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Quantum influences and event relativity
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Abstract

We develop a new interpretation of quantum theory by combining insights from extended
Wigner’s friend scenarios and quantum causal modelling. In this interpretation, which synthe-
sizes ideas from relational quantum mechanics and consistent histories, events obtain relative
to a set of systems, and correspond to projectors that are picked out by causal structure. We
articulate these ideas using a precise mathematical formalism. Using this formalism, we show
through specific examples and general constructions how quantum phenomena can be modelled
and paradoxes avoided; how different scenarios may be classified and the framework of quan-
tum causal models extended; and how one can approach decoherence and emergent classicality
without relying on quantum states.

1 Introduction

Nearly a century after the core ideas of quantum theory were first stitched together, there remains
little consensus over whether they paint us any clear, observer-independent picture of reality. It
wouldn’t be unreasonable to conclude that the task of interpreting quantum theory is too difficult;
that a human being attempting to achieve a realistic understanding of the formalism is like a dog
trying to figure out how a television works. Nevertheless, there are reasons for hope.

Two recent developments in particular suggest there is considerable progress yet to be made on
quantum interpretation. Firstly, the articulation of [1, 2], and the no-go theorems for [2, 3, 4, 5,
6, 7, 8], the absoluteness of observed events. At a minimum, absoluteness assumes that there are
unique and nonrelational facts about what is observed. So, according to absoluteness, if Alice sees
a pointer indicate “up”, then there can be no sense in which she also sees it indicate “down”. But
if absoluteness is denied, it might be claimed that Alice sees the pointer indicate “down” in another
world, or relative to another “perspective”, or something similar.

Although the absoluteness assumption was presumably once thought to be self-evident, it is
becoming increasingly clear that it is in tension with the universality of unitary quantum theory. For
example, the local friendliness theorem [2, 3] shows that the only way of reconciling unitary quantum
theory with absoluteness is through nonlocal causal influences, superdeterminism, or retrocausality.
Other results [4, 5, 6] show that nonabsoluteness is inevitable if unitary quantum theory can be
applied to calculate joint probability distributions for arbitrary spacelike separated measurements.
And a recent paper [8] shows that even when unitary quantum theory is not assumed, some very
natural properties of a general theory always lead to a similar no-go result for absoluteness.

So perhaps a good interpretation of quantum theory should deny absoluteness. Unfortunately,
that is easier said than done. That is, while it is easy to state the absoluteness assumption positively,
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it is much harder to articulate a satisfactory sense in which absoluteness might fail. For example,
the Everettian brand of nonabsoluteness involves a multiplicity of worlds, many or most of which do
not follow the Born rule frequencies. At least prima facie, this would appear to undermine our usual
conviction that observing Born rule frequencies gives us a reason to believe in quantum theory, while
observing other frequencies would give us a reason to reject it [9, 10] (although see e.g. [11, 12] for
Everettian responses). Or, take the sort of nonabsoluteness that arises from the consistent histories
[13] formalism.1 As Dowker and Kent [14] have argued extensively, this version of nonabsoluteness
leads to issues with predicting and explaining the persistently approximately classical character of
our experiences.

As a final example, consider Rovelli’s relational quantum mechanics (RQM) [15]. This approach
doesn’t appear to suffer the same objections as Everett and many histories just outlined, but it does
face an even more fundamental problem: vagueness. Historically, physics has achieved conceptual
clarity and quantitative precision by formalizing its claims mathematically where possible. But
RQM’s most important and least intuitive claims are often stately almost entirely in the English
language. For example,

“Events happen in interactions between any two systems and can be described as the
actualisation of the value of a variable of one system relative to the other.” [16]

As will become clear from our approach, we think this statement contains some important insights,
especially regarding the connection between events and interaction. But without a clear formalism
in which to anchor one’s understanding of ambiguous notions such as “interaction” and “relative”,
it isn’t clear exactly what is being said.

But that’s where the second recent development comes in; the second “reason for hope”. We
are speaking of the discovery of a natural, elegant, and useful theory of causation in quantum
mechanics, in the form of quantum causal models [17, 18, 19, 20]. At the heart of this framework
is the assumption that causal influences should be defined quantum-theoretically. In this paper,
we will show that such quantum influences provide a natural understanding of event relativity.
Quantum influences allow one to pin down the idea that events emerge out of the interactions
between a given subset of systems, and events are naturally relational on such a view because there
are many different subsets. The absoluteness assumption fails because Alice might see “up” relative
to one set of interacting systems, and “down” relative to another. Ultimately, this will lead us
to a precise, observer-independent, and relational interpretation of the quantum theory of finite-
dimensional unitary circuits, which aims to combine the best parts of Everett, consistent histories,
and relational quantum mechanics (RQM).

In a little more detail, at the heart of this interpretation lies the observation that the causal
structure of a set of unitarily interacting systems singles out certain families of projectors onto those
systems – families that are decoherent relative to the other systems under consideration. Remarkably,
the families of projectors that get selected are special enough such that they always generate a
consistent set of histories, meaning they naturally give rise to the idea of events stochastically
distributed according to the (generalized) Born rule, and, at the same time, they are general enough
to model any phenomena from standard operational quantum theory, plus (extended) Wigner’s friend
scenarios. The interpretation claims that reality is described by a unitary circuit, and, relative to
every subset of its systems (i.e. its wires), exactly one consistent history gets realized.

First, we will lay out in greater detail the problem we are aiming to solve, outlining the major
pitfalls of “standard quantum theory”, as well as the merits and shortcomings of the attempt to
overcome them using consistent histories (Section 2). After that, we will gradually introduce the

1In particular, we refer to the sort of nonabsoluteness from the “many histories” interpretation of the formalism
[14].
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core ideas of our interpretation (Sections 3, 4), then axiomatize it, apply it in several scenarios, and
show that it can reproduce any operational phenomena from the standard theory (Section 5). We
then introduce a classification scheme for various quantum phenomena using a central concept from
the interpretation (Section 6). As we shall argue, this result appears as if it may form the basis for an
extension to quantum causal modelling in which (roughly speaking) different proofs of nonclassicality
are shown to be equivalent to different fine-grained quantum causal structures. Finally, we discuss
whether the interpretation can be viewed as describing fundamental physics (Section 7), before we
conclude by discussing possible applications of the formalism to emergent classicality and quantum
gravity (Section 8).

2 Interpretation and consistent histories

We start by explaining exactly what problem we are aiming to address by introducing an interpre-
tation of quantum theory. This will lead us to a discussion of the consistent histories formalism
[13], which aims to address a similar problem, and which is the appropriate starting point for the
interpretation we will introduce.

Interpretation. Why did we suggest that the standard quantum theory is not “clear”, or
“observer-independent”? The problem lies in its vague and dualistic approach to dynamics. The
theory tells us that there are two types of evolution: the reversible and linear unitary time evolution,
and the irreversible and nonlinear “collapse of the wavefunction”. But we are not then given an
underlying dynamical rule that synthesizes the two evolutions, nor even a precise answer to when
(or why) one evolution takes over from the other. Of course, it is usually said that nonlinearity
takes over when a “measurement” takes place. But then we are not given a precise definition of a
measurement!2 As memorably put in [21], “[t]his is not much better than saying that the evolution
is linear except when it is cloudy, and saying no more about how many, or what kind, of clouds
precipitate this radical shift in the operation of fundamental physical law”. In his essay Against
“measurement”, John Bell also laments the vagueness:

What exactly qualifies some physical systems to play the role of ‘measurer’? Was the
wavefunction of the world waiting to jump for thousands of millions of years until a
single-celled living creature appeared? Or did it have to wait a little longer, for some
better qualified system... with a PhD? [22]

One might object that this vagueness isn’t so problematic if we regard physics as only a tool for
predicting what we shall observe. Don’t we know well enough in practice what a measurement is, and
isn’t quantum theory good enough at predicting probabilities for measurement outcomes, despite the
vagueness? Even if we ignore the fact that there are conceivable experiments for which the standard
theory fails to make clear predictions (e.g. (extended) Wigner’s friend scenarios), this attitude has
the pitfall that it makes it harder to address a number of important physical questions. For example,
cosmology is generally considered a legitimate field of physics, but no observer measures the universe
as a whole. Or, it is generally regarded as important to understand how an approximately classical
world can emerge from an underlying quantum reality. But such an account will not satisfy many
if it has to fall back on the phrase “because we measure it”, without spelling out exactly what that
means in physical terms. And it is hard not to suspect that the vagueness of quantum theory itself
is a significant part of why we struggle to construct an adequate quantum theory of gravity. It

2We are told what happens when a measurement takes place (e.g. the quantum state collapses onto an eigenstate
of the measured observable), but we are not told when the measurement does take place.
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therefore seems there is much to be gained from a more precise and less anthropocentric formulation
of quantum theory, independently of one’s preferred philosophy of physics.

Coming up with such a formulation is what we mean when we talk about “interpreting” quantum
theory. Note, then, that for us, providing an interpretation does not mean offering a series of
principles formulated in the English language that aim to explain the formalism of standard quantum
theory. Rather, one needs a better formalism, in which imprecise or anthropocentric notions such as
measurement no longer play a fundamental role. Since the problem is vagueness, the solution must
be clarity.

We therefore say that an interpretation of quantum theory is really just a more precise and
less anthropocentric theory, complete with a mathematical formalism that makes its physical claims
clear. On top of these basic requirements, we assume that the following are all desirable features in
an interpretation:

1. it maintains that all time evolution is unitary,

2. it nevertheless avoids describing the universe as a unitarily evolving quantum state,3

3. it adds very little additional structure to the standard quantum formalism, and

4. it nevertheless introduces considerable explanatory power.

The goal of this paper is to develop an interpretation of quantum theory that achieves these
desiderata by combining quantum influences with event relativity.

Consistent histories. The interpretation that we will develop can be seen as a refinement of the
consistent histories formalism [13], which already achieves some of these desiderata. The formalism
is based on the insight that standard quantum theory can be purged of dynamical dualism simply
by restricting its use.

To explain how, it is useful to first describe in detail why the dynamical dualism is necessary in
the standard theory. In the standard theory, a probability distribution for the outcomes ok of N
projector-valued measurements (PVMs) {P okk }ok performed in sequence on an initial quantum state
ρ is given by

p(o1, . . . , oN ) = Tr(P onN UN . . . U2P
o1
1 U1ρU

†
1P

o1
1 U †

2 . . . U
†
NP

oN
N )

= Tr(P̃ oNN . . . P̃ o11 ρP̃ o11 . . . P̃ oNN ),
(1)

where we have assumed unitary evolution in between the measurements, and tildes denote Heisenberg
representations of projectors P̃ okk := U †

1 . . . U
†
kP

ok
k Uk . . . U1. But what if one then wants to calculate

the joint probabilities for a different experiment in which, for example, the second PVM was omitted?
In general, they will not be given by marginalizing over o2 in the expression above. That is,
the probabilities for the remaining N − 1 measurements depend on whether or not the second
measurement was performed. To explain this, we are pushed towards the idea that measurements
cause a nonlinear “disturbance” to the otherwise linear unitary evolution. But this leads to the
vagueness and anthropocentricity that was lamented a moment ago.

To avoid the dualism, the consistent histories formalism simply suggests that we restrict our
attention to the (very) special cases where p(o1, . . . , oN ) happens to be linear in each projector (due

3Part of our motivation for (ii) comes from the argument from [23] that interpretations like Bohm theory that
postulate a unitarily evolving quantum state plus other stuff are simply committed to the Everettian hypothesis that
the world is a branching multiverse, plus other stuff. If this is right, and if, as we suspect, the Everett interpretation
cannot satisfactorily recover the Born rule, then it would seem that any interpretation that posits a unitarily evolving
quantum state faces a similar problem.
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to the particular choice of ρ and PVMs). In these special cases, the decision of whether or not to
perform a measurement does not affect the probabilities for the remaining measurements,4 so one
does not need to posit measurement disturbance, or any interruption to the unitary dynamics.

Naively, one might expect that when one restricts the use of the standard formalism in this way,
certain phenomena from standard quantum theory can no longer be modelled. But fortunately,
this turns out not to be the case: by representing measurements explicitly as unitary interactions,
and considering projectors onto the measurement devices rather than onto the measured system
itself, one can always take a model in which (1) is nonlinear and transform it to one in which it is
linear, and yet in which the same statistics are reproduced. Thus one can argue that the notions of
measurement disturbance, collapse of the wavefunction, and nonlinear evolution are not necessary
for quantum theory, after all. Rather, they only appear necessary when one fails to take into account
all of the systems whose interaction is required for a measurement to take place.

