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Decoherent histories with(out) objectivity in a (broken) apparatus
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We characterize monitored quantum dynamics in a solvable model exhibiting a phase transition
between a measurement apparatus and a scrambler. We show that approximate decoherent histories
emerge in both phases with respect to a coarse-grained extensive observable. However, the apparatus
phase, where quantum Darwinism emerges, is distinguished by the non-ergodicity of the histories
and their correlation with the measured qubit, which selects an ensemble of preferred pointer states.
Our results demonstrate a clear distinction between two notion of classicality, decoherent histories

and environment-induced decoherence.

How classical reality emerges from quantum mechanics
is a fascinating yet ambivalent question: the term “classi-
cal” is semantically overloaded. The goal of this Letter is
to distinguish the notion of classicality in two influential
approaches: environment-induced decoherence, and de-
coherent histories, in a situation where their distinction
is demonstrable and instructive.

The decoherence program [1-4] is fundamentally moti-
vated by a measurement problem: when describing mea-
surement as a unitary system-apparatus interaction [5],
their bipartite entanglement cannot determine the mea-
surement basis. However, the apparatus (more gener-
ally, the environment) has many degrees of freedom, and
the multipartite correlation may select a set of preferred
“pointer states”, through the proliferation of classical
records [6, 7]. In decoherence, and its refinement quan-
tum Darwinism [8-14], classicality is defined as objectiv-
ity [15-18], the redundant accessibility of records.

Meanwhile, the decoherent histories approach [19-24]
aims to describe classicality intrinsically, solely from the
multi-time correlation of an isolated quantum system un-
der unitary evolution. Classicality emerges if the quan-
tum evolution can be well approximated by a stochastic
sum over an ensemble of trajectories (the decoherent his-
tories) in some configuration space, with vanishing inter-
ference between them.

Despite the intrinsic nature of classicality a la deco-
herent histories, many works have investigated decoher-
ent histories in open quantum systems, motivated by the
relation with the decoherence program [25, 26]. Some au-
thors identify decoherent histories in the system (with the
environment traced out) in the Markovian limit [27, 28],
and make connection with quantum trajectories [29-32].
Others treat the system and the environment as a whole,
and derive decoherent histories (or a related branching
structure) from objectivity [33-35]. This extensive lit-
erature fueled a folklore belief that decoherent histories
require objectivity. This belief was challenged by re-
cent works [36-38] showing evidence for (approximate)

FIG. 1. A dynamically expanding tree model where every line
is a qubit and every node is an isometry v = v(6) (2). The
root qubit A is entangled with the qubit S (1). The model
has a transition at 6. (3); it is an apparatus measuring S if
0 < 0., and a scrambler if & > 6.. In both phases, coarse-
grained monitoring of the model (6),(14) yields decoherent
histories (15) (Fig. 2). In the encoding phase, the histories
are Ornstein-Uhlenbeck like (17) and uncorrelated with S. In
the apparatus phase, the histories are non-ergodic (18) and
selects an ensemble of pointer states of S (see also Fig. 3).

decoherent histories with respect to a coarse-grained and
slowly varying observable, in an isolated macroscopic sys-
tems under chaotic evolution. Note that chaotic dynam-
ics is known to scramble information, making them in-
accessible for all practical purposes [39-41], which is the
opposite of objectivity [42, 43]. Hence it seems that de-
coherent histories can exist independently of objectiv-
ity [44-46]. However the mechanisms appear entirely
different, and the relation between the two notions of
classicality awaits clarification.

In this Letter, we characterize decoherent histories in a
solvable model [47, 48] where objectivity can be turned on
or off: the model has a transition between a functioning
apparatus and a scrambler (Fig. 1). We will show that
decoherent histories emerge in both phases with respect
to a coarse-grained observable, the coarse-graining being
the essential common mechanism (Fig. 2). Nevertheless,
we shall distinguish the phases by the (non)-ergodicity
of the histories, and their correlation with the measured
qubit, described in terms of a “pointer states ensemble”
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that we shall introduce (Fig. 3).

Model. Let us start by one of the simplest unitary mod-
els of measurement [5], where both the apparatus A and
the system S are a qubit. Initially, they are disentangled
and the apparatus is always in a “ready” state |0) 4. The
measurement unitary is such that |i)g|0)a — [i)s]é)a,
for ¢ = 0,1, so that measuring the superposition state
(|0Ys 4 [1)5)/+/2 results in a maximally entangled pair:

W) = (|0)s|0)a + |1)s|1)a)/V2. (1)

From |U), it is impossible to know in which basis the
measurement took place [6, 7].

