
correct only with probability 27". Therefore, the distance between PY(L)L and Jg) ® U(Ll)
measured by da, vanishes as n — oco. However, if any measurement can be used, then
the measurement that reads out the first n bits of the key and uses this as an input to

the lock opens the lock with certainty. Therefore, for any n the distance between ,05;”}1

and ag) ® O'(LL) measured by d is 1. We have thus constructed a sequence that converges
with respect to da,,, but not with respect to 4. This immediately implies that these two
metrics induce different topologies. We formalize this intuitive argument by the following

proposition. Theorem 11 then follows from Proposition C.12 and Lemma C.13.
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Proposition C.12. The metrics dyp, and 6 do not induce the same topology on Sk,

Proof. Consider the sequence of states (P&?};)neN given by

Z O‘K ®O‘L . (C.34)
ke{o 1}

First note that, Vn € N : 5(,0([?2, @ ® J(L>) = 1. To see this, consider the measurement
n—v

given by {E%7Y 1k, — E%7"}; see (C.27). For this measurement, we find that

1
En—w( g()L) = = Z B (o (k ))Es—>/( (L))
k,se{0,1}™

1 o (C.35)
= on Y GkEPT (o)) =1
k,se{0,1}™
whereas
En—>/( (@) ® UL Z En—>s s—>\/ (O_j(_j—)) —0. (C.36)
se{0,1}»
Thus, 5(p§?}l,ag) ® O'(L)) 1.
(n) () (L)

Let us now show that with respect to duq, the sequence py; converges to o)’ ® o
Product measurements of key and lock systems are convex mixtures of measurements of
the form My @ My, = {3 e j,ci013n Ei ‘® B3~} where U;J; = {0,1}" and s € {0, 1}*.

Therefore, it suffices to consider these measurements to calculate d M®(p%)L, Ug) ® O'(L))

Furthermore, note that when |s| < n, the measurement {ZZE[ cio Ex” FRESTT) s a
convex mixture of measurements with |s| = n. Moreover, when a measurement is applied
to the states p%}l, Jg) ® O'EJ_) and |s| > n, the resulting probability distribution is the same
as when s is replaced by the bit string s’ given by the first n bits of s. Therefore, we only

need to consider bit strings s of length n. It is also useful to note that
B oLy - ok 0o N =127 30 Eitlo —aidll =0 (Ca7)
ke{0,1}n
Thus, for any such measurement My ® M,

||PMK®ML(IO§?%) PMK®ML (Ug() ® UL )Hl

Z Z ‘Enaﬂ s%r( g{% Ug{) ® (L))‘

ee{o 1}7 re{v,x}
=2 Y EReE (o)

tef0,1}n (C.38)
< g-ntl Z E}l{_" ® Ei—w(gg) ® J(Lk))
£e{0,1}7,ke{0, 1}n
2 n+1 Z ETL*}Z — 2771%»1
e{0,1}n

where in the first equality we used (C.37), B} 7> =1, — E57 and E5 7Y (O'E?) ®0(LJ')) = 0.

Thus, lim;, dM@ (pg%v Oé?) ® O-S_)) =0.
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In summary, we have found a sequence (P%};)neN of states that converges with respect
to dg, but not with respect to 4. So, the topologies induced by these two metrics are not
identical on the state space. O

Lemma C.13. The measurement set Mg is stable.

Proof. For any effect E € Esk there exists an n € N such that E = """, p;Ex,; @ EL ;.
Let (pn)nen be a sequence that converges to p with respect to daq,. Then this sequence
also converges with respect t0 dpyq,u{E,15,—E}s 88

i dpou(m,15,c-£}(Pns p) < B dpgg (s p) + Tim [E(pp — p)]

n—0o0

m
< lim Zpi(EK,z‘ ® Eri)(pn)

n—oo

£ (C.39)

m
< sz nli)ngo dM® (pnv P) = 07
i=1
where we used in the last inequality that for any product effect Fx ® Ef, the measurement

M ={Ex ® EL,(1x — Ex) ® Er, Ex ® (1 — EL),(1x — Ex) ® (1 — EL)} is a product
measurement. ]
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