Because a consistent historian no longer needs to invoke the idea of measurement disturbance,
they also no longer need to think of the ok as “measurement outcomes” at all. Instead, they might
be thought of as physical events, which may or may not be involved in some measurement. We
shall reflect this with a change of notation, writing ek instead of ok from now on. Similarly, there
is no longer any need to think of the {P ekk }ek as projector-valued “measurements”. Instead, from
now on we adopt the more neutral terminology of projective decompositions (which, like PVMs, are
mathematically defined as a family of orthogonal projects that sum to the identity operator). A list
(e1, . . . , eN ) shall be called a history, and the complete set of such histories associated with some
linear probability function is called a consistent set of histories.

Using the consistent histories approach, one can maintain universal unitarity (desideratum 1)
without adding much if anything to the formalism (desideratum 3). But the status of the quantum
state on this approach remains not entirely clear [24]. Also, it is very important to note that there
are very many different and incompatible consistent sets of histories – in general, an uncountably
infinite number, corresponding to the continuum of different sets of projective decompositions that
lead to a linear probability function. Should one then say that each consistent set has an equal
physical significance? That is, given some sequence of unitary transformations {Ui}Ni=1, should one
say that a consistent history gets realized relative to every definable set of consistent histories?

On the one hand, the absoluteness no-go theorems [2, 3, 4, 5, 6, 7, 8] might serve as a justification
for saying “yes”. But on the other hand, it isn’t clear that this very radically relational approach
has much predictive power. For example, one obviously wants to be able to unambiguously predict
that the sun will rise tomorrow morning, but most consistent sets of histories that have described
the sun rising in the past will not describe it rising in the future (because they don’t involve the
relevant projectors). Should we therefore be surprised tomorrow at dawn?

One might conclude that, while the no-go theorems for absolute events motivate some notion of
event relativity, the sort of event relativity that most obviously arises from consistent histories is too
extreme. By appealing to quantum influences, this paper shall articulate a less extreme conception
of event relativity. We shall show how, relative to a given subset of a set of unitarily interacting
subsystems, a unique consistent set of histories is privileged by causal structure. It will then be
possible to postulate that relative to any set of systems, precisely one history is realized with a
probability given by (1). On this view, events and histories fail to be absolute precisely because they

4Explicitly: the linearity of p(o1, . . . , oN ) in e.g. P
o2
2

is equivalent to the statement that

Re(Tr(P
oN
N

. . . P
o2
2

P
o1
1

ρP
o1
1

P
o′2
2

. . . P
oN
N

)) = 0 for all o2 6= o′
2
, but this means that

∑
o2

p(o1, . . . , oN ) =
∑

o2o
′
2
Tr((P

oN
N

. . . P
o2
2

P
o1
1

ρP
o1
1

P
o′2
2

. . . P
oN
N

) = Tr(P
oN
N

. . . P
o3
3

P
o1
1

ρP
o1
1

P
o3
3

. . . P
oN
N

), which is precisely the

formula we would use if we omitted the second PVM. Thus performing the second measurement doesn’t “disturb”
the probabilities for the other measurement outcomes.
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are relative to sets of systems. And so, relative to any set of systems, one can make clear predictions
about whether the sun will rise again.

3 Interference influences

This section will introduce the causal concepts that will subsequently be deployed to articulate a
more satisfactory conception of event relativity, and, ultimately, to interpret quantum theory.

Background. Throughout this paper, we understand causal influences as dynamical dependen-
cies. In the classical case, an influence from one variable to another would mean that the second
variable depends nontrivially on the first in a function that describes the dynamics. In the quantum
case, an influence from one system to another means that the second system depends nontrivially
on the first in a unitary channel that describes the dynamics.5 Let us now make this statement
more precise. Given a unitary channel U : A⊗B → C ⊗D, we say that there is no quantum causal
influence from A to D, written A 6→ D, if and only if the channel obtained from tracing out C is
equivalent to a channel that traces out A. That is,

A 6→ D ⇐⇒ ∃D : B → D such that TrCU(·) = D(TrA(·)). (2)

Or, writing the exact same expression diagrammatically:

A 6→ D ⇐⇒ ∃D such that U = D

A B

DC

A B

D

(3)

This turns out to be equivalent to many other definitions of a quantum influence, some of which
express very different intuitions [25, 20]. A particularly salient one is the stipulation that all operators
on the systems commute in the Heisenberg picture:

A 6→ D ⇐⇒ [MA ⊗ IB , U
†(IC ⊗ND)] = 0 ∀MA, ND (4)

This makes it easy to see some attractive properties [18, 19] of quantum influences. One of these
is a time-symmetry property, that A influences D through U if and only if D influences A through
U†. Another is causal atomicity, that influences among composite systems are uniquely fixed by
influences among the most elementary subsystems. For instance, A influences the composite system
D1 ⊗D2 if and only if A influences D1 or A influences D2. In a theory known for its nonseparable
state space, this is quite remarkable.

Quantum influences permit causal models of Bell inequality violations without superluminal
influences; something that is not possible using classical causal models without retrocausality or
superdeterminism. Moreover, they permit causal models of the violations that do not require fine-
tuning; something that is entirely impossible with classical causal models [26].

In summary, quantum influences are naturally defined using the standard formalism (good from
the point of view of desideratum (3)), they have nice properties, and they help us to respond to Bell

5We note that on this approach causal influences can be no more essentially connected with agents and signalling
than dynamics are. In particular, it would be wrong to conflate causation with signalling, since there might be
a dynamical connection between systems that agents cannot exploit because they lack knowledge of some relevant
parameters.
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inequality violations. In light of all of this, it seems natural to also look to quantum influences for
guidance in the quest for a satisfactory conception of event relativity.

Interference influences. We can find such guidance, but it requires a more fine-grained con-
ception of a quantum influence – one that holds between particular projective decompositions {P iA}

and {P jD} rather than between A and D themselves. (4) suggests that we could say such an influence
holds if some of the Heisenberg projectors, defined by

P̃ iA : = P iA ⊗ IB

P̃ jD : = U†(IC ⊗ P
j
D),

(5)

do not commute. And it turns out that this idea is indeed equivalent to a particular sort of dynamical
dependence.

Theorem 1. Consider a unitary channel U : A ⊗ B → C ⊗D, the projective decomposition {P iA}

on A, and the projective decomposition {P jD} on D. Then

[P̃ iA, P̃
j
D] = 0 ∀i, j

⇐⇒ Tr
(

(IC ⊗ P
j
D)U(V~φ(·)V

†
~φ
)
)

= Tr
(

(IC ⊗ P
j
D)U(·)

)

∀j, ∀V~φ
(6)

where V~φ is any unitary of the form V~φ =
∑

i e
iφiP iA ⊗ IB.

Theorem 1 is proven in Appendix B. Thinking in terms of standard quantum theory for a moment,
we see that the Heisenberg projectors fail to commute if and only if a message can be sent by shifting
the relative phases between the P iA and then received by performing the PVM defined by {P jD}.

Again, noncommutation obtains if and only if the selection of a unique P jD is sensitive to the

interference between the different P iA – if {P iA} is not decoherent from the point of view of {P jD}.
We therefore call this influence relation an interference influence.

Definition 1. Given a unitary channel U : A⊗B → C⊗D, there is no interference influence from
{P iA} to {P

j
D}, written {P

i
A} 6→ {P

j
D}, if and only if [P̃ iA, P̃

j
D] = 0 ∀i, j.

It is evident from their definition that interference influences have a time symmetry property. It
is also clear that they satisfy a sort of causal atomicity, that there is an influence from A to D if
and only if there is an interference influence between at least one pair ({P iA}, {P

j
D}) of associated

projective decompositions:

A→ D ⇐⇒ ∃{P iA}, {P
j
D} : {P

i
A} → {P

j
D} (7)

This property means that the list of all the interference influences between projective decompositions
on the input and output subsystems of a unitary channel contains strictly more information than
the list of all the quantum influences between the subsystems themselves. In this sense, interference
influences are a fine-graining of the quantum influences on which the causal models of [18, 19] are
based.

The lack of an interference influence provides a notion of decoherence that is time-symmetric and
defined entirely in terms of dynamics rather than states. So it is natural to suspect that interference
influences might be of use in describing the emergence of events from dynamics.
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4 Event relativity

And indeed they are. As in consistent histories [13], we wish to understand an event e as the
(stochastic) selection of a unique projector P e ∈ D from a projective decomposition D. But which
projective decomposition? This section will show that certain projective decompositions are priv-
ileged by causal structure, and give rise to consistent sets of histories. And this will allow us to
conceive of events as emerging out of causation.

RQM hints at a similar idea with its suggestion that events arise from interactions [15, 16]. But,
as Brukner points out [27], if an interaction is conceived in terms of some entangled state that it
produces, say |Φ+〉 = 1√

2
(|0〉 |0〉 + |1〉 |1〉), it doesn’t generally select any preferred decomposition.

The response from Adlam and Rovelli [28] is to let a thousand flowers bloom: perhaps very many
events happen in such situations, and unique decompositions are only singled out in other situations
where there are more complicated quantum states.

On the other hand, a solution readily presents itself when one turns away from states, and
towards the unitary process itself. Speaking operationally for a moment, the |Φ+〉 state might have
been produced by applying the unitary transformation

CNOT :=
1

∑

i,j=0

|i〉C |j + i〉D 〈i|A 〈j|B (8)

to the states |+〉A := 1√
2
(|0〉A + |1〉A) and |0〉B. Now, it is easily shown that it is impossible for

an agent who can only apply phase shifts of the form VA = |0〉 〈0|A + eiφ |1〉 〈1|A before CNOT is
implemented to signal to an agent who measures D after it is implemented. On the other hand,
any unitary of the form VA = P 0

A + eiφP 1
A for φ 6= 0 and projective decomposition {P 0

A, P
1
A} 6=

{|0〉 〈0|A , |1〉 〈1|A} will allow signalling.
This suggests that although {|0〉 〈0|A , |1〉 〈1|A} is not marked out as special by the state |Φ+〉,

it is marked out as special by the transformation CNOT – at least relative to the system D. With
the help of interference influences, we now strip this account of operationalism, and generalize it to
arbitrary finite-dimensional unitary transformations.

Definition 2. Given a unitary channel U : A⊗B → C⊗D we say that the projective decomposition
{P iA} is preferred by D if and only if the following three conditions are met:

1. {P iA} does not exert an interference influence on any projective decomposition on D: ∀{P jD} :

{P iA} 6→ {P
j
D} .

2. If {P iA} is incompatible with some other projective decomposition {QkA}, then {Q
k
A} exerts an

interference influence on at least one projective decomposition on D: ∃i, k : [P iA, Q
k
A] 6= 0 =⇒

{QkA} → {P
j
D}.

3. Any other decomposition {RlA} satisfying (1) and (2) is a coarse-graining of {P iA}, in the sense
that {RlA} ⊆ span({P iA}).

In short, the preferred {P iA} is the most fine-grained decomposition such that D is insensitive to
relative phase shifts between the P iA, but is sensitive to shifts between projectors that are incompati-
ble with them. So {P iA} might be thought of as the canonically decoherent projective decomposition
from the point of view of D.

The notion of preference can be stated more compactly with the help of some algebraic con-
cepts. Given the algebra of linear operators L(H) on a finite-dimensional Hilbert space H, the

8



commutant comm(X ) of a subalgebra X ⊆ L(H) is the set of all operators in L(H) that commute
with every operator in X . The centre of X is the intersection of X with its own commutant,
centre(X ) := comm(X )∩X . (In other words, it is the set of operators within X that commute with
all other operators in X .) It follows from the lemma in Appendix A that centre(X ) can always be
uniquely written as the set of operators obtained from linear complex combinations of projectors
from some projective decomposition on the Hilbert space, centre(X ) = span({P i}). We then have
the following theorem, proven in Appendix C.

Theorem 2. Consider a unitary channel U : A⊗B → C ⊗D and a projective decomposition {P iA}
on A. Let A denote the algebra of operators of the form MA ⊗ IB , and D the algebra of operators
of the form U†(IC ⊗MD). Then

D prefers {P iA} ⇐⇒ span({P iA})⊗ IB = centre(A ∩ comm(D)). (9)

That is, D prefers the most fine-grained projectors on A that not only commute with all operators
on D, but also commute with all operators on A that commute with all operators on D.

Let us take stock of our current situation. We have seen a sense in which a decomposition on
an input to a unitary transformation is preferred by an output of the unitary transformation. But
remember, what we really wanted was a preferred set of decompositions associated with a given
subset of unitarily interacting systems. (And not just any set of decompositions, but one that gives
rise to a consistent set of histories for that subset of systems.) To that end, we shall consider a circuit
C made up of finite-dimensional unitary transformations, and some subset B of the systems (i.e. the
wires). Inspired by [29], we call B a bubble. We define the preferred set P(C,B) of decompositions
by taking two decompositions for each system in the bubble; one which is obtained by its interactions
with systems in its future; the other, with systems in its past. The following definition makes this
more precise.