In our more realistic apparatus model [49-51], |¥) is
the initial state of a cascade process involving more and
more qubits, bridging micro- and macroscopic realms.
Starting with the qubit A, at each time step, every exist-
ing qubit interacts with a new qubit in a factorized state,
so that there are N; = 2! qubits after ¢ steps. (During
all this, S remains intact.) Such an inflationary dynam-
ics is known as “concatenation” in the error correction
code literature [52, 53], and often represented diagram-
matically by a tree, see Fig. 1 [54, 55]. Every node corre-
sponds to an isometry that outputs two qubits from one,
v:C? - C?®C?, such that v'v = I. The evolution from
time step ¢ to t + 1 is given by Vi1, = v®2". We also
denote Vs :=Vi1—1Vioi1t—2... Vsy1s for t > 5. We will
focus on the following concrete family of models:

v = Z (efiX0/4|k>)®2 <k|6*iX6/47 (2)

k=0,1

where X is the Pauli-z matrix, and 6 € (0,7/2) is the
tuning parameter. When 6 = 0, the model realizes a rep-
etition code, which clearly has objectivity: every single
apparatus qubit has perfect classical correlation with the
system qubit. Increasing 6 perturbs the code, and, as
we shall see, eventually destroys the objectivity beyond
some threshold

b.=7/4. (3)

Phase diagram. It is known [48] that one may locate
0. by considering the correlation between S and an ex-
tensive observable of the apparatus. Here we point out a
general way to do this, in connection with the multi-scale
entanglement renormalization Ansatz (MERA) [56-59],
of which the tree models are a special case. The Heisen-
berg evolution of operators is known to implement their
renormalization group (RG) at a fixed point, whose RG
data is encoded by the local tensors [58]. Here, the only
local tensor is the isometry v. It defines the scaling op-
erators O, and their scaling dimension = as follows:

01 (0, @ 1) =0vT(1® 0,)v =270, (4)

(We embed the tree in d = 1 spatial dimension.) v
also determines the operator product expansion (OPE),

01 (0, @O0y =3, C%7,0yn . For the model (2), there

are only two scaling operators with finite scaling dimen-
sion, the identity I with z = 0, and a nontrivial one:

x = —log,(cos 6) (5)

with O, = Zcos(0/2) + Y sin(0/2). Its only OPE is to
identity C2, = (cos6)? > 0.

We can then compute correlation functions by RG [58,
60]. For concreteness, consider the extensive observable:

Ny
0= 2 (6)
j=1

where N; = 2" and Z; acts on the j-th qubit at time ¢ (the
results below apply to any local operator that contains
O,.). Tts correlation with any operator O’ acting on S
has the following scaling behavior

pie = (O5V4OV0) ~ N} °* (7)

where ([...]) = (¥|[...]|¥). Meanwhile, the second mo-
ment of O scales as

i =V 0Vio) = (Vi Y Z:2;Vio)

ij
Ny
Nf(l—m)

r>1/2,

x<1/2,
There is a non-analytical change at the threshold x. =
1/2, which gives (3) via (5), because n? is dominated
by pairs Z;Z; separated by graph distance ~ ¢ when
x < 1/2, but ~ 1 when z > 1/2 (see [61-63] for other
“inference” problems where the threshold z. = d/2 ap-
pears). It is not hard to show that the scaling laws (7)
and (8) still hold if the sum in (6) is over any fixed frac-
tion of the apparatus [48].

We determine the phase diagram by comparing the
noise n; with the signal gy . When = > 1/2 (6 > 6.), the
noise dominates as ¢t > 1. This is the encoding phase
where information on S becomes inaccessible. When
x < 1/2, noise and signal are comparable. This is the ap-
paratus phase where information on S is accessible from
a coarse-grained observation of the apparatus and of its
fractions. Therefore objectivity emerges. We will further
describe what information is inferred below.
Decoherent histories. We now turn to decoherent his-
tories in our model. Our approach builds upon that of
[37], which we first review. The standard decoherent his-
tories formalism applied to our model would start with
a family of projectors { K } that sum to 1 for each time
step ¢ € [1,T]. Then one defines, for m = (m,,...,mr),
the state

Im) = |KL Vrr-1... ViKY Viol®). (9)

(®)

Now, the norm of these states

P = (1m|m) (10)



are also the outcome probability distribution if one mea-
sures the apparatus at each time step projectively us-
ing {K!,}. The (exact) decoherent histories condition
(DHC) is for these states to be orthogonal:

vm #£m', (m|m') =0 (DHC) (11)
A consequence of the DHC is that, if measurements are
only performed at any time subset t € t = {t; <ty--- <
tp} C {7,..., T}, the outcome distribution

:‘i = ||K’fli‘/tkatl "'Vvtz,thlelmly()“I})HQ (12)
will be equal to the marginal of p, to the time set t:

DHC = AL :=pt — Z pm =0, (13)

Hhle=7i

where |y = (my,, ..., mye,). Without DHC, At has no
reason to vanish. In fact, outcome probability differences
like A% are essentially the only operational way to detect
coherence. So it is reasonable to use the vanishing of
(13) (for all t,7) as a probe of emergent approximate
decoherent histories, as did the authors of Ref. [37].

