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Wavefunction branches demand a definition!

C. Jess Riedel*
Physics & Informatics Laboratories, NTT Research, Inc., Sunnyvale, CA, USA
(Dated: June 19, 2025)

Under unitary evolution, a typical macroscopic quantum system is thought to develop wave-
function branches: a time-dependent decomposition into orthogonal components that (1) form a
tree structure forward in time, (2) are approximate eigenstates of quasiclassical macroscopic ob-
servables, and (3) exhibit effective collapse of feasibly measurable observables. If they could be
defined precisely, wavefunction branches would extend the theory of decoherence beyond the system-
environment paradigm and could supplant anthropocentric measurement in the quantum axioms.
Furthermore, when such branches have bounded entanglement and can be effectively identified
numerically, sampling them would allow asymptotically efficient classical simulation of quantum
systems. I consider a promising recent approach to formalizing branches on the lattice by Tay-
lor & McCulloch [Quantum 9, 1670 (2025), arXiv:2308.04494], and compare it to prior work from
Weingarten [Found. Phys. 52, 45 (2022), arXiv:2105.04545]. Both proposals are based on quantum
complexity and argue that, once created, branches persist for long times due to the generic linear
growth of state complexity. Taylor & McCulloch characterize branches by a large difference in the
unitary complexity necessary to interfere vs. distinguish them. Weingarten takes branches as the
components of the decomposition that minimizes a weighted sum of expected squared complexity
and the Shannon entropy of squared norms. I discuss strengths and weaknesses of these approaches,

and identify tractable open questions.

Consider a huge many-body system and divide it into
some macroscopic variables S (system) and the remain-
ing variables E (environment). Suppose S is initially lo-
calized in phase space, i.e., the joint wavefunction (0)
of S+E is an approximate eigenstate of a complete set
S = {X53 P>} of canonically conjugate observables on S,
S1p(0) & s01(0). What happens under unitary evolution
by macroscopic chaotic dynamics? The wavefunction
will evolve into a superposition of eigenstates of S with
macroscopically different eigenvalues [1-3] after just sev-
eral multiples of the characteristic Lyapunov time [4, 5],
which may be only seconds or minutes. If S is approxi-
mately Markovian because E is large and weakly coupled,
decoherence [6-9] quite generally [10, 11] induces a time-
dependent decomposition into orthogonal components,
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that for a long time proliferate and branch in this spe-
cific sense: a component at a later time ¢ has non-
negligible overlap with only one forward-evolved compo-
nent from an earlier time t; < t2, ensuring they form
a (rooted) tree graph [12]. Although multiple branches
¥;(t) may share the same S eigenvalue at a given time,
all branches are orthogonal because they have distinct
states of E. This implies effective collapse for operators
on S: the expectation value is the Born-weighted mean
of the expectation values on the branches. The branches
are quasiclassical because the approximate eigenvalues
of S along any trajectory drawn from the tree approxi-
mately follow the classical equations of motion with noise

* jessriedel@gmail.com

FIG. 1. (a) A schematic Wigner function of diverging chaotic
trajectories of S in phase space, continuously decohered by
E. Distinct trajectories may arrive at overlapping states of
S (green and yellow), but they correspond to orthogonal
branches because they are associated with different condi-
tional states of E, i.e., E contains a record of the past of
S. (b) Branches of S+E at different times form a rooted tree
graph defined by their time-evolved overlap with earlier and
later branches.

[10, 11]. If the system contained a laboratory experiment,
the different measurement outcomes would correspond to
disjoint subsets of the branches.

This narrative assumes a fixed division of the universe
into intuitive subsystems: S vs. E, and parts thereof.
But the most obvious subsystems, macroscopic bound
objects, are transient, forming at one time and later
breaking apart. Bound objects are a special case [13]
of hydrodynamic variables, i.e., local averages of ex-
actly and approximately locally conserved quantities like
momentum and species number, and perhaps best gener-
alized to slow local operators [14]. The consistent histo-
ries formalism provides a flexible language for describing
the decoherence of these more general variables without
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an eternal S-E split [13, 15, 16].

But the transience problem persists: the appropriate
choice of variables and degree of historical coarse-graining
changes in time as conditions change, e.g., as the uni-
verse cools, and as winter submits to spring. This am-
biguity becomes acute in isolated thermalizing systems,
since finer histories interfere earlier. The histories frame-
work can be readily adapted to shifting variables in a
branch-dependent way [17, 18], but there’s no systematic
prescription for picking variables and degree of coarse-
graining; human expertise is required on a case-by-case
basis. Indeed, the appropriate variables of a many-body
system are emergent, generally not being easily deducible
from the Hamiltonian [19, 20].