Definition 3. Given a circuit C and a bubble B, the preferred set of projective decompositions
P(C,B) is obtained in the following way, as illustrated in Figure 1. First, one obtains a broken
unitary circuit by making incisions in every wire representing a system Ak ∈ B in the bubble B =
{Ak}nk=1. One then inserts swap gates with an ancilla into each node; or, equivalently, one “pulls
up” the wires Ain

k that go into the new incisions, and pulls down the wires Aout
k that come out of them.

This results in a single-shot unitary channel U , whose outputs include the Ain
k and inputs include

the Aout
k . We then apply our existing notion of preference to U . For every input Aout

k , we take the

projective decomposition {P
e′k
Aout

k

} preferred by the tensor product
⊗

mA
in
m of all of the outputs of U

corresponding to systems in the bubble. Since there is no reason to introduce a temporal asymmetry,
we also take for each Ain

k the decomposition {P ek
Ain

k

} preferred by
⊗

mA
out
m given U†. P(C,B) is the

set of 2n projective decompositions obtained in this way.

Let us assume from now on, and without loss of generality, that Ak comes higher up than Am
in the circuit whenever m < k, so Ak can be thought of as coming later in time6 than Am. Then,
by the definition of the unitary channel U , there is no quantum influence from Aout

k to Ain
m through

U for m ≤ k. It follows from (4) and Definition 2 that the decomposition {P
e′k
Aout

k

} that is preferred

by
⊗

mA
in
m is identical to the one preferred by

⊗

k>mA
in
k , the ingoing systems in its future. So the

6For ease of expression, we often equate the partial order naturally induced by a unitary circuit with a temporal
order. However, the reader should bear in mind that, strictly speaking, the framework here, and the interpretation
that we shall develop, is background independent – we do not explicitly consider the circuits as embedded in spacetime.
As we shall discuss later on, we consider it natural to imagine that spacetime itself emerges from quantum causal
structure, just as events do.
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U3

U2

A1

A2

A3

U1

U3

U2

Aout
1

Ain
1

Aout
2

Ain
2

Aout
3

Ain
3

→

U1

U3

U2

Ain
1

Aout
1

Ain
2

Aout
2

Ain
3

Aout
3

→

←

Ain
1

Aout
1

Ain
2

Aout
2

Ain
3

Aout
3

U

Ain
1

Aout
1

Ain
2

Aout
2

Ain
3

Aout
3

U

{P
e′1
Aout

1
} {P

e′2
Aout

2
} {P

e′3
Aout

3
}

{P e1
Ain

1
} {P e2

Ain
2
} {P e3

Ain
3
}

each preferred by Ain
1 ⊗A

in
2 ⊗A

in
3

each preferred by Aout
1 ⊗Aout

2 ⊗Aout
3

↓

Figure 1: The rule for obtaining the preferred set of decompositions P(C, {A1, A2, A3}) for the
bubble {A1, A2, A3}. Here, and throughout the paper, circuits should be read from bottom to top.
The colour-coding of wires is only for better readability, and has no formal meaning.
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U1

U3

U2

{P e1
Ain

1
}

{P e2
Ain

2
}

{P
e′3
Aout

3
}

{P
e′1
Aout

1
}

{P
e′2
Aout

2
}

{P e3
Ain

3
}

Figure 2: To determine which interference influences exist between decompositions in P(C,B), one has to
(1) decorate the original unitary circuit with the projectors, with outgoing decompositions placed just after
ingoing ones, and then (2) check whether there is an interference influence from one projective decomposition
to another one higher in the circuit given overall unitary transformation in the intervening temporal region

that connects them. For example, to check whether {P e1
Ain

1
} → {P

e′3
Aout

3
} through the circuit above, one applies

Definition 1 to the unitary transformation (I ⊗ U3 ⊗ I)(U1 ⊗ U2). Or, to check whether {P e1
Ain

1

} → {P
e′1
Aout

1
},

one applies Definition 1 to the identity transformation, i.e. one simply checks whether the decompositions
commute.

preferred outgoing decomposition {P
e′k
Aout

k

} on Ak is entirely determined by its interaction with its

future, while, similarly, the preferred ingoing {P ek
Ain

k

} is determined entirely its interaction with its

past.
Interestingly, the only interference influences that can obtain in the circuit (in the sense described

in Figure 2) between the elements of P(C,B) are ones that go from the decompositions associated
with the past to decompositions associated with the future. More precisely, Appendix D proves that
the only allowed interference influences are of the form

{P em
Ain

m
} → {P

e′k
Aout

k

} where m ≤ k. (10)

The vast majority of sets of projective decompositions do not generate a consistent set of histories.
But the causal constraint in equation (10) implies that P(C,B) is one of those rare sets that does.

Theorem 3. For any P(C,B), and for ρ = I/d, (1) simplifies to a manifestly linear form. In the
Heisenberg picture,

Tr(P̃
e′n
Aout

n
P̃ enAin

n
. . . P̃

e′1
Aout

1
P̃ e1
Ain

1
(I/d)P̃ e1

Ain
1
P̃
e′1
Aout

1
. . . P̃ enAin

n
P̃
e′n
Aout

n
) =

1

d
Tr(P̃ e1

Ain
1
P̃
e′1
Aout

1
. . . P̃ enAin

n
P̃
e′n
Aout

n
). (11)

It follows that P(C,B) generates a consistent set of histories.

We have finally achieved our goal: a preferred set of consistent histories for every bubble.
In the traditional consistent histories formalism, linearity of probabilities is simply assumed. But

Theorem 3 shows that, when one appeals to causal structure, linearity can be derived. Specifically,

11



(11) is obtained from (10) simply by commuting projectors around the trace expression on the left
side of (11) (using trace cyclicity in the case of the outgoing projectors) and eliminating then using
the idempotency of projectors until one finds the expression on the right.

The reader might wonder why we have inserted the “maximally mixed state” ρ = I/d into the
left side of (11). In fact, we would prefer to think of this substitution as “tracing out the past”:
much in same the way that we use the standard trace operation to ignore whatever happens after
a certain time, our use of ρ = I/d reflects our decision to ignore whatever comes before a certain
time.7 The quantum state plays no fundamental role in the interpretation we are laying out, but,
as the next section will make clear, it does serve as a useful tool for computing probabilities.

Before we move on, it is worth briefly summarizing the last two sections. Interference influences
are noncommutation relations between projective decompositions in the Heisenberg picture (Def-
inition 1), or, equivalently, a particular sort of dynamical dependence (Theorem 1). Interference
influences single out a preferred set P(C,B) of 2n decompositions relative to a bubble of n unitarily
interacting subsystems (Definition 3); P(C,B) can be thought of as decoherent relative to this bub-
ble. Within a bubble, interference influences only travel from decompositions associated with the
past to decompositions associated with the future (10). Remarkably, this causal constraint implies
that P(C,B) generates a consistent set of histories (Theorem 3). All of the core ingredients of the
interpretation are now in place. We are ready for axioms.

5 Theory and models

In this section, we turn all of these ideas into a precise realist interpretation of quantum theory as
a description of relational events and their emergence out of causal structure.

In short, if the dynamics of some scenario are described by a unitary circuit C, we postulate that,
for every bubble B, exactly one history from the consistent set generated by P(C,B) is realized.
Given a bubble B, the probability for a given history to be realized is

pB(e1, e
′
1, . . . , en, e

′
n) =

1

d
Tr(P̃ e1

Ain
1
P̃
e′1
Aout

1
. . . P̃ en

Ain
n
P̃
e′n
Aout

n
). (12)

And that’s more or less all there is to it. But let us lay out the interpretation in greater detail with
the following axioms.

1. The dynamics are given by a finite-dimensional unitary circuit C. That C takes place is taken
as a primitive and observer-independent fact about reality.

2. A bubble is any subset of the systems (i.e. individual wires) in C. A bubble B of n systems
is associated with the preferred set P(C,B) of 2n projective decompositions (as described in
Definition 3).

3. For every bubble of n systems, 2n events take place relative to that bubble. Each event is
the selection of a unique projector from an element of P(C,B).

4. In a given bubble, the probability of a set of events is given by taking the matrix product of
all the corresponding Heisenberg projectors in the order that they appear in the circuit, then
tracing and dividing through by the dimension of the Hilbert space (i.e. by equation (12)).

7Note the duality between the trace operation Tr(·) =
∑

i 〈i| (·) |i〉 and the identity operator I =
∑

i |i〉 〈i|.
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U

z1

z2

x1

x2

Figure 3: A model of a “prepare-measure” scenario, depicting the bubble of four systems.

In many physical theories, the fundamental object is a state, and the role of the dynamics is
merely to constrain this state. But the present theory implies that dynamics are prior to kinematics.
The most fundamental kinematical object is an event, but the events that happen are determined
entirely by the dynamics and the probability rule, and without recourse to any initial condition.
The quantum state does not feature in any of the axioms, but nevertheless can be used to compute
certain conditional probabilities, as we will soon show.

Events are nonabsolute for two reasons. Firstly, if a projective decomposition, say Din
k , features

in both P(C,B1) and P(C,B2), then P
ek
Ain

k

∈ D
in
k might get selected relative to B1 while a distinct

P ẽk
Ain

k

∈ Din
k gets selected in B2. So ek happens relative to B1, but a different ẽk happens relative to

B2. Secondly, there may be a bubble B3 such that Din
k 6∈ P(C,B3), so that none of its projectors

get selected relative to B3. So our theory is relational, but note also that it isn’t “relations all the
way down”. For the explicitly relativized event eB1

k of P ek
Ain

k

being selected from Din
k relative to B1 is

absolute. (Analogously, a spatial interval ∆x in special relativity is not absolute, but the relativized
fact ∆xF that the spatial interval is ∆x relative to the frame F is absolute.)

It is now time to apply this interpretation to some specific physical scenarios. We claim that the
interpretation finds itself in a “Goldilocks zone”: it is able to model any finite-dimensional quantum
phenomenon that one would want to model, whilst avoiding models of problematic and unnecessary
phenomena. The rest of this section will defend this claim by giving explicit examples and pointing
to the general construction in Appendix E.
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Prepare and measure. To begin with, perhaps the most vanilla sort of experiment in standard
quantum theory is one where a qubit is prepared in a state |ψ〉 and later measured in a different
basis, leading to a probability of | 〈φ|ψ〉 |2 for the outcome associated with an element |φ〉 of that
basis. A model from our theory for this experiment is given in Figure 3. In this circuit, all wires
represent qubits; white and black dots represent CNOTs controlled on the white dots; and U is some
unitary transformation. Events arise entirely out of dynamics, and are not the consequence of any
initial condition. Thus we trace out the inputs as well as the outputs of the circuit.

Figure 3 depicts a particular bubble B1 of four systems, corresponding to the four breaks in the
wires. The zi ∈ {0, 1} and xj ∈ {+,−} label events corresponding to the selection of a unique projec-
tor from an element of P(C,B1). The zi are selections of projectors onto the Z-basis {|0〉 , |1〉}, while

the xj are selections of projectors onto the X-basis { |0〉+|1〉√
2
, |0〉−|1〉√

2
}. z1 corresponds to an ingoing

projective decomposition that arises from the associated system’s interaction with the “preparation
device” in the past and on its left, while z2 corresponds to an outgoing projective decomposition
that arises from the associated system’s interaction with the “measurement device” in its future and
on its right.8 Where wires that go into or come out of breaks are not labelled, this is because the
corresponding decompositions in P(C,B1) are simply {I}, so that the associated events are trivial.

Although the quantum state does not play any fundamental role in this interpretation, it can be
used to compute conditional probabilities for events. For example, if one computes the distribution
pB1(x1z1x2z2) obtained from (12), one finds that

pB1(z2|z1) = | 〈z2|U |z1〉 |
2 (13)

– which looks rather familiar. We can therefore reasonably say things like “the system was prepared
in the state |z1〉, then transformed into U |z1〉, and then a measurement returned an outcome cor-
responding to |z2〉 with Born probability”. We note that the state preparation here is stochastic,
since pB1(z1) = 1/2 for z1 ∈ {0, 1}.

Now, z1 and z2 might not be directly observable; they could, for example, be an electron taking
on a particular spin. But in an extended model, z1 can be inferred from directly observable events.
In this extended model, we simply have to assume that the preparation and measurement devices
also interact with other systems (perhaps the eye of some observer), as depicted in Figure 4. When
one computes the probability distribution for the 10-system bubble B2 associated with Figure 4,
one finds that z1 = z3 + z4 and z2 = z5 + z6 with certainty. So if z3, z4, z5 and z6 are observed
events, then z1 and z2 can be inferred. If we wanted to, then we could extend the model further still
so that even these two events could in turn be inferred from other events.