In the sense of (13), classicality & la decoherent histo-
ries amounts to non-disturbance by third-party measure-
ments (which is also part of macro-realism [64]). Namely,
classicality emerges if the existence of measurements in
t ¢ t do not affect the outcome distribution of the ones
in t € t. This is a reasonable way to define “classical”
deal measurements are non-invasive in classical physics,
while any decent quantum mechanics textbook discusses
the inference pattern being destroyed by monitoring the
double slits.

Given the above observation, we shall replace projec-
tive measurements by weak measurements described by
smeared Kraus operators [65], which are more suitable
for a coarse-grained observable. Concretely, we let

Ko 1 e~ (Oe/ne=m)*/(4r®) 1y e R (14)

m (27TF2)1/4

where I' > 0 is t-independent. Namely, K! describes
measuring the extensive observable (6) rescaled by its
uncertainty (8), with O(1) relative precision tuned by
T'. The idea of measuring the apparatus may evoke the
Wigner friend’s paradox [66]. However, here, the “super-
observer” is just a mathematical probe of the intrinsic
dynamics of the apparatus (see also [44-46, 67]).

It turns out that approximate decoherent histories
emerge provided 7 > 1, that is, when the apparatus
is macroscopic. We show in [60] that for any t,

AL =0((Tn,)"?),7 = 0. (15)
Here we focus on the case t = {T'}, which has the most
third-party measurements ¢t < T' causing possible distur-
bance. Since the probe (13) involves a single variable,
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FIG. 2. Decoherent histories probe ||A®||; with t = {L47}, as
function of 7 (measurement starting time), for 6 = 0.157 < 6.
(a) and 6 = 0.37 > 6. (b). Approximate decoherent histories
emerge for coarse-grained measurements (I' = 0.1) and 7 >
1, but not for 7 ~ 1 or for fine-grained measurements (fg,
I'n: = 0.1). Insets (i, ii) show the pdf p* (no third-party) and
marginal distributions in non-decoherent scenarios (7" = 11).
Straight lines show decay rate of ||A%||1 (15), and (53) in [60].
(a) For 6 < 6., |At||; ~ T72227(=1 with no L scaling. (b)
For 0 > 0., : ||A%|l1 ~ T7227 T max(1,2cos 0)?L. Inset (iii):
L-dependence is shown for two 6 > 0. (7 = 6).

nr, it is amenable to exact numerics. We evaluate the
L' norm:

A%, = / yA;TydnT, (16)

whose vanishing indicates the emergence of decoherent
histories. Some results are shown in Fig. 2. We observe
that ||At||; decays exponentially with respect to 7 as pre-
dicted (15) for fixed L = T — 7 in both phases. With re-
spect to L > 1, there is essentially no dependence in the
apparatus phase, while in the encoding phase, ||At]|; also
decays exponentially. So, for small 7, ||At||; vanishes at
large T in the encoding phase and not in the apparatus
phase. These results are explained as follows. Third-
party measurements at the early, microscopic, stage will
disturb the apparatus dynamics in both phases. In the
apparatus phase, the disturbance remains accessible at
late time. In the encoding phase, the disturbance is only
visible at early time and becomes scrambled later.

The emergence of decoherent histories crucially relies
on coarse-graining, that is, measuring an extensive quan-
tity with T' = O(1) relative precision, see (14). Had



we let T' ~ O(1/m), ||At|]1 # 0 in any limit (see blue
crosses in Fig. 2). Such a measurement with O(1) ab-
solute precision would disturb the dynamics even in a
macroscopic system, revealing its underlying quantum
nature. Ref. [68] also pointed out the importance of
measurement imprecision for classicality in macroscopic
systems, in terms of the Leggett-Garg inequality [64]. In-
terestingly, in our model, this inequality can be violated
at arbitrarily late time in both phases, by operators of
type Q¢ = (aX; + bY; + ch)®2t,Qf =1 [60]. Again,
such an observable reveals the many-body coherence of
the model inaccessible to coarse-grained ones.
Histories statistics. Although decoherent histories
emerge at t > 7 > 1 independently of objectivity, they
have distinct statistics p,z (10) in the two phases. In the
encoding phase (z > 1/2), the time sequence (m;) is a
Gaussian process with finite temporal correlation:

E[mq] = 0, E[mgmy] ~ e 1 k= (2—1/2)n2 (17)

for |t — /| > 1. The correlation time x~! diverges near
the threshold z = 1/2. Meanwhile, the apparatus phase
(x < 1/2) is characterized by non-ergodic histories with
the following probabilistic law:

my "=V M AT, (18)

where &, are i.i.d standard Gaussian and M is a random
variable with the same distribution as O;/n; in the long
time limit (this distribution is non-Gaussian, see Fig. 2):

Vi, FM) = lim (Viof(Oc/n)Vio). (19)

Namely, each history instance freezes around a random
value, just like an apparatus pointer. A classical analogue
of the two behaviors is an Ornstein-Uhlenbeck (OU) [69]
process dMy = —kMdt + dW; with k£ > 0 (encoding) or
k < 0 (apparatus). In the latter case, m; = e** M, also
freezes and is non-Gaussian if the initial condition m;—q
is so.
Pointer states ensemble. We come back to the ques-
tion: what information on the measured qubit S is in-
ferred from an apparatus history? This can be described
by the ensemble of the conditional state p of S after a
coarse-grained monitoring [using (14)] of the apparatus,
weighted by Born’s rule p,, [48, 70-72], which we call
the pointer states ensemble. This ensemble is different
from and “softer” than the usual definitions of pointer
states [6, 28, 73]. In general, it is made of mixed states
that do not form a basis. Yet, they constitute a “decom-
position of unity” like a basis: )" - pmpm = I [48]. More-
over, it captures an imperfect form of apparatus super-
selection, as we now illustrate.

One may argue [60] that a full history of ¢t € [7,T], 7 >
1 infers no more information than a single-time measure-
ment using (14) at ¢ > 1, so we focus on the latter.
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FIG. 3. Distribution of pointer states and marginal outcome
distribution p,, for § = 0.057 < 6. (a,d), § = 0.157 < 6. (b,e)
and m = 0.37 > 6. (c,f). The color code relates the outcome
to the condition state of S inside the Bloch sphere. The points
are distributed uniformly with respect to the probability. (¢ =
20 and T" = 0.05.)

Eq. (1) implies that the conditional density matrix of S
is

pm = (Vo (K0 KL Vi) T/ (2pm) (20)

where T is the transpose. This can be efficiently com-
puted, and has a well-defined I' — 0,7 — oo limit. Fig. 3
shows the ensemble of p,, inside the Bloch sphere. The
ensemble concentrates more and more on (I + Z)/2 as
6 — 0. This is the limit of a perfect apparatus that super-
selects the pointer state basis {|0),|1)}. For 0 < 6 < 6.,
we have an imperfect apparatus. There is a nonzero prob-
ability that the apparatus’ freezes at m ~ 0, while the
qubit does not “collapse” towards either |0) or |1), but
remains a superposition, p,, = I + X. In general, p,, is
mixed, meaning that the “collapse” is incomplete. Nev-
ertheless, there is a temporal consensus [74] by virtue of
(18): super-observers at different ¢ will agree with each
other on what the apparatus did. In the encoding phase,
pm — 1/2: there is no meaningful pointer state.
Conclusion. We distinguished two notions of classical-
ity. Defined via decoherent histories, its emergence in a
macroscopic object relies only on coarse-graining and is
likely generic. Yet, classicality a la quantum Darwinism
is about the particular macro-microscopic correlation as
realized during a quantum measurement. An appara-
tus is a macroscopic object, but not every macroscopic
object is an apparatus. This statement may sound obvi-
ous, yet is nontrivial to demonstrate: we only did it in a
somehow unusual “inflationary” model. Indeed, it would
be desirable to confront objectivity and decoherent his-
tories in conventional lattice models beyond small sizes.
There, stabilizing objectivity is nontrivial, and plausibly
requires some form of symmetry breaking [42, 43, 51, 75].
Meanwhile, implication of our study for the issue of clas-
sicality in cosmology [76] awaits exploration.
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SUPPLEMENTAL MATERIAL

More on real space RG

We detail the derivation of (7) and (8) in the main
text and provide the exact prefactors. We first note
down all the four scaling operators. The identity I
has scaling dimension x = 0. The nontrivial operator
O, = Zcos(0/2) + Y sin(6/2) has 277 = cosd and OPE
CY. = (cos#)?. The two other operators have infinite
scaling dimension:

O.:=X,0,:=Zsin(0/2) + Y cos(0/2) . (21)

They have OPE’s C, = -1, C}, =1, C¢, = 1, and will
not contribute to few-point correlations, except for very
small t. We note that

cos(6/2) sin(6/2)

Z =0, -0, . 22
0 cos 0 cos (22)