Thus one can sketch a unified story to describe the
quasiclassical behavior of everyday macroscopic systems
but — even putting computational issues aside — we don’t
have a procedure for filling in the blanks. We can seek
comfort in arguments that this is unobjectionable or even
inevitable [21, 22], but deep down [23, 24] you know it’s
unsatisfying!

I. THE MICROSCOPIC PERSPECTIVE

So suppose I didn’t describe any of that in terms of sub-
systems, preferred variables, or “macroscopic”. Instead,
imagine you’re just handed a complete microscopic de-
scription of the joint wavefunction of all the atoms. In
particular, the representation treats each atom on equal
footing, and no one has told you separately which one
is adrift in the air and which one is part of a coffee
cup (or even that there is a coffee cup). Per the ac-
count above, we still expect that this wavefunction is
well-approximated as a time-dependent sum of orthogo-
nal components, each of which is quasiclassical in some
sense. But without being told what the preferred vari-
ables are, how would you systematically identify them,
even approximately? What Python script would you
write whose input was the wavefunction and whose out-
put was the set of branches?

This question has appeared in various guises going
back to Everett, especially as the problem of identify-
ing a preferred set of consistent histories; for reviews, see
the introductory sections of Refs. [25-31]. The framing
here in terms of branches is a choice that emphasizes (a)
the effective equivalence of sets of histories [32, 33] that
correspond to the same set of branches and (b) the possi-
bility that branches are best identified by examining the
entangled state at a given time rather than the trajectory
or Hamiltonian.

Is this problem even well-posed? Why expect a unique
answer rather than a different decomposition for every
set of variables that catches our fancy?

A seemingly humble desideratum about any macro-
scopic fact is that it ought to be “objective” in the sense
that many different observers could deduce it through in-
dependent local measurements [9, 34]; if it’s not recorded

in multiple places, like our brains, how else could we even
be talking about it? This intuition can be formalized
without any reference to observers per se, but rather just
in terms of the state’s correlations across disjoint spa-
tial regions. Under relatively mild assumptions that the
regions aren’t too delicate or extended, one can show
that a wavefunction can be uniquely decomposed into si-
multaneous eigenstates of all such objective observables
[35]. Unfortunately, the most obvious ways of formaliz-
ing “delicate” require choosing a length scale (a recur-
ring theme; see below). And importantly, this decom-
position probably doesn’t form a tree structure in time,
nor can its components recover the apparent bounded
entanglement of the macroscopic world. Nevertheless, it
suggests that spatial locality provides sufficient founda-
tion to build a quasi-unique branch decomposition from
the instantaneous wavefunction without knowing which
subsystems or variables are preferred.

II. THE PROMISE OF BRANCHES

Why bother with branches if the full wavefunction is
sufficient for an outside observer to make predictions?
Consider:

1. Decoherence theory has proven insightful and prac-
tically useful; it’s worth generalizing to cases where
the preferred variables vary or are unknown.

2. Bounded-order correlation functions could be clas-
sically computed by sampling branches [35, 36],
potentially reducing or even (if they have area-
law entanglement [37]) eliminating the exponential
growth rate of simulation cost. This would natu-
rally extend the efficient classical simulability of de-
cohering variables [10, 38] beyond the open-system
paradigm.

3. The branches v; and probabilities |;|* would give
a unified description of what happens in closed sys-
tems like the universe, recovering the traditional
collapse postulate in the special case of lab mea-
surements.

Think of the stakes! A principle that picks out a
wavefunction’s distinct outcomes — of cosmic inflation,
of last week’s storm, and of the photodiode in your lab
— would convert an initial state of the universe into a
time-dependent menu of macroscopically interpretable
possibilities. A comprehensive definition would hardly
eliminate all the mystery of the infamous measurement
problem, but it would remove a fundamental ambiguity.
No longer would collapse be evasively defined using the
eigenbasis of whatever observable was measured, implic-
itly appealing to human intuition to carve the world into
measured subsystem and measuring device.

Solving this would mean finding universal criteria that
identify a time-dependent decomposition of a many-body
wavefunction into orthogonal components that
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FIG. 2. (a) The Bloch sphere for the span of ¢; and ;. They
are Taylor-McCulloch branches when low-complexity oper-
ations can distinguish v; and v; but only high-complexity
operations can interfere them, i.e., distinguish the states
i + ei%j lying in the equatorial disk. Any operation that
swaps v¢; and 1; (curly black path) is necessarily complex,
but states on opposite sides of the disk can be swapped with
low complexity (smooth black path). (b) Quantum complex-
ity induces a metric on Hilbert space with strong negative
curvature. As two states evolve in time, they effectively head
in opposite directions in the sense that the least complex path
connecting them will approximately retrace both trajectories.
A large initial difference between the swap complexities of two
pairs of states is preserved.

e form a tree structure in time, until at least ther-
malization;

e are approximate eigenstates of quasiclassical
macroscopic observables like hydrodynamic vari-
ables;

e exhibit effective collapse of feasibly measurable ob-
servables; and

e have bounded (perhaps area-law) entanglement.