The techniques here can easily be generalized to model any prepare-measure scenario. In fact,
as we show Appendix E, one can model arbitrary quantum instruments and sequential and parallel
combinations thereof. Thus any model from standard finite-dimensional quantum theory (i.e. the
sort of theory described in [30]) can be reproduced in this interpretation.

Wigner’s friend. We can also model scenarios in which the standard quantum theory becomes
ambiguous, such as the classic Wigner’s friend scenario [31]. In this scenario, Wigner’s friend is in

an isolated lab, and measures a particle in a superposition of states |0〉+|1〉√
2

. Applying the standard

theory from the friend’s perspective leads to the friend obtaining a definite outcome and the particle
collapsing onto a corresponding state |0〉 or |1〉. Applying the same theory from the perspective of
Wigner, who sits outside the lab, leads to the apparently contradictory conclusion that the friend
ends up entangled with the particle in the state |Φ+〉, as can be checked by Wigner with a subsequent

8C.f. the remark after Definition 3.
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Figure 4: Extended “prepare-measure” model, explicitly representing the observable events.
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measurement. Standard quantum theory does not tell us which of these two models is correct, nor
does it explain their place in some overarching theoretical framework.

In our theory, the two models are associated with different bubbles of the same unitary circuit,
each of which constitutes a different and equally real part of the world. Figure 5 shows a model
for the experiment in which we have highlighted the relevant bubbles. The bubble B1 on the left
includes (systems corresponding to) the preparation of the state, and the friend’s outcome. In this
bubble, one has a prepare-measure scenario; events are distributed here just as the corresponding
events were in the extended prepare-measure experiment described above.

On the other hand, the bubble B2 on the right includes all the systems from the one on the left,
but it also includes systems corresponding to Wigner’s measurement. The events in the lower part of
the diagram look almost the same as those in the left picture, with one crucial difference: the friend’s
outcome z4 has disappeared! The projective decomposition {|0〉 〈0| , |1〉 〈1|} on that system is not
found in P(C,B2) because it exerts an interference influence on the decomposition corresponding to
Wigner’s outcome z6. Instead, the corresponding decomposition in P(C,B2) is now {I}. Relative
to bubbles that include Wigner’s outcome, the friend does not obtain any measurement outcome at
all.

We note that the extended Wigner’s friend scenarios, introduced in [32] and commonly used to
provide no-go theorems for absoluteness, can be modelled using our theory in a similar way.

Three-box paradox. So far, we have shown that the current interpretation can reproduce
standard quantum theory, and go beyond it. Consistent histories also goes beyond the standard
theory, but in doing so, it opens itself up to some problems that the current interpretation manages
to avoid. One example is provided by the “three-box paradox”, introduced in [33] and studied from
the point of view of consistent histories in [34].

Let us start with an operational formulation of the “paradox”9 using standard quantum theory.
Suppose a particle is prepared at t1 in an equal superposition |ψ〉 := 1√

3
(|0〉 + |1〉 + |2〉) of being

in one of three different boxes. Then, at t2 > t1, a PVM Di2 = {|i〉 〈i| , I − |i〉 〈i|} for either i = 0
or i = 1 is performed. This measurement can be thought of as “checking to see whether or not
the particle is in the |i〉 box”. For the update rule, we assume the projection postulate. Finally, at
t3 > t2, we measure an orthonormal basis that includes |φ〉 := 1√

3
(|0〉+ |1〉 − |2〉).

Now we ask a question: assuming that the measurement at t3 results in the |φ〉 outcome, what
was the measurement result at t2? If we checked the |0〉 box at t2 and found the particle was not
there, then standard quantum theory says that the state just after t2 is (I−|0〉 〈0|) |ψ〉 (up to norm),
which is orthogonal to |φ〉. So if we checked in the |0〉 box, then we must have found it there, or else
we wouldn’t have got the |φ〉 outcome at t3. But a similar argument shows that if we checked in the
|1〉 box, then we must have found it there. It seems as though our choice of which box to look in
determines which box the particle is in!

In fact, standard quantum theory offers a simple, albeit anthropocentric, explanation. As dis-
cussed in Section 2, in the standard theory, measurements are disturbing. In the scenario just
described, the choice of D0

2 or D1
2 determines which sort of projection operator collapses the quan-

tum state at t2. The dynamics in the two different situations are therefore different. Given this
difference, there is no reason the same assumptions about what happens at times t1 and t3 should
imply the same conclusions about what happens at t2.

The situation is worse for consistent histories. Consider the following two triplets of projective

9We’ll drop the scare quotes from hereon, but the reader will see that it is debatable whether this is an appropriate
label for the phenomenon.
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Figure 5: A model for the Wigner’s friend scenario. The left side depicts the bubble containing state
preparations and the friend’s measurement, the right depicts the bubble also containing Wigner’s
measurement.
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decompositions:
(D1,D

i
2,D3) for i ∈ {0, 1}. (14)

where

D1 = {|ψ〉 〈ψ| , I − |ψ〉 〈ψ|}

D
i
2 = {|i〉 〈i| , I − |i〉 〈i|}

D3 = {|φ〉 〈φ| , I − |φ〉 〈φ|}.

(15)

If we assume that ρ = I/3, and that all time evolution is given by identity channels, then each
of these triplets generates a set of consistent histories as described in Section 2.10 Relative to one
consistent set of histories, the events corresponding to |ψ〉 〈ψ| and |φ〉 〈φ| imply that the particle was
in the |0〉 box at t2. Relative to the other, the same events imply it was in the |1〉 box. This time,
we cannot explain the difference at t2 by a difference in time evolution, since both consistent sets
were generated on the assumption that time evolution was trivial.

Now, the consistent historian does have the option of simply biting the bullet and accepting
this phenomenon as just another peculiar feature of the ever-surprising quantum world. There is
no logical contradiction if one does so, since the different inferences are made relative to different
consistent sets. But, as Adrian Kent argues [34], the paradox undermines the formalism’s claim to be
the minimal and natural realist extension of the Copenhagen interpretation, or “Copenhagen done
right”, since there is no Copenhagen analogue of the paradox. For the purposes of this discussion,
the Copenhagen interpretation is essentially equivalent to what we have been calling “standard
quantum theory”. For both theories, three-box paradoxes can always be explained by the influence
of the observer on the system.

Unlike consistent histories, the current interpretation can always explain the three-box paradox
by appealing to interaction (perhaps it could be called “consistent histories done right”!). But
unlike standard quantum theory, the relevant notion of interaction is not essentially connected with
observation. Although the triplets of decompositions in (14) above form a consistent set of histories,
they obviously are not preferred by any bubble, since the dynamics in this situation are trivial.
Moreover, note that each triplet in (14) involves a chain of noncommuting projectors (explicitly,
[|ψ〉 〈ψ| , |i〉 〈i|] 6= 0 and [|i〉 〈i| , |φ〉 〈φ|] 6= 0). By (10), we can infer that neither triplet of projective
decompositions could be all be preferred by any bubble.

This does not mean that the operational phenomenon associated with the three-box paradox
cannot be modelled using our interpretation – the construction in Appendix E implies that any
phenomenon from the standard theory can be reproduced, and so, of course, this one can too. But in
order to reproduce the operational phenomenon, one will have to explicitly model the measurements
as unitary interactions, as we did for the prepare-measure and Wigner’s friend scenarios. Differences
in the required interactions will explain differences in what can be inferred about t2.

Appendix F shows that this story extends to a class of generalized three-box paradoxes. The
interested reader can check that the story also generalizes the quantum “pigeonhole paradox” of
[35]. We conjecture that it generalizes even further, to all examples of logical pre- and post-selection
paradoxes (as defined in [36]).

As compared with the bare consistent histories formalism, the distinctive feature of the current
interpretation is that a consistent set is only physically significant when singled out relative to a

10Consistent historians might prefer to model this scenario with an initial and possibly a final density operator
rather than with triplets of projective decompositions and trivial states. Either way, the choice doesn’t make any
significant difference to the arguments made here. We use triplets of decompositions only because that approach
facilitates an easier connection to the interpretation of this paper.
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Figure 6: Complementarity and Wigner’s friend scenarios. When a system label is implied by a
projective decomposition, we sometimes omit it for better readability.

bubble by causal structure. This stipulation does not prevent us frommodelling arbitrary operational
quantum phenomena. It does not prevent us from modelling (extended) Wigner’s friend scenarios.
But it does prevent us from modelling an interaction-free version of the three-box paradox. We are
in the Goldilocks zone.

6 Interference influences as explanations of quantum phe-
nomena

Interference influences are of interest independently of the interpretation presented in this paper. In
this section, we will show how they can be used to explain and classify quantum phenomena.

We will define five different “scenarios” in terms of the properties of a pair (C,S), where C is a
unitary circuit and S is a set of projective decompositions associated with wires in the circuit. After
giving all the definitions, we will show that every one of these scenarios requires a particular set of
interference influences. Note that we do not require that S = P(C,B) for any bubble B; instead,
we simply put in the projective decompositions by hand (although we note that in all five scenarios
the decompositions are indeed preferred in appropriate bubbles if the circuit is extended in an
appropriate way). The results of this section are therefore valid independently of the interpretation
outlined in the previous section; at the same time, they illustrate the significance of the interference
influences that lie at the heart of it.

We note that some of the following definitions of the scenarios will be quite liberal. This is
acceptable because we will only seek necessary, rather than sufficient conditions for a given scenario
to take place. Therefore, our results will remain true if any of the definitions are made logically
stronger. Proofs for all of the results of this section are found in Appendix G.

To begin with, let us define a complementarity scenario. Study the left side of Figure 6. P iZ
and P jW correspond to the preparation of a state ρij = TrW (U(P iZ ⊗ IG)(P

j
W ⊗ IS)) (ignoring nor-

malization). Similarly, P xX and P aA correspond to a positive operator-valued measurement (POVM)

element σax := TrX(V†(IF ⊗P aA)(IS ⊗P
x
X)). We say the decompositions ({P iZ}, {P

j
W }, {P

x
X}, {P

a
A})
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Figure 7: Bell and PBR scenarios. Some of the unitary transformations are decorated with assump-
tions about their causal structure, which are designed to ensure these experiments can be undertaken
at spacelike separation.

form a complementarity scenario if and only if ∃i, j, a, x : [ρij , σax] 6= 0. We then have our first
result.

Theorem 4. A complementarity scenario requires an interference influence from {P iZ} to {P
a
A}.

Now consider the right side of Figure 6. We say this circuit and set of decompositions forms
a Wigner’s friend scenario just in case it combines two complementarity scenarios; that is, if both
({P iZ}, {P

j
W }, {P

x1

X1
}, {P a1A1

}) and ({P a1A1
}, {}, {P x2

X2
}, {P a2A2

}) form complementarity scenarios.11 Un-
surprisingly, a Wigner’s friend scenario therefore requires two interference influences, combined to
form a chain.

Theorem 5. A Wigner’s friend scenario requires an interference influence from {P iZ} to {P a1A1
},

and an interference influence from {P a1A1
} to {P a2A2

}.

Now study the left side of Figure 7. Note that this circuit comes with the causal assumptions that
X 6→ B and Y 6→ A, designed to ensure that the appropriate parts of the circuit can be implemented
at spacelike separation without violating relativity theory. The topology of the circuit makes clear
that there are no chains of interference influences, so the six decompositions lead to a probability
distribution p(axbyij) via (12). We say the decompositions ({P iZ}, {P

j
W }, {P

x
X}, {P

a
A}, {P

y
Y }, {P

b
B})

form a Bell scenario if and only if, for some fixed i and j, the probabilities p(axby|ij) over “settings”
(x, y) and “outcomes” (a, b) do not admit a local hidden variables model (“local hidden variables
models” are explicitly defined in Appendix G).

Our next result implies that a Bell scenario requires a “fork” of interference influences; that
is, it requires that both {P iZ} → {P

a
A} and {P iZ} → {P

b
B}. But it also requires that this fork

is irreducible. A fork in the Bell scenario is “reduced” by writing each P iZ as a sum of products
PmZ(A)P

n
(B) of commuting elements of two projective decompositions {PmZ(A)} and {PnZ(B)} on Z,

and likewise writing each P iW as a sum of commuting elements P oW (A)P
r
W (B) of two projective

11In the second case, this means that ∃a1, x2, a2 : [IF ⊗ P
a1
A1

,TrX2
(W†(IH ⊗ P

a2
A2

)(IFA1
⊗ P

x2
X2

))] 6= 0.
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decompositions {P oW (A)} and P
r
W (B)} on W , where the decompositions are required to satisfy

{PmZ(A)} 6→ {P
r
W (B)}

{PmZ(A)} 6→ {P
b
B}

{PnZ(B)} 6→ {P
o
W (A)}

{PnZ(B)} 6→ {P
a
A}.