From the definition of scaling dimension v(0, ® 1)v =

v1(1® O,)v = 270, and of the many-body evolution
= ®2"

operator Vi1 + = v¥", it follows that

Vi004iVio = 270, (23)

where O, ; is O, acting on the qubit j at time ¢, and O,
on the right hand side acts on the tree root qubit A, as
illustrated below (with ¢ = 3):

J

A

Also, VtTOOe,th,O = 0 and ‘/;T’OOLJVW = 0 for any ¢t >
0. From (22) and (23) we have for any ¢t > 0, and any
operator O acting on the measured qubit S (which is
entangled with A),

cos(6/2)

J

Next we calculate the two point correlation
V4 0040,i04 Ve =2"2"CO I i #j.  (25)

where r is the number of nodes between ¢ or j and their
common ancestor. Here is an illustrated example in a
model with t = 3:

The operator dynamics renormalizes r times each op-
erator independently (giving 272") before fusing them
into identity, which renormalizes trivially. There are 2t+"

pairs of ¢ # j with the same distance r, forr =0, ... t—1.
Therefore
t—1
> <Vzt,ooz,i0w,jVT,0> =2ty 207%rcy,
i#£] r=0
2t(1—2w) -1
_ ot 0
=P grm g G (20

Then, for ¢ > 2 (to ignore the subleading scaling opera-
tors), we have

2t(1=2z) _ 1 cos(0/2)?

i Rl __ ot t
;<VT*OZ’ZJVT’O> =2"+2 12z _ 1 s (cos 6)2

The asymptotic behavior is the following, with a correc-
tion to scaling at the threshold z = 1/2.

cos(6/2) 92t(1-a)

cos(26) r<1/2
e~ 008(292(;(;28)(9/ 9t yo1p 2D
cos(0/2)* 2! x=1/2

In what follows we will assume x # 1/2.

Finally we comment on what happens if the coarse-
grained operator 23;1 Z; is replaced by a sum over a
fraction of the apparatus qubits, F' C {1,...,2'},

O = Z Zj. (28)

JEF
We shall denote by
f=1F/2" (29)

the relative volume fraction of F'. The correlation of
with O% can be computed in the same way as (24):

cos(0/2)

cos 6 (050,) 207 .

(30)
Compared to (24), it has the same scaling law, and the
pre-factor changes by f. Now, the second moment of O
depends on how F' is distributed with respect to the tree
structure. Let us discuss two cases. First, let F' be a
spatially compact subtree, with f = 27%_ as illustrated
by the green boxes below (with tg = 1, t = 3):

g = (O6V,OrVo) =



Then eq. (26) will be modified as follows: 2 is replaced
by 2¢=%, and the sum over r will have an upper limit
r <t—1-—1ty. As a result, the scaling laws (27) do not
change, and the prefactor is modified by f-dependent
factor as follows:

2 _ FAA p <12
Ne,f /M, f=1 f z>1/2

As a consequence, in the apparatus phase (z < 1/2),
the signal to noise ratio has an asymptotic f dependence
te f/me s ~ f7. It remains finite for any fixed relative
fraction f. But it vanishes as f — 0 unless the apparatus
is perfect, + = 0. Hence the information about S is
accessible (with a given precision) to a finite number of
spatially compact fractions.

Second, let F be a dilute fraction, uniformly dis-
tributed across the subtrees, with f = 27% as illustrated
below (with tg =1, t = 3):

(31)

Then, Then eq. (26) will be modified as follows: the sum
over r will have an lower limit r > ¢y, and there will be an
extra 272% factor. Again, the scaling laws (27) prevail,
and the f-dependent prefactor is

nf,f/nf,f:1:f23x<1/2' (32)

(The case > 1/2 is more cumbersome and unimpor-
tant). Hence, in the apparatus phase, the signal-noise
ration i f/m:,f ~ 1 has no f-dependence in the t — oo
limit. Hence some information about S is accessible to
an arbitrarily large number of dilute fractions in the late
time limit. It is in this sense that the apparatus phase
has emergent objectivity.

Decoherent histories: exact methods

We describe how to use the solvability of the tree model

to study decoherent histories, both analytically and with
efficient and exact numerics.
Generality. Our method works in the Heisenberg pic-
ture, that is, it focuses on operators rather than states.
It also naturally treats the decoherent histories and their
correlation with S at the same time. We first define the
time evolution and Kraus super-operators:

VeulQl =V, QViw , KL[Q] = (KL)TQKL,,  (33)

Then consider the operator acting on C? (the Hilbert
space of A):

Q= VO,TIC',‘I——”TVT7T+1 L KE VT—l,TKaT 1]. (34)

mr—1

It is not hard to see using (1) that the history probability
is given by the rescaled trace:

P = tr(Qm)/2, (35)
and the conditional density matrix of S is
Qi = Qm/(2p) - (36)

In other words, up to a transpose, Qs is the non-
normalized conditional density matrix of S, and the nor-
malization factor is the history probability.