This is the problem of defining wavefunction branches,
and it demands to be solved!

III. A NEW HOPE

Recently, Weingarten [28] and Taylor & McCulloch [39]
have made tentative but fascinating proposals for defin-
ing branches from first principles. Both proposals are
fundamentally based on quantum unitary complex-
ity C(U) [40—42], a quantification of how complicated a
unitary operator U is, given roughly by the length of
its simplest decomposition into elementary operations.
The complexity of the least-complex unitary mapping be-
tween two states ¥ and ¢ then defines their quantum
state complexity C(v, ¢), a distance in Hilbert space.
Preferred variables are completely eschewed; the only
scaffolding is spatial locality, which enters through the
choice of elementary operations, e.g., nearest-neighbor.

The second law of quantum complexity [42-45] — that
state complexity rises nearly linearly and maximally un-

der generic local Hamiltonian evolution — is invoked to in-
fer how branches behave over time. This potentially con-
nects branching (effective collapse) directly to physical
irreversibility, addressing a deficiency in Ref. [35]. While
there is some freedom in picking the set of elementary
operations (e.g., nearest-neighbors vs. 2-local), desirable
symmetries like translation invariance and local-unitary
invariance dramatically cut down the options. Less obvi-
ous desiderata in the continuum limit may narrow things
further [46]. Many different choices of elementary opera-
tions at very short distances become equivalent on larger
scales, yielding a small number of equivalence classes
[47, 48].

Working carefully in lattice field theory, Weingarten
defines branches as the decomposition 1 = . 1); that
minimizes a weighted sum of the expected squared com-
plexity of the branches and the Shannon entropy of their
squared norms,

Q{i}) = Z [$il[C(ws, )7 = b [yil?],  (2)

where () is the vacuum state and b is a free parame-
ter. If quantum state complexity (relative to the vac-
uum) correctly measures how branches are less compli-
cated than the overall state, then Weingarten’s decompo-
sition — minimizing Q({¢;}) — is a natural guess; it opti-
mizes for the smallest amount of branch uncertainty that
achieves the lowest expected branch complexity. The
additive form and choice of Shannon entropy are both
driven by the reasonable desideratum that uncorrelated
spatial regions branch independently.

Weingarten gives a careful preliminary analysis of how
such branches will behave and how they can be made
Lorentz covariant. He proves detailed upper and lower
bounds on the complexity of some states, including a
field-theoretic version of the GHZ state which branches
when the GHZ subsystems extend beyond a length scale
associated with b. Indeed, Weingarten shows that, at
least in a few examples, his definition is self-consistent
in the continuum limit if b scales like it has units of vol-
ume. He finds that correlations on each branch probably
cannot extend much beyond the length scale associated
with b, which would enforce area-law entanglement but
at the expense of potential tension with long-baseline in-
terferometry. He gives an extensive, although necessar-
ily heuristic, argument that the second law of complexity
ensures that a low-entropy initial state branches only for-
ward in time, assuaging “unbranching” concerns [49].

Taylor & McCulloch, working on a fixed non-
relativistic lattice, instead propose that branches be char-
acterized by a decomposition that is hard to interfere but
relatively easy to distinguish with local operations. More
precisely, they say 1) = Y. a;1; is a decomposition into
“good” branches, up to small error ¢, if C;? —C5/ > 1
for all ¢ # j, where C’ and C;” are the complexities of
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Unitaries satisfying the first equation can control arbi-
trary processes conditional on ; vs. ;. Similarly, by
Aaronson et al.’s operational connection between swap-
pability and interferability of quantum states [50], v; and
1; cannot be interfered without effective access to uni-
taries satisfying the second equation.

We can also interpret these equations through the lens
of error correction: within a codespace spanned by the
orthonormal basis {u;} of branches, the classical in-
formation associated with the basis is recoverable [51]
(up to error €) from unitary noise of complexity up to
Cr := min; j£; C;”, but the conjugate phase information
is maximally not recoverable from unitary noise of com-
plexity Cp := max; j+; Cjj’. This is particularly interest-
ing in light of recent progress on codespace complexity
in approximate quantum error correction, e.g., Ref. [52].