(16)

An interference fork is called “irreducible” if it cannot be reduced.

Theorem 6. A Bell scenario requires an irreducible interference fork made up of interference in-
fluences from {P iZ} to {P

a
A} and {P

b
B}.

Our next result concerns the Pusey-Barrett-Rudolph (PBR) theorem [37] concerning the reality
of the quantum state. It has been commented that the quantum-theoretical proof of this theorem
is somewhat dual to the proof of Bell’s theorem (e.g. [38]). To bring that duality to light, we will
define a version of the (bipartite) PBR scenario that is much more general than the one originally
discussed in [37]. In this section, we simply define the scenario; Appendix G justifies the definition
by showing that it facilitates a proof of a generalized PBR theorem.

To that end, consider the right side of Figure 7. This circuit can be understood as the time
reversal of the one on the left, up to some relabellings. The projectors P xX and P aA correspond to
a state prepared on S of the form ρax := TrAB((P

a
A ⊗ ISB)V(P

x
X ⊗ IFY )) (ignoring normalization).

Likewise, P yY and P bB correspond to σby := TrAB((IAS ⊗P bB)V(IXF ⊗ P
y
Y )). It follows from the fact

that X 6→ B and Y 6→ A through V , together with (4), that [ρax, σby] = 0. Hence ρaxσby is also
a density operator (up to norm) as long as it is nonzero. The POVM element ǫij := 1

dz
TrZ((P

i
Z ⊗

IS)U
†(P jW ⊗ IG)) corresponds to the projectors P iZ and P jW . For some particular values of the event

variables, let us define ρ := ρax, ρ′ := ρa
′x′

, σ := σby , and σ′ := σb
′y′ . We say the decompositions

({P iZ}, {P
j
W }, {P

x
X}, {P

a
A}, {P

y
Y }, {P

b
B}) form a PBR scenario if and only if both of the following

conditions are satisfied:

Tr(ǫijρσ) = 0 ∨ Tr(ǫijρσ′) = 0 ∨ Tr(ǫijρ′σ) = 0 ∨ Tr(ǫijρ′σ′) = 0 ∀i, j (17)

ρσρ′σ′ 6= 0. (18)

We will soon see that a PBR scenario requires a “collider” of interference influences; that is, it re-
quires that both {P xX} → {P

j
W } and {P

y
Y } → {P

j
W }. But just as the fork required for a Bell scenario

must be irreducible, so too must the collider in the PBR scenario. The collider is called irreducible
if it cannot be reduced by writing the P iZ and P jW as sums of products PmZ(A)P

n
Z(B) and P

o
W (A)P

r
W (B)

of commuting elements of projective decompositions, where this time those decompositions must
satisfy

{P xX} 6→ {P
r
W (B)}

{PmZ(A)} 6→ {P
r
W (B)}

{P yY } 6→ {P
o
W (A)}

{PnZ(B)} 6→ {P
o
W (A)}.

(19)

Theorem 7. A PBR scenario requires an irreducible interference collider made up of interference
influences from {P xX} and {P

y
Y } to {P

j
W }.
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X2 6→ B2, Y2 6→ A2 V2

Figure 8: Local friendliness scenario.

Finally, a local friendliness scenario [2] combines aspects of a Bell scenario and a Wigner’s friend
scenario. Specifically, we say the decompositions in Figure 8 form a local friendliness scenario if
and only if both (a) the decompositions ({P iZ}, {P

j
W }, {P

x2

X2
}, {P a2A2

}, {P y2Y2
}, {P b2B2

}) form a Bell sce-

nario, and (b) the decompositions ({P iZ}, {P
j
W }, {P

x1

X1
}, {P a1A1

}, {P x2

X2
}, {P a2A2

}), or the decompositions

({P iZ}, {P
j
W }, {P

y1
Y1
}, {P b1B1

}, {P y2Y2
}, {P b2B2

}), form a Wigner’s friend scenario.12

Theorem 8. A local friendliness scenario requires an irreducible interference fork {P a2A2
} ← {P iZ} →

{PB2

B2
} and at least one chain. The chain can be of the form {P iZ} → {P

a1
A1
} → {P a2A2

} or {P iZ} →

{P b1B1
} → {P b2B2

}.

These theorems immediately lead to a classification of quantum phenomena based on causal
structure.

Corollary 1. Each of the five scenarios requires a particular interference causal structure, as de-
picted in Figure 9.

Corollary 1 shows that many of the simplest possible combinations of interference influences lead
to various important quantum phenomena. In future work, it is worth exploring whether interesting
new phenomena or no-go theorems might be discovered by exploring some simple structures of
interference influences that don’t already feature in Figure 9. For example, what can be achieved
by combining a chain with a collider?

More generally, Corollary 1 might form the basis for a new approach to quantum causal modelling,
in which it is nonclassicality per se that is to be explained. For example, consider Bell inequality

12This is a rather permissive definition of a local friendliness scenario, since not all Bell inequality violations are
local friendliness inequality violations. But recalling that we are only looking for necessary conditions, and that all
local friendliness inequality violations are also Bell inequality violations, this does not create any problems.
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complementarity Bell PBR

Wigner’s friend local friendliness

{P iZ}

{P aA}

{P iZ}

{P aA} {P bB}

{P xX} {P yY }

{P jW }

{P iZ}

{P a1A1
}

{P a2A2
}

{P iZ}

{P a1A1
}

{P a2A2
} {P b2B2

}

(or swapping A↔ B, a↔ b)

Figure 9: A classification of quantum phenomena according to the structure of interference influences
they necessitate. Forks and colliders formed by red arrows are irreducible. A local friendliness
scenario requires either the structure displayed explicitly, or else the one obtained by swapping
A↔ B and a↔ b, or both.

violations. It is true that the quantum common causes of [18, 19] and the generalized common
causes of [39] are necessary conditions for the inequalities to be violated. But both of these sorts of
common causes are also necessary for correlations that do not violate Bell inequalities. So it isn’t
really the Bell inequality violation in particular that they explain; instead, they explain why there
are some correlations rather than no correlations.

On the other hand, any correlations that do not violate Bell inequalities can be recovered without
any interference forks at all. So an irreducible interference fork is a necessary condition for all and
only the correlations that violate Bell inequalities. That is, some correlations requiring an irreducible
interference fork is equivalent to those correlations providing a Bell-style proof of nonclassicality.
Future work should ask whether the story generalizes, so that any proof of nonclassicality is in a
similar sense equivalent to a particular structure of interference influences.

7 On the status of the interpretation

In this penultimate section, we discuss the status of the interpretation laid out in this paper. In
particular, we discuss two senses in which the interpretation might be held to provide an accurate
description of reality:

1. The interpretation, or a modest generalization thereof, can be deployed to accurately describe
physics at a fundamental level.

2. The interpretation, or a modest generalization thereof, can be deployed to accurately describe
physics at an emergent level (and in that respect resembles classical mechanics).
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One potential difficulty with both views is epistemological. Emily Adlam [40] has described
in detail the problem of intersubjective accessibility which afflicts certain interpretations (such as
RQM without cross-perpsective links). One could argue that the interpretation here faces a similar
problem: in short, given two agents, it seems that there should be at least one bubble BA which
“contains” Alice and not Bob, and another bubble BB which contains Bob but not Alice. But then,
assuming there are no correlations between different bubbles, it seems that Alice in BA cannot
meaningfully communicate with Bob in BB. This might undermine the interpretation’s claim to be
supported by empirical evidence, particularly if we suppose that Bob is an experimentalist trying
to explain to Alice what he saw in the lab, and Alice is a theorist who wishes to decide whether or
not to believe in the interpretation.

Now, there will presumably also be a bubble BAB containing both agents. One might attempt
to argue that the existence of such “large” bubbles in addition to the “small” ones is enough to
ensure the theory is supported by evidence. Certainly, the existence of big bubbles importantly
distinguishes the current interpretation from the “island universe ontologies” that Adlam criticizes
in [40]. But it will take further analysis to determine whether the existence of big bubbles alongside
the small ones is really enough to shift the epistemological dial.

If not, then one could attempt to modify the interpretation by positing that histories are only
realized relative to “large” bubbles. The idea here bears at least a passing resemblance to the
extremal action principle of Lagrangian mechanics: just as we are used to saying that particles
will follow the paths with the largest (or smallest) action, here we want to say that histories are
realized relative to the large bubbles. Of course, the challenge is nailing down a suitable precise
definition of “large”. One candidate definition is that the bubble B is large if there does not exist
any other bubble B′ such that any projector that features in P(C,B) also features in P(C,B′).
If the definition of “large” is restrictive enough to exclude all but one bubble, then one recovers a
sort of absoluteness (but one according to which not all agents in the (extended) Wigner’s friend
scenario actually obtain an outcome); if not, one obtains a more moderate form of event relativity
which may fare better with respect to the problem of intersubjective accessibility.

Another possible response to the intersubjectivity problem is to postulate that there are in fact
correlations between different bubbles. We will return to this idea later on, since it chimes most
naturally with view (2).

For now, let us assume the intersubjectivity problem can be resolved, and discuss two other
potential difficulties with view (1). One is that so far the interpretation only applies to one of
the most simple and empirically limited quantum theories – the theory of finite-dimensional unitary
circuits. Needless to say, such a theory is not usually considered fundamental. While we suspect that
no fundamental changes are necessary for an infinite-dimensional generalization of the interpretation,
it is less clear whether or not the spirit of the interpretation can survive the transition to continuous
dynamics, where there is no fundamental division of the dynamics into discrete transformations (i.e.
into boxes in a circuit). Another issue with viewing the interpretation as fundamental physics is
that a single unitary transformation can always be decomposed into many different circuits, and
the choice of a particular circuit representation is often regarded as somewhat arbitrary. But in
the present interpretation, different circuits lead to different bubbles, and thus to different physical
situations. To summarize, the interpretation in its current form appears to rely significantly on (1)
discreteness of the dynamics, and (2) a preferred circuit representation of the dynamics, both of
which might be regarded as surprising attributes of a fundamental theory of physics.

But perhaps they should not be so regarded. Dynamics are indeed continuous in quantum field
theory and general relativity. But it is commonly speculated that this continuity must ultimately
give way to a more fundamental discreteness in some theory of quantum gravity. Moreover, there is
some evidence that a discrete theory of quantum gravity could successfully recover the continuous
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structures of our current theories as approximations. For example, some free quantum field theories
approximate discrete quantum cellular automata [41, 42], and some general relativistic spacetimes
approximate discrete partial orders (as studied in the context of causal set theory; see [43] for a
review).

Moreover, it is striking that a quantum cellular automaton admits a canonical representation as
a particular unitary circuit, and its quantum causal structure gives rise to a discrete partial order
which one could aim to argue is approximated by a general relativistic spacetime. This raises the
speculative possibility of a fundamental theory of physics based on the interpretation of quantum
theory proposed in this paper, in which both events and spacetime emerge from a discrete quantum
causal structure.

Readers who are unconvinced by such a possibility might consider view (2). One other motivation
for doing so is to uncover more elegant structures at a deeper level than the ones we have been
discussing in this paper. For example, the current interpretation has not posited any correlations
between events that are relative to one bubble and events that are relative to another. Of course, we
know from no-go theorems that certain correlations are forbidden – namely, the sort of correlations
that would make the absoluteness assumption (effectively) true – but that doesn’t mean that there
are no correlations whatsoever. And the intersubjectivity problem arguably provides an independent
motivation for positing such correlations, since they might facilitate meaningful communication
across bubbles. So perhaps there are correlations between bubbles, and perhaps identifying them
will allow one to glimpse a deeper level of reality, admitting a simpler and more beautiful description.

We mention another couple of possible attitudes towards the formalism before closing. Ev-
erettians – and particularly Everettians of the Deutsch-Hayden [44] persuasion – might wish to
employ the notion of preference to describe the branching of the multiverse without relying on the
state vector. Indeed, in a precise sense, one can see preference as generalizing the Heisenberg-
picture relative states defined in [45].13 Finally, one could argue that the formalism plays primarily
an epistemic role, doing more to describe our beliefs and inferences than to describe nature itself.

8 Discussion

Bell’s theorem pushed us towards quantum influences; Wigner’s friend, towards event relativity.
Here, we have argued that a deeper understanding of quantum theory is to be sought in the marriage
of these two ideas. At the core of this argument is Theorem 3, which shows that quantum causal
structure singles out a unique set of consistent histories relative to every subset of a set of unitarily
interacting subsystems.

This facilitates an interpretation of quantum theory according to which all dynamics are unitary,
and yet the universe is represented not by a unitarily evolving quantum state, but by emergent
events. Every interpretation of quantum theory must advocate at least one radical conceptual shift,
and the current one advocates the following: dynamics do not merely constrain the state of reality;
they create it.