Now, applying a Hubbard-Stratonovich transform to
each Kraus operator,

Kfnoc/due’r“uzf"m“/m Heiqu/m’ (37)
J

we may reduce the many-body operator dynamics into
(nonlinear) transformations of a 2 x 2 matrix Q. Indeed,
in terms of the super-operators acting on 2 x 2 matrices,

vl :=2"(Q®Q)v, (38)
kfn,’ut [Q] = eiut Z/”]tQ eiivt Z /e (39)

(do not confuse the number v; and the vector ¢ with the
isometry v), we have

Qi /“e_ R Qs (40)

u,v

where @ = (ur,...,ur),¥ = (vr,...,v7), and Qﬁ,g is
defined by a backward recursion:
Qs = (V) Qr—1] (41)

Qi—1 = thut,vt [Qt], Qr =1.

The proportionality constant in (40) can be fixed by nor-
malization. Note that (v)™~! means v applied 7—1 times,
while k}lt’vt has a superscript.

Numerical methods. We discuss a few variants of (40)
and their application in numerics.

When no measurement is performed at ¢ ¢ t, we sim-
ply remove the integral over u;,v;, and kf,, in (41) for
t ¢ t. For example, if t = {T'}, we have a considerable
simplification:

%T _ /dw€7F2w2/27iwnT(V)T[ein/nT]. (42)
Above we have denoted w = up — vp and integrated
out ur + vy on which Q%T has no dependence. Taking
the trace of this formula allows exact numerical calcula-
tion of p* in Fig. 2. Keeping all the components of Qf,_,
we obtain the pointer states ensemble from a single-time
measurement, presented in Fig. 3. We have checked nu-
merically that QY has a well-defined I' — 0,7 — oo
limit, from which the results in Fig. 3 are indistinguish-
able.



To compute a marginal distribution (and the associ-
ated pointer state), we integrate out m; for all ¢ € t.
This enforces u; = vy =: 2;/2. Therefore the uy, vy inte-
gral in (40) is replaced by [ e T#/2 and K, ., in (41)
is replaced by kit /2,202 For example, the marginal dis-
tribution (denoted by the superscript “mar.” below) to
t = {T} is given by the following:

pfl’;n“' =tr QT{LZ}’mar')/Q,where (43)
:L,;nar. :/ e-l“%ﬁ/Q-iumT—EtT;T1 r2:2/2 (44)
w,%
(V)TkZp v NVETTL o v[etE/T

2 2

where Z = (2z7,...,2r—1). This formula can be nu-
merically estimated as follows. For a range of w, we
directly sample the integral over 2z with the Gaussian
weight e~ 2 2=/ 2 and calculate the integrand (which in-
volves manipulating a 2 x 2 matrix for O(T") times). Then
we perform the w integral using fast Fourier transform.
We observe excellent convergence of the estimate with
~ 1000 samples in all computations involved in Fig. 2
(the whole figure takes few minutes on a laptop).
Linearized flow. We next consider the behavior of Q)
under the “flow” given by the backward recursion (41)
at t > 1. Since the Gaussian weight in (40) restricts
ug, vy to be ~ O(1/T), Q¢ will be close to I. In fact,
we may check inductively the following Ansatz for the
leading behavior:

Qi — I =am I +bm; 0y + O(n;2)g + O(n;%) (45)

where a4, by ~ O(1) and ¢ is a combination of O,, O, O,
(but no identity). Indeed, the action of kf, , is

kit,vt [Qt] -1 (46)
9 2
= (at +iwtbtcos§ — u;) 77t_2l—i-l)ft77t_109J + ...
where
, . cosg
bt:bt—f—zwtcose,wtzut—vt, (47)

and we omitted terms of higher order in n; ', terms
~ 0710 or ~ n710,. The last two terms can be ig-
nored since they have +o0o scaling dimension and can only
survive v through OPE, generating higher order O(n; ?)
terms. Then applying v we may obtain the linearized
flow equations, exact in the ¢ > 1 limit:

2
0
aj_1 = 77:7;1 <2at + 2iw; by cos >t (b)) — w?) (48a)
¢
bt = 219 cos 0. (48b)
Mt

They will be our main analytical tool below.