Taylor & McCulloch confirm that their definition be-
haves sensibly on GHZ states, product states, random-
circuit states, and some quantum codes. They go on to
present heuristic arguments that their branches are sta-
ble (i.e., remain good branches) on exponentially long
timescales due to the second law of complexity and in
particular the known behavior of precursor complexity.
They also note that their branches will tend to have less
entanglement than the overall state, as expected, due
to the asymmetric effect entanglement has on Cy vs. Cp.
Perhaps most interestingly, they appeal to an eigenstate
thermalization hypothesis on low-complexity operators
to argue that approximate eigenstates of conserved quan-
tities are likely to branch, hinting at the possibility of
recovering and generalizing the decoherence of quasiclas-
sical hydrodynamics.

Taylor & McCulloch’s criteria are arguably more phys-
ically motivated than Weingarten’s, but disconcertingly
their decomposition isn’t even approximately unique for a
given . As they show, multiple incompatible “good” de-
compositions can coexist without being coarse-grainings
of a common fine-grained decomposition. Interpreting
each branch decomposition 1 = ), a;1; as a code for
protecting the classical information associated [51] with
the commuting algebra By, := @, Cltbs) (1], one won-
ders whether these can be unified in a single code for hy-
brid quantum-classical information associated with some
non-commuting algebra B that contains all the Byy,y as
subsets.

In contrast, Weingarten defines a unique and exact
branch decomposition at each time step by construction,
consistent with the goal of establishing an unambiguous
basis of macroscopic reality. Thus, up to a single free pa-
rameter, he offers an exact answer to our original ques-
tion. But is it the correct answer? I worry that mini-
mization is a way to force a precise decomposition, and

that a sharp threshold may be incongruous with most
models of decoherence, where off-diagonal elements decay
exponentially and where effectively irreversible entangle-
ment builds up rapidly but smoothly in the environment.
Because the free parameter b controls the trade-off be-
tween the number and mean complexity of Weingarten’s
branches, one might suppose that varying b just controls
this approximation by coarse-graining the branches. But
this does not seem to be what happens, and ostensibly
conflicts with b carrying a length scale.

Because Taylor & McCulloch work only on a fixed
lattice, their proposal naively requires choosing a pre-
ferred length scale (the lattice spacing) if applied to
quantum fields. Unlike Weingarten, they do not ad-
dress the continuum limit. However, because they always
consider complexities between components of the overall
state, rather than relative to a vacuum state, this leaves
open the optimistic possibility that UV divergences could
cancel or be absorbed into the “branchiness” quantity,
C1 — Cp, without picking a scale.

Taylor & McCulloch’s proposal involves a choice of er-
ror € because they work with traditional circuit complex-
ity rather than Nielsen’s geometricized version. Given
that we expect branches to be emergent and smooth, it’s
reasonable that this should not have sharp values, but
little is known about how the branch structure behaves
as the error is varied. I also wonder how varying the
error (or, better, dispensing with it altogether by geo-
metricizing their proposal) interacts with the branchiness
quantity C; — Cp, e.g., is it possible to increase both the
branchiness and the error to get roughly the same branch
structure, or are these more like orthogonal axes?

Taylor & McCulloch’s proposal is also missing a rela-
tivistic generalization. Thus, this proposal requires sig-
nificantly more development before it could be considered
to be a candidate for a fundamental definition.

A well-known issue with quantum complexity is that
it’s generally infeasible to compute for generic states.
This is an obstacle to developing numerical simula-
tion techniques based on classically sampling over ei-
ther Weingarten or Taylor-McCulloch branches, although
heuristic and approximate approaches informed by such
definitions can still work [36]. And because quantum
complexity quantifies hypothetical trajectories between
quantum states, complexity-based branch decomposi-
tions naturally blur the line between decompositions
based on the instantaneous wavefunction ¢ and those
based on the Hamiltonian or the state’s full trajectory.

Are there states for which the Taylor & McCulloch and
Weingarten decompositions are dramatically different?
(Only Weingarten’s criteria depend on branch norms.)
Can either type unbranch or otherwise violate the tree
structure, contrary to heuristic arguments? Does either
clearly reproduce the decoherence of hydrodynamic vari-
ables? Or are these proposals heading in the wrong di-
rection altogether?



IV. ONWARD

A good definition of branches would allow us to pre-
cisely ask and answer fascinating questions we can cur-
rently only gesture at: how fast do branches form? In
what sense are they discrete vs. continuous? What quan-
tum computing resources are needed to simulate (and
potentially reverse) a purportedly irreversible process?
When do branches stop forming or recohere, and does
this occur before, after, or concurrently with thermaliza-
tion? After all, regardless of whether the Hilbert space
of the universe is formally infinite dimensional, it is ef-
fectively finite-dimensional in any finite region with finite

energy, and so can only fit a finite number of orthogonal
branches.

The theory of decoherence has been celebrated for il-
luminating how the appearance of the classical world
arises in our fundamentally quantum universe. But is
the project complete? No! We are compelled to under-
stand, and the path forward beckons.
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