This interpretation rejects the absoluteness of events, but it does contain absolutes: just like
in the Everrett interpretation, events are only nonabsolute until you relativize them to a suitable
reference (for the Everettians, branches; for us, bubbles). But, unlike the Everett interpretation,
this one is genuinely stochastic, meaning that there is no difficulty in arguing that the theory would
be falsified by non-Born-rule frequencies.

The interpretation makes precise the idea from RQM that “events arise from interaction” (with
the important caveat that, on the current interpretation, the interaction is among general sets,

13On this point, we thank Charles Alexandre Bédard and Nicetu Tibau Vidal for enlightening discussions.
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rather than pairs, of systems). In doing so, it also provides a way of vastly reducing the number
of incompatible sets of events that one finds in consistent histories, and thus it provides a way of
addressing Dowker and Kent’s criticism [14], to which we shall soon return. The interference influ-
ences on which the interpretation is based facilitate causal explanations of specifically nonclassical
features of quantum correlations in a number of scenarios, and it seems possible that these piecemeal
results could be developed into a significant extension of the quantum causal modelling framework.
As the previous section discusses, the interpretation does not come without its difficulties. Never-
theless, we consider it a promising route towards an ever deeper understanding of the quantum world.

There are a number of directions for future work. It is worth exploring which projective de-
compositions are preferred in much more general scenarios. A particular area of interest is the
emergence of approximate classicality. Typically, this topic has been approached with an (implicit
or explicit) assumption that the quantum state plays a crucial role in shaping the ontology. Hence
there is often much emphasis on the block-diagonality of a density matrix and its approximately
classical evolution through time. One of the core ideas of this work is that decoherence can instead
be understood in purely causal terms as an absence of interference influences. This provides us with
a way of studying the emergence of classicality that doesn’t suffer the pitfalls associated with realism
about the quantum state (e.g. the existence of Everettian branches that violate the Born rule).

And so a natural next step after this paper is to determine whether or not this causal conception
of decoherence permits a satisfying explanation of emergent classicality. If unitary circuits are
generated from realistic Hamiltonians, then do the P(C,B) for an appropriate class of bubbles
contain projectors that approximately localize particles in position and momentum, and are the
corresponding events distributed in a way that approximates classical equations of motion? If so,
then the problems raised by Dowker and Kent [14] are arguably resolved. That is, relative to the
right sort of bubble, one can then unambiguously predict that the sun will rise again.

To that end, it would be worthwhile developing an infinite-dimensional generalization of the
interpretation. It is also worth exploring in further detail the connection between the emergence of
events as we have described it and time symmetry, touched on in the remarks after Definition 3.

Another question for future work is whether our dynamics assumption might be replaced with
a “causation” one. For on our account, the preferred set of projective decompositions P(C,B) is
derived only from the interference influences through the circuit – the full dynamical structure is
not required. Therefore, it is conceivable that the interpretation could be modified to only posit a
set of interference influences, rather than a full dynamical structure. Whether or not this is possible
depends on whether the following conjecture is true: any pair of unitary circuits with exactly the
same interference influences lead to exactly the same probabilities via (12). If so, then perhaps we
have found a way of making good on a suggestion by Spekkens [46], that the traditional dualistic
paradigm of kinematics and dynamics should be replaced by a more unified paradigm based on
causal structure.

Most ambitiously, it is also worth exploring the connection with quantum gravity (touched on in
the previous section). There, it is often speculated that spacetime emerges from causation. In our
interpretation, which is background-independent, events emerge from causation. Is there a more
unified story, waiting to be told?

Acknowledgements

This project has been going on for a long time, and the list of people to thank is correspondingly long.
We are very grateful to Emily Adlam, Marina Maciel Ansanelli, Charles Alexandre Bédard, Časlav
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A A structure lemma for operator algebras

Here, we state a fairly well-known result about the structure of algebras of operators on finite-
dimensional Hilbert spaces. It follows from Theorem III.1.1 of [48].

Lemma 1. [48]. For any subalgebra X ⊆ L(H) of the algebra L(H) of operators on a finite-
dimensional Hilbert space H, there exists some decomposition of H of the form H =

⊕

iH
i
L ⊗ H

i
R

such that
M ∈ X ⇐⇒ ∃{M i

L} :
∑

i

MLi ⊗ πRi (20)

where each MLi is an operator on HL that has null support outside HiL, and each πRi is the operator
on HR that projects onto HiR.

B Proof of Theorem 1

On the one hand, suppose [P̃ iA, P̃
j
D] = 0 ∀i, j. Then, for any j and V~φ of the form V~φ =

∑

i e
iφiP iA⊗

IB ,

Tr((IC ⊗ P
j
D)UV~φ(·)V

†
~φ
U †) = Tr(UP̃ jDV~φ(·)V

†
~φ
U †)

= Tr(P̃ jDV~φ(·)V
†
~φ
)

= Tr(P̃ jDV
†
~φ
V~φ(·))

= Tr(P̃ jD(·))

= Tr((IC ⊗ P
j
D)U(·)U †).

(21)

On the other hand, that Tr
(

(IC⊗P
j
D)U(V~φ(·)V

†
~φ
)
)

= Tr
(

(IC⊗P
j
D)U(·)

)

∀j, V~φ. Since Tr(M(·)) =

Tr(N(·)) implies that M = N for any operators M and N , it follows that V †
~φ
U †(IC ⊗ P

j
D)UV~φ =

U †(IC ⊗P
j
D)U . Therefore, [V~φ, P̃

j
D] = 0. Define V~0 := IA⊗ IB and V ~φi

:= (IA − 2P iA)⊗ IB . For any

i and j, one can deduce that [P̃ iA, P̃
j
D] =

1
2 [V~0 − V ~φi

, P̃ jD] = 0. This proves the theorem.

We note that one can also generalize the proof to show that {P iA} → {P
j
D} is equivalent to the

possibility of signalling via a protocol in which the sender performs a transformation on A with Kraus
operators that are complex linear combinations of the P iA and the receiver does a measurement with

Kraus operators that are complex linear combinations of the P jD. Alternatively, one can see this fact
as corollary of Theorem 3.2 of [20].
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C Proof of Theorem 2

We’ll show that each of the three conditions that define preference is equivalent to an inclusion
relation between operator algebras, and that the conjunction of these three inclusion relations is
equivalent to span({P iA})⊗ IB = centre(A ∩ comm(D)).

Lemma 1 implies that D is spanned by its projectors. Therefore, commuting with every projector
in D means commuting with D itself. And so, condition (1) of preference is equivalent to the inclusion
relation

span({P iA})⊗ IB ⊆ A ∩ comm(D). (22)

Therefore, condition (2) is equivalent to the statement that span({QkA}) ⊗ IB ⊆ A ∩ comm(D)
implies span({QkA})⊗IB ⊆ comm(span({P iA})⊗IB). Since the algebra A∩comm(D) is spanned by its
projectors, this is equivalent to this statement that A ∩ comm(D) ⊆ comm(span({P iA})⊗ IB), which
is in turn equivalent to the inclusion relation

span({P iA})⊗ IB ⊆ comm(A ∩ comm(D)). (23)

It follows that the conjunction of (1) and (2) is equivalent to the statement that span({P iA})⊗
IB ⊆ centre(A ∩ comm(D)). Hence, condition (3) is saying that span({RlA}) ⊗ IB ⊆ centre(A ∩
comm(D)) implies span({RlA}) ⊗ IB ⊆ span({P iA}) ⊗ IB ⊆ A ∩ comm(D) ⊗ IB. And hence, it is
equivalent to

centre(A ∩ comm(D) ⊆ span({P iA})⊗ IB. (24)

Therefore, the conjunction of all three conditions for preference is equivalent to span({P iA}⊗IB =
centre(A ∩ comm(D).

D Proof of equation (10)

In this section, we prove equation (10), i.e. we show that the only permitted interference influences
between projective decompositions within a single P(C,B) go from an ingoing decomposition to
an outgoing one, where the latter is either associated with the same system as the former, or else
another system higher up in the circuit.

To begin with, consider a unitary circuit and the simple case of a bubble with just three systems,
B = {A,B,C}. The circuit can always thought of as a combination of four unitary transformations
(which we think of here as unitary operators between Hilbert spaces)

U1 : G→ A⊗A

U2 : A⊗A→ B ⊗B

U3 : B ⊗B → C ⊗ C

U4 : C ⊗ C → F,

(25)

where we have assumed, without loss of generality, that A < B < C is compatible with the temporal

order induced by the circuit. P(C,B) contains six projective decompositions, which we label D
in/out
A/B/C .

They are derived by considering a unitary operator of the type U : Aout ⊗ Bout ⊗ Cout ⊗ G →
Ain⊗Bin⊗C in⊗F , corresponding to the bottom-right of Figure 1. As described in Figure 2, we say
there is an interference influence between a pair of these decompositions if, when we embed them
back into the original circuit, they fail to commute in the Heisenberg picture.
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We’ll start by showing that there can be no interference influence from Dout
A to Dout

C . To this
end, we note that, by the definition of U , the unitary operator for the whole circuit V := U4U3U2U1

can be written
TrAoutBoutCout((IAinBinCin→AoutBoutCout ⊗ IF )U) = V, (26)

where IAinBinCin→AoutBoutCout is the identity operator from the tensor product of the ingoing Hilbert
spaces to the tensor product of the outgoing Hilbert spaces. (Diagrammatically, one can think of
this operation as bending around each X in wire that comes out of U , and then inserting it into the
corresponding Xout that goes into U .) For an arbitrary P ∈ Dout

A ,

TrAoutBoutCout((IAinBinCin→AoutBoutCout ⊗ IF )U(P ⊗ IBoutCoutG)) = U4U3U2(P ⊗ IA)U1

= P̃V,
(27)

where P̃ := U4U3U2(P ⊗ IA)U
†
2U

†
3U

†
4 . Similarly, for any Q ∈ Dout

C ,

TrAoutBoutCout((IAinBinCin→AoutBoutCout ⊗ IF )U(Q⊗ IAoutBoutG)) = U4(Q⊗ IC)U3U2U1

= Q̃V,
(28)

where Q̃ := U4QU
†
4 . Now recall that Dout

A is preferred by Ain ⊗ Bin ⊗ C in given U , implying that
U(P ⊗ IBoutCoutP )U

† = IAinBinCin ⊗MF for some MF . Thus we can write

TrAoutBoutCout((IAinBinCin→AoutBoutCout ⊗ IF )U(P ⊗ IBoutCoutG))

= TrAoutBoutCout((IAinBinCin→AoutBoutCout ⊗MF )U)

=MFV.

(29)

Comparing (27) and (29), we conclude thatMF = P̃ . Similarly, we know that U(Q⊗IAoutBoutG)U
† =

IAinBinCin ⊗NF for some NF , and can show that NF = Q̃. Since unitary transformations preserve
commutation relations, we can then argue that

[P ⊗ IBoutCoutG, Q⊗ IAoutBoutG] = 0 =⇒ [MF , NF ] = 0 =⇒ [P̃ , Q̃] = 0. (30)

It follows that Dout
A 6→ Dout

C .
Since the relevant notions are symmetric in time, we can give a closely analogous argument that

Din
A 6→ Din

C .
Now, we show that Dout

A 6→ Din
C . On the one hand, for any P ∈ Dout

A and R ∈ Din
C ,

TrAoutBoutCout((IAinBinCin→AoutBoutCout ⊗ IF )(R ⊗ IAinBinF )U(P ⊗ IBoutCoutG))

= U4(R⊗ IC)U3U2(P ⊗ IA)U1

= R̃P̃V

(31)

where P̃ := U4U3U2(P ⊗ IA)U
†
2U

†
3U

†
4 , R̃ := U4RU

†
4 . On the other hand,

TrAoutBoutCout((IAinBinCin→AoutBoutCout ⊗ IF )(R⊗ IAinBinF )U(P ⊗ IBoutCoutG))

= TrAoutBoutCout((IAinBinCin→AoutBoutCout ⊗ IF )(R⊗ IAinBin ⊗MF )U)

=MFTrAoutBoutCout((IAinBinCin→AoutBoutCout ⊗ IF )(R⊗ IAinBinF )U)

= P̃ R̃V,

(32)

where MF is defined as above. It follows that [P̃ , R̃] = 0, so Dout
A 6→ Din

C .
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What we have shown so far is that for the circuit and bubble we have been considering, the only
possible interference influence from A to C has the form Din

A → Dout
C . Now consider a unitary circuit

and a bubble (A1, . . . , An), where the subscript corresponds to the temporal order. We can write
the circuit in the form

V1 : G→ A1 ⊗A1

Vi : Ai−1 ⊗Ai−1 → Ai ⊗Ai for i ∈ {2, . . . n}

Vn+1 : An ⊗An → F.