Argument for decoherent histories. We now argue
that A% — 0 provided 7 > 1. Qualitatively, the argu-
ment consists in noticing that in the linearized recursion
relations (48), u; and v; appear only through the combi-
nation w; = u; — v;. However, we have seen that, when
computing a marginal distribution, we need to integrate
over my for ¢t ¢ t, which enforces wy = uy — vy = 0.
Therefore the existence of the measurements at ¢t ¢ t has
vanishing effect on the marginal distribution to t. But
this effect is precisely what is quantified by the probe Atﬁ,
so we conclude that A% will be vanishing.

It is helpful to illustrate the argument in the case of
t = {T'} discussed above. We observe that the super-
operators k! /2,22 1 (43) can be removed since u; =
vy = 2z/2 = w; = 0. But removing the kit/z,z,,/27s
reduces (43) to (42); that is, as 7 > 1, the marginal
distribution equals the distribution where measurements
only happen at t € t: Q¥™3 = @t in the 7 > 1 limit.

To obtain a quantitative estimate of A%, we look for
the leading z:-depending term omitted in (46) with u; =
vV = Zt/QI

k;/z,Zt/Q[Qt] D e A2y O A2

Ssin geith/?r]t bt’l7t71Y67ith/2m
—singb TNY iz N 2,Y] - 220722, (2,Y])/8
= 2t77t (Y +izmy, [Z,Y] = 2n, "[2,[2,Y]]/8+...)

Now, the first order term ~ [Z,Y] = —iX will suppressed
by v. Yet, the next term gives [Z,[Z,Y]] =Y which has
overlap with O, and should be kept. Hence,

kL oz, 12lQt) — Qp ~ 2bm; 'Oy x 27 % (49)

Compared to (46) and (47) above, we see that b; has the
(subleading) correction &b}, ~ b;z7n; 2. Propagating that
through (48), we get

Sbey ~ brzim; 2, Sag_1 ~ bizpn; (50)
Since by ~ O(1), and z; ~ O(1/T"), so we conclude that

A% = O((Tn-) ™) (51)
in general, at least for fixed L =T — 7 as 7 — oo. More-
over, since 7; decays exponentially in ¢, we expect late-
time disturbance to be exponentially smaller. So we ex-
pect that (51) should hold uniformly in L.

In the case of t = {T'} that we studied numerically,
wy = 0 for all t < T. Then it is not hard to see from (48)
that
cos g

be = (2c0s0)T ¢
: = (2cosb) = wr_—

(52)

When z < 1/2, by ~ 1 for all ¢, so (51) is tight.
When = > 1/2, b7 ~ 2= T=922=1) « 1 and da;_; ~
2T (1=22)9=2t(1=2) [yecall n? ~ 2! for > 1/2 (27)]. So



the disturbance comes from t ~ T when x > 1 and t ~ 7
when z < 1 (disturbance propagating through b;—10,
will have to come back to identity later in the flow, and
be suppressed when = > 1/2). We obtain the following
scaling behaviors with respect to L =T — 7 and 7:

2—27—(1—17) x < 1/2
ARy ~ {27m2L0=20) 12 < <1 . (53)
2-7 L z>1

They are verified numerically in Fig. 2.

Statistics at © < 1/2. We consider the multi-time
statistics and pointer states ensemble of the decoherent
histories m, assuming 7 > 1. To lighten the notation we
will write

si=7—1>1. (54)

We first solve the linearized flow equation (48) for b,_;:

cos2
by = p—y- Z wt— (2cos )~

COS*
= —2% "iwy, (55)

cos
t>

where the last identity relies on the asymptotic law (27)
and is exact in the 7 > 1 limit. Therefore, plugging back
into (40), we have

Q= [ Bty (50)
Q=1(1+asmn;?) + Ogzbsn; " (57)

Here we have used the independence on z; = u; + v to
reduce the i, ¥ integral to that of W = 4 — ¥. Now recall
that, in many-body terms, we have

( VO@HQ]

We see that the term O(n;?) can be neglected, even if it
involves the identity, since ) j ny? = 29220 <« 1 for
x < 1/2. Going to back to (56)

R e R IS Y

VO s Z]‘(Orn‘jbsngl‘i'o(n;z)}

where by is given by (55). Taking the rescaled trace of

this formula,
= [ Bt () et
w

0
cos 5
cos 6 t>s

and recalling b, = 1wy, we see that p; has the

following law:

my "EY M AT, (59)
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where M is a random variable with characteristic func-
tion

. cos 5

(€M) = tr((v)[e’wome O /) /2 (60)
and f; are independent standard Gaussian variables.
Since the marginal distribution of m; does not depend
on s as s > 1, the right hand side of (60) is independent
of s in the same limit. Comparing (58) to the marginal
version (43)-(44) we see that

.Ccos &

() [ Out/ne] = (P[] s 500, (61)
This means that M has the same distribution as O, /ns =
23:1 Zj/ns in the s — oo limit. In conclusion, a history
instance (my),t > 7 > 1 is a Gaussian white noise of am-
plitude T' plus a time-independent random value whose
distribution is the same as the rescaled coarse-grained
observable in the long time limit.