(33)

The arguments above straightforwardly generalize to show that for any j ≥ i, the only possible
interference influence from (a decomposition associated with) Ai to (a decomposition associated
with Aj) is D

in
Ai
→ Dout

Aj
. This proves the theorem.

E Reproducing standard quantum theory

This appendix serves as an instruction manual for reconstructing an arbitrary circuit from standard
finite-dimensional quantum theory using the interpretation from this paper.

The most general sort of deterministic transformation one can perform in standard finite-dimensional
quantum theory is a quantum channel. This is a completely positive map C : A → B from linear
operators HA to linear operators on HB that preserves the trace of the operators. The most general
(possibly non-deterministic) sort of transformation is a quantum instrument. This is a set {Ci}i of
completely positive maps Ci : A → B from operators on HA to operators on HB whose sum

∑

i Ci
is a quantum channel. We will explain how one can construct any quantum instrument, as well as
any circuit formed by composing quantum instruments in sequence and in parallel. Let us start by
showing that any quantum instrument can be thought of as an orthonormal basis measurement of
the ancillary output of a unitary that acts on a larger system.

Lemma 2. For any quantum instrument {Ci}i of type Ci : A → B there exists a unitary channel
U : A⊗X → B ⊗ Y ⊗ Z and a state |ψ〉 ∈ HX such that

Ci(·) = TrY Z
(

(IB ⊗ |i〉 〈i|Y ⊗ IZ)U((·) ⊗ |ψ〉 〈ψ|)
)

. (34)

To prove Lemma 2, define the channel D : A → B ⊗ Y as D(·) :=
∑

i Ci(·) ⊗ |i〉 〈i|Y . By the
Stinespring dilation theorem, there exists a unitary channel U : A ⊗X → B ⊗ Y ⊗ Z and a state
|ψ〉X such that D(·) = TrZU((·) ⊗ |ψ〉 〈ψ|X). The lemma immediately follows.

The next lemma shows how a unitary can be chosen so that projectors onto a given basis end
up being preferred by an appropriate system.

Lemma 3. The projective decomposition {|i〉 〈i|A} on A is preferred by D given the unitary V :=
∑d−1

i,j=0 |i〉C 〈i|A ⊗ |j + i〉D 〈j|B (where the addition is modulo d).

For the proof, first note that {|i〉 〈i|A} is preferred by D if and only if the following condition
holds.

MA ∈ span({|i〉 〈i|A}) ⇐⇒ [V (MA ⊗ IB)V
†, IC ⊗MD] = 0 ∀MD (35)

The ⇒ direction is obvious. For ⇐, suppose that [V (MA ⊗ IB)V
†, IC ⊗ D] = 0 for all MD. It

follows that V (MA ⊗ IB)V
† = M̃C ⊗ ID for some M̃C . Using the definition of V , this can be

rewritten as
∑

〈i|MA |i′〉 |i〉 〈i′|C⊗(
∑

j |j + i〉 〈j + i′|D) = M̃C⊗ID for some M̃C . Applying (〈k|C⊗
〈k|D)(·)(|k

′〉C ⊗ |k
′〉D) to both sides leaves us with 〈k|MA |k′〉 = 0 for all k 6= k′. It follows that

MA ∈ span({|i〉 〈i|A}).
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Figure 10: A model of a quantum instrument. Six events take place relative to the bubble of four
systems indicated by the broken wires. Only two events, f and g′, are important for reproducing
the quantum instrument. Specifically, conditioning on f = 0 amounts to assuming that the mea-
surement device has been successfully prepared, and g′ can then be understood as the outcome of
the instrument.
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The method for reproducing an arbitrary quantum instrument is given in Figure 10. One uses
the unitary channel U whose existence is guaranteed by Lemma 2. Beforehand, one acts on X and
ancillas with a unitary of the form V † (where the X output of this unitary is analogous to the A from
the definition of V , and the X input is analogous to the C) and then with another unitary W with
the property that W |0〉X2

= |ψ〉X3
, where |ψ〉 is the state from Lemma 2. After U one performs a

unitary of the form V on Z and ancillas (where the Z input is analogous to the A from V ’s definition,
and the Z output is analogous to C). One considers the bubble B corresponding to the four cuts in
the wires in the figure. P(C,B) contains Din

X3
= {W |i〉 〈i|X2

W †} and Dout
Y = {|i〉 〈i|Y }. When f = 0,

the projector |ψ〉 〈ψ|X3
∈ Din

X3
is selected, meaning that the instrument is successfully implemented.

The event g′ can then be identified with the outcome of the instrument, and is associated with the
completely positive map Cg′ .

To model an experiment in which the instrument {C1i } of type C
1
i : A→ B is followed by another

instrument {C2i } of type C2i : B → C, one simply performs the construction from Figure 10 for
each instrument (using separate unitaries and ancillary systems in each case) and then plugs the
B output of the first construction into the B input of the second construction. One then considers
a bubble of 8 systems, formally the union B = B1 ∪ B2 of the two bubbles from each of the
individual constructions. Relative to this new bubble, the probability of getting the outcome g2 of
the second instrument given the outcome g1 of the first instrument, assuming that each instrument
is successfully implemented (i.e. that f1 = f2 = 0) is indeed what one would expect from standard
quantum theory:

pB(g′2|f1 = f2 = 0, g′1) = Tr
(

C2g2(C
1
g1(I/d))

)

. (36)

For a concrete example, suppose the first instrument was a preparation of a particular density
operator, so {C1i }i = {ρ} (in this case, the input system of the first instrument is trivial, HA ∼= C).
Then g′1 only takes one possible value and can be ignored. The expression above becomes pB(g′2|f1 =
f2 = 0) = Tr

(

C2g2(ρ)
)

.
Composing instruments in parallel simply involves taking the tensor product of two constructions.

Again, one recovers the probability formulae one expects from the standard theory.

F The three-box paradox

This appendix articulates a generalized sense in which a three-box paradox could conceivably arise
in the current interpretation, and then shows that it actually never does.

Suppose that, given a unitary circuit, the triplets of decompositions (D1,D
i
2,D3) are contained

in P(C,Bi) respectively for i ∈ {0, 1}, and assume they are given in an order compatible with
“temporal” order induced by the circuit. It follows that there exists a pair of probability distributions
pB0 and pB1 , each over three events, and each corresponding to one of the triplets.

Now further suppose that all the Heisenberg projectors in D0
2 commute with all those in D1

2

(this is indeed the case for the three-box paradox described in Section F). Then consider the set of
decompositions (D1,D

0
2,D

1
2,D3). This four-element set might not be contained in the preferred set of

decompositions for any bubble. However, since there are no chains of interference influences, it will
still satisfy (11) with ρ = I/3. It is therefore mathematically possible to write down a probability
distribution p2 over all four events using (12).

Now suppose, for contradiction, that the decompositions (D1,D
i
2,D3) form a (generalized) three-

box paradox. That is, assume that pB0(e2,0|e1, e3) = pB1(e2,1|e1, e3) = 1, where the fixed events
e2,0 and e2,1 correspond to orthogonal projectors. The form of (12) implies that the probability
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distribution p2 for (D1,D
0
2,D

1
2,D3) embeds pB1 and pB2 as its marginals, so that:

∑

ẽ2,1

p2(e2,0ẽ2,1|e1, e3) = pB0(e2,0|e1, e3) = 1

∑

ẽ2,0

p2(ẽ2,0e2,1|e1, e3) = pB1(e2,1|e1, e3) = 1.
(37)

But since e2,0 and e2,1 correspond to orthogonal projectors, the form of (12) also implies that
p2(e2,0e2,1|e1, e3) = 0. This is in contradiction with a rule that is always satisfied by probability
distributions, namely that if q(α|γ) = q(β|γ) = 1 then q(αβ|γ) = 1. In summary, the assumption
that each (D1,D

i
2,D3) not only forms a consistent set of histories, but also lacks chains of interfer-

ence influences (11), allows us to embed each marginal probability distribution in a single “global”
distribution, blocking a three-box paradox.

G Classifications

In this final appendix, we prove Theorems 1 – 8, and elaborate on some of the scenarios.
First though, let us state a useful lemma, which follows from Lemma 1.

Lemma 4. Consider a Hilbert space HX ⊗ HY ⊗ HZ , an algebra A of operators that all have the
form M = MXY ⊗ IZ , and an algebra B of operators that all have the form N = IX ⊗ NY Z . If
A ⊆ comm(B), then HY admits a decomposition

⊕

iHY i
L
⊗ HY i

R
such that any M ∈ A and N ∈ B

can be written in the forms M =
∑

iMXY i
L
⊗ πY i

R
Z and N =

∑

i πXY i
L
⊗ NY i

R
Z respectively, where

the πY i
RZ

are projectors onto HY i
R
⊗HZ and similarly the πXY i

L
project onto HX ⊗HY i

L
.

Proof of Theorems 4 and 5. Suppose that the left side of Figure 6 forms a complementarity
scenario. Then assume, for contradiction, {P iZ} 6→ {P aA}. By the definition of an interference
influence,

[U(P iZ ⊗ IG)⊗ IX , IW ⊗ V
†(IF ⊗ P

a
A)] = 0. (38)

But the commutator [ρij , σkl] can be rewritten as

[ρij , σkl] = TrWX

(

(P jW ⊗ IS ⊗ P
x
X)[U(P iZ ⊗ IG)⊗ IX , IW ⊗ V

†(IF ⊗ P
a
A)]

)

= 0. (39)

Therefore, we do not have a complementarity scenario.
This proves Theorem 4. Due to the definition of a Wigner’s friend scenario as a pair of comple-

mentarity scenarios, Theorem 5 then follows immediately.

Proof of Theorems 6 and 8. Before giving the proof for the Bell scenario, let us explicitly
define the phrase “local hidden variables model” that appeared in its definition. The probability
distribution p(axby|ij) for a fixed i and j admits a local hidden variables model if and only if it is
mathematically possible to express it as the marginal p(axby|ij) =

∑

λ p(axbyλ|ij) of a probability
distribution p(axbyλ|ij), where two constraints called “Bell locality” and “statistical independence”
are satisfied. Bell locality says that the left and right variables are screened off from one another
by λ, in the sense that p(axby|λij) = p(ax|λij)p(by|λij). Statistical independence says that the
settings are uncorrelated from λ, i.e. p(xyλ|ij) = p(xy|ij)p(λ|ij).

Now for the proof. If there is no irreducible interference fork in the circuit on the left of Figure
7, then there exist projective decompositions {PmZ(A)} and {P

n
Z(B)} on Z and {P oW (A)} and {P

r
W (B)}
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on W satisfying

[PmZ(A), P
n
Z(B)] = 0 ∀mn

[P oW (A), P
r
W (B)] = 0 ∀op

{PmZ(A)} 6→ {P
b
B}

{PmZ(A)} 6→ {P
r
W (B)}

{PnZ(B)} 6→ {P
a
A}

{PnZ(B)} 6→ {P
o
W (A)},

(40)

and such that each P iZ can be written as a sum of products PmZ(A)P
n
Z(B), and each P jW can be

written as a sum of products P oW (A)P
r
W (B). Formally, this last statement means that the set M ×N

of possible joint values (m,n) can be partitioned into disjoint subsets (M × N)i such that P iZ =
∑

(m,n)∈(M×N)i
PmZ(A)P

n
Z(B), and similarly we can write P jW =

∑

(o,r)∈(O×R)j
P oW (A)P

r
W (B). Note

then that every joint value (m,n) is associated with exactly one value of i, and likewise each (o, r)
with one value of j. We denote these values imn and jor respectively.

Since X 6→ B and Y 6→ A through V , it follows from (7) that in particular

{P xX} 6→ {P
b
B}

{P yY } 6→ {P
a
A}.

(41)

Let us use tildes to denote projectors that have been embedded into the Hilbert space for the
whole circuit fragment and transformed into the time slice after U but before V . So, for example,
P̃ aA := IW ⊗ V†(P aA ⊗ IFB), and P̃mZ(A) := IX ⊗ U(PmZ(A) ⊗ IG) ⊗ IY . Now, consider the operator
algebras

A : = aspan
(

{P̃mZ(A)} ∪ {P̃
x
X} ∪ {P̃

o
W (A)} ∪ {P̃

a
A}

)

B : = aspan
(

{P̃nZ(B)} ∪ {P̃
y
Y } ∪ {P̃

r
W (B)} ∪ {P̃

b
B}

)

,
(42)

where aspan(s) is the algebra of operators obtained by taking matrix products and convex linear
combinations of operators in the set s. (40), (41), and temporal order of the circuit imply that
A ⊆ comm(B). Define the composite system C by HC = HW ⊗ HS . Lemma 4 implies that there
exists a decomposition HC =

⊕

kHCk
L
⊗HCk

R
such that any M ∈ A and N ∈ B can be written

M =
∑

k

MXCk
L
⊗ πCk

RY

N =
∑

k

πXCk
L
⊗NCk

R
Y .