Concerning the pointer states ensemble, notice that if
we take the I' — 0 limit (after the 7 — oo limit) in (58),
we have, noting q(w) := (v)7(e?4%/m7),

. Lo — > twymy
}‘L)H%)QHL_/H;)G q(zt:wt)
:/ﬁe—iztwtmT—zKth(mt—mT)q(Zwt)

w ¢
= H d(my —my) / TImT 0 ()
t<T
= lim Qi) tl_[T(S(mt —my) (62)
<

where we compared to (43)-(44) in the last line. There-
fore the full history m infers no more information than a
single snapshot mp. A similar argument shows that for
T > 0, the full history is equivalent to a snapshot with a
reduced imprecision I' — I'//T — .

Statistics at > 1/2. To obtain the history statistics
in the encoding phase we need to solve the linearized
recursion (48) for as. When x > 1/2, the equation for a,
simplifies

1 0
ag = 5 Z(sztbt COS (b/) - wtz) (63)

t>s

where

by = 202 2 Z Aty A = V2 cos b, (64)
cos t’ t
coS 5 /
by =i 2 DN Ty = by (65)
cosd =



After some arrangement we have

1
s = — 5 Z Crprwiwy

tt’

20
COS 2

>\t+t'72r
0s2 0 Z

r<t,t’

Cuw =6 +

20

cos” 5 =t/
1 — 0.
cos 0 ( Our)A

AT > 1

(67)

To proceed we consider the marginal law of m; with ¢ >
7/ for some 7/ — s > 1, by setting w; = 0 for t < 7/. We
can do this without loss of generality since 7' can take
any large value just as s. Then bs ~ A5 < 1 s small,
and Q, = 14 ayn;2 = %" at leading order. Plugging
back into (40), after inverting the Fourier transform we
have

/Qmeiz@ﬂ L A (% S P B (1)

20
Now, recalling that 72 ~ ¢2° (27) withc = 1— CC;:T;‘), we
have

tr((v)*[e 7 ]) /2 = eXici o = cas/e(69)

We conclude that (m;) is a Gaussian process with zero
mean and covariance matrix

]E[mtmtf] = Cttf/c + F25tt’ (70)
o AT (2 cos )11 = 9l I@—1/2)

as |t —t'| > L.
Since @, is proportional to identity, we conclude that
the conditional reduced density matrix of S is pm = /2.

So no information is inferred about the system from the
full history.

Leggett-Garg inequality

In this section we show numerically the violation of

the Leggett-Garg inequality in our model, with respect
to the operators

Q= (aX +bY +c2)®* > +p>+32=1, (71
so that Q7 = 1; that is, the eigenvalues of Q; are +1. In
our inflationary model, a two-time Keldysh correlation
function should be defined as

Co = Re (VIQViLQVio) s <t (12)

11

Then the Leggett-Garg inequality is the statement that
for any t1 < it2 <t3 <ty,

LG := Ct1t2 + Ct2t3 + Ct3t4 - Ct1t4 S 2. (73)
The inequality holds if the correlation functions are be-
tween 4 classical variables taking values in +1, but can
be violated when the correlation functions are Keldysh
correlators between operators with eigenvalues +1. The
correlation function (72) can be evaluated exactly and ef-
ficiently in our model using a similar operator method as
above, since @Q; is a product operator. In fact, in terms
of v defined in (38), we have

Cst = Retr((v))[QVI*[Q]]), Q = aX +bY +cZ. (74)

In Fig. (4) we show that Leggett-Garg inequality is vio-
lated by the following choice:

(a,b,c) = (cos(e), sin(e) cos(6/2), sin(e) sin(0/2)) ,
€ =1/ max(v/2,2cos ) (75)
By tuning t,, we can let the violation take place at arbi-
trarily late time ¢ ~ t,,.
We speculate that the violation is related to the Zso
symmetry of the model,
Vipr X®2 = X927y (76)
Indeed, the operators defined by (71) and (75) are close
to the symmetry operator. The precise relation between

non-classicality and quantum symmetry is left to future
study.
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FIG. 4. The violation of the Leggett-Garg inequality in the
apparatus phase (a, 8 = 0.157), and in the encoding phase (b,
0 = 0.35m), for t1,...,ta =t,...,t+ 3, and for the operators
defined by (71), (75). The violation, indicated by the data
points going above the red line, can happen at arbitrarily late
time, controlled by the parameter t,,.
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