(43)

The probability distribution p(axbyij) is given by

p(axbyij) =
1

d
Tr(P̃ iZ P̃

x
X P̃

y
Y P̃

j
W P̃

a
AP̃

b
B). (44)

Defining the projectors P̃ kC := πXCk
L
⊗πCk

R
Y this can be rewritten as p(axbyij) =

∑

mnopk q(axbyijmnork),

where the probability distribution q(axbyijmnork) is defined by

q(axbyijmnork) :=
1

d
Tr(P̃mZ(A)P̃

n
Z(B)P̃

x
X P̃

y
Y P̃

k
C P̃

o
W (A)P̃

r
W (B)P̃

a
AP̃

b
B)δi,imn

δj,jor . (45)
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(One can verify this is a valid probably by an argument similar to the proof of Theorem 3.) Now
we show that p(axby|ij) admits a local hidden variables model for λ := (m,n, o, r, k). For the proof
of Bell locality, we start by commuting around some projectors in (45).

q(axbyijmnork) =
1

d
Tr(P̃ kCP

m
Z(A)P̃

x
X P̃

o
W (A)P̃

a
AP

n
Z(B)P̃

y
Y P̃

r
W (B)P̃

b
B)δi,imn

δj,jor

=
1

d
Tr(Mmxoa

XCk
L

⊗Nnyrb

Ck
RY

)δi,imn
δj,jor

=
1

d
Tr(Mmxoa

XCk
L
)Tr(Nnyrb

Ck
RY

)δi,imn
δj,jor

=⇒ q(axby|ijmnork) = q(ax|ijmnork)q(by|ijmnork).

(46)

Here, the second line uses (43) and the facts that PmZ(A)P̃
x
X P̃

o
W (A)P̃

a
A ∈ A and PnZ(B)P̃

y
Y P̃

r
W (B)P̃

b
B ∈ B.

The final step uses the fact that if a probability distribution p(αβγ) can be written as p(αβγ) =
f(αγ)g(βγ) for some functions f and g, then p(αβ|γ) = p(α|γ)p(β|γ), using the substitutions α =
ax, β = by and λ = ijmnork. For statistical independence,

q(xyijmnork) =
1

d
Tr(P̃ kCP

m
Z(A)P̃

o
W (A)P

n
Z(B)P̃

r
W (B)P̃

x
X P̃

y
Y )δi,imn

δj,jor

=
1

d
Tr(OijmnorkC )δi,imn

δj,jorTr(P
x
X ⊗ P

y
Y )

=⇒ q(xymnork|ij) = q(xy|ij)q(mnork|ij).

(47)

The second equality makes use of the fact that the first five traced-over operators in the first line
act trivially on X and Y . The final inference exploits the aforementioned fact about distributions
of the form p(αβγ) = f(αγ)g(βγ), this time using the substitutions α = xy, β = mnork and γ = ij.
This proves Theorem 6

Theorem 8 follows immediately from Theorems 5 and 6: one needs both a chain for the Wigner’s
friend scenario required by the definition of the local friendliness scenario, and an irreducible inter-
ference fork for the Bell inequality violations.

Explaining the (generalized) PBR scenario. Since our PBR scenario is in some respects a
generalization of the one from [37], it is worth explaining its relationship with the PBR theorem.

We start with a recap of the PBR scenario as described in [37]. Suppose that when a quantum
state |0〉 is prepared, that really means that some state λ in a more detailed, but as yet undiscovered,
theory is prepared, with a probability density of µ0(λ). And suppose that when |+〉 is prepared,
that really means that some state λ is prepared with probability density µ+(λ). And suppose that
the two distributions overlap. That is, suppose that the intersection of the supports of µ0 and µ+

is attributed a nonzero probability by both measures. If the λ’s are regarded as complete physical
descriptions of the system, then the state space of quantum theory can then be regarded as merely
epistemic, because two different quantum states can correspond to exactly the same physical states
of affairs.

However, [37] shows that the distributions cannot overlap given some natural assumptions. First
up, one has to assume that the probability for obtaining the outcome corresponding to |φi〉 when
performing basis measurement on a quantum state |ψ〉 is given by a weighted sum of probabilities
for that outcome given some fixed λ:

p(i|ψ) =

∫

dλµ(i|λ)µψ(λ). (48)
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We call this the probability assumption. It is one of the defining assumptions of the ontological
models framework [49], on which the PBR theorem is based. Secondly, one needs to assume that
if A is prepared in |α〉 for α ∈ {0,+}, and likewise B is prepared in |β〉 for β ∈ {0,+}, then the
description of A⊗B in the underlying theory is

µαβ(λA, λB) = µα(λA)µβ(λB). (49)

This is called preparation independence. Assuming the predictions of quantum theory are correct,
it follows that the Born probability p(i|αβ) = | 〈Φi| |Ψα,β〉 |2 for getting the outcome for 〈Φi| when
performing a measurement of a basis on the state |Ψα,β〉 := |α〉 |β〉 is given by

p(i|αβ) =

∫

dλAdλBµ(i|λA, λB)µα(λA)µβ(λB) (50)

A little thought shows that, given these assumptions, if we can find a basis with the property that

∀i ∃α, β : 〈Φi|Ψα,β〉 = 0, (51)

i.e. with the property that every possible outcome of the measurement rules out one of the |Ψα,β〉,
then µ0 and µ+ cannot overlap.

[37] shows that such a basis does indeed exist. It then generalizes the argument beyond a bipar-
tite scenario to show that there can be no overlap between any pair of distinct pure states, again
given (generalizations of) the last two assumptions.

We now move on to our version of the PBR scenario. Our version sticks to the bipartite case.
However, it is more general in the sense that (i) we consider mixed, rather than pure, states, (ii) we
consider possibly different pairs of states on each of the two subsystems, and (iii) we do not assume
that the two subsystems are isomorphic, or that they should be understood as tensor factors of the
overall Hilbert space. Instead, we let the two subsystems correspond to the left and right parts of a
decomposition of the overall Hilbert space of the form

HS =
⊕

i

HSi
L
⊗HSi

R
. (52)

The “left” subsystem L is associated with density operators of the form

ρ =
⊕

i

piρSi
L
⊗ ISi

R
(53)

where each ρSi
L
is itself a density operator on the Hilbert space HSi

L
, and the pi form a probability

distribution. Similarly, “right” subsystem R is associated with density operators of the form

σ =
⊕

i

qiISi
L
⊗ σSi

R
(54)

where the σSi
R
are density operators and the qi form a probability distribution.

As the proof of Theorem 7 will show, the ρ, ρ′, σ and σ′ that appear in the definition of the PBR
scenario do indeed have this form. Roughly speaking, a PBR scenario as we define it facilitates a no-
go theorem for the claim that the distributions for the two states on L overlap, and the distributions
for the two states on R overlap, and, moreover, the overlap corresponds to the same subspace
HSi

L
⊗HSi

R
of HS .
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Let us make this more precise. We would like to associate ρ(
′) with some probability density

function µρ(′) over the states λL ∈ ΛL, and σ(′) with some probability density function µσ(′) over
the states λR ∈ ΛR. Now, let us assume that in general, if a density operator τ can be written as a
probabilistic combination of different density operators τ =

∑

rkτk, then the probability distribution
associated with τ is a corresponding probability distribution over the different τk. That is,

τ =
∑

rkτk =⇒ µτ =
∑

k

rkµτk . (55)

If we imagine that we subject ρ(
′) to a PVM {πiS}made up of projectors onto the different orthogonal

subspaces in (52), this implies that the state space ΛL must decompose as ΛL = ∪iΛiL, where each
ΛiL ⊆ ΛL is made up of states that return the ith outcome of the POVM with certainty, and thus

ΛiL ∩ ΛjL = ∅ for i 6= j. Similarly, we can decompose ΛR = ∪iΛ
i
R into disjoint regions for each

outcome of the POVM. Then we can write the probability functions for ρ, ρ′, σ, and σ′ as mixtures
of probability functions for different values of i. For example, µρ =

∑

i piµρSi
L

, where the support

of each µρ
Si
L

is contained in the corresponding ΛiL.

As in [37], we shall make use of the probability assumption (48). But in this setting, it no
longer makes sense to impose the same preparation independence assumption we did before. For
if the probability distribution associated to, say, ρσ was the product of probability distributions
associated to ρ and σ individually, then the resulting distribution might have nontrivial support on
a region ΛiL×ΛjR where i 6= j, even though the two regions in the product expression correspond to
contradictory outcomes of the PVM {πiS}. Instead, we need a generalized preparation independence
assumption. Since ρσ has the form

∑

i piqiρSi
L

⊗ σ
Si
R

∑

j pjqj
(56)

upon renormalization, we shall assume that the associated probability distribution is defined by

µρσ(λL, λR) =

∑

i piqiµρSi
L

(λL)µσ
Si
R

(λR)
∑

j pjqj
. (57)

Thus the two subsystems are not prepared independently, in so far as the preparation is not successful
if λL ∈ ΛiL and λR ∈ ΛjR for some i 6= j. However, given the assumption that both subsystems are
successfully prepared in matching subspaces ΛiL and ΛiR for some fixed i, they are independent. (We

make analogous assumptions for all ρ(
′)σ(′)).

Let us define OiL as the part of the overlap of the distributions µρ and µρ′ that is contained in
ΛiL, and O

i
R similarly. That is,

OiL := supp(µρ) ∩ supp(µρ′) ∩ ΛiL

OiR := supp(µσ) ∩ supp(µσ′) ∩ ΛiR.
(58)

Recall that we are aiming for a no-go theorem for the claim that the distributions corresponding to
ρ and ρ′ have a nontrivial overlap and the distributions corresponding to σ and σ′ have a nontrivial
overlap on the same subspace. That is,

∃i : piµρ(O
i
L) 6= 0, p′iµρ′ (O

i
L) 6= 0, qiµσ(O

i
R) 6= 0, q′iµσ′(OiR) 6= 0. (59)

If (59) holds in conjunction with generalized preparation independence (57), then we can infer that
there is a nontrivial overlap of all four distributions µρ(′)σ(′) . That is, (57) and (59) together imply
that

∃S : S ⊆ OLR, µρ(′)σ(′)(S) 6= 0, (60)
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where for readability we have defined

OLR := supp(µρσ) ∩ supp(µρσ′ ) ∩ supp(µρ′σ) ∩ supp(µρ′σ′), (61)

and specifically S = OiL ×O
i
R.

If we also assume the existence of the POVM from equation (17) and we make the probability
assumption (48), then (60) implies that the probability for any outcome (i, j) given that the state
λ ∈ S is µ(ij|λ) = 0. But this also contradicts the probability assumption, since then

∑

ij µ(ij|λ) 6= 1
and so µ(ij|λ) cannot be a (conditional) probability distribution. So (17), (48), and (60) imply a
contradiction. But ultimately, (60) was derived from generalized preparation independence (57)
and the existence of the overlap as described in equation (59). Therefore, given the probability
assumption and generalized preparation independence, the existence of a POVM with the property
(17) implies that the overlap from (59) does not exist. Therefore, if one can show that such a
POVM exists, one can rule out epistemic interpretations of the quantum state that assume both the
probability rule and generalized preparation independence.

It remains to justify the assumption of equation (18), namely, that the product ρσρσ′ is nonzero.
This follows from the other assumptions we have already made in setting out this generalized PBR
no-go theorem. The probability assumption implies that orthogonal density operators are associated
with nonoverlapping probability densities. Therefore, the existence of the overlap from (59) implies
that, for some i, ρSi

L
ρ′
Si
L

6= 0 and σSi
R
σ′
Si
R

6= 0. But then the structure of the operators with respect

to (52) implies that ρσρ′σ′ 6= 0. Thus whenever one can derive a no-go theorem along the lines we
can describe, (18) holds – this is why it is acceptable to make it part of the definition of a PBR
scenario.

We have just sketched out how a PBR-style no-go theorem can be derived in the bipartite case
when the subsystems are associated with density operators belonging to commuting operator alge-
bras. The proof below will show, amongst other things, that one does indeed find such subsystems
whenever one has a PBR scenario as defined above.

Proof of Theorem 7. As in the Bell scenario, suppose that, for all i and j, P iZ and P jW can be
written as sums of products of commuting elements of projective decompositions on Z andW respec-
tively. That is, assume that P iZ =

∑

(m,n)∈(M×N)i
PmZ(A)P

n
Z(B), and P

j
W =

∑

(o,r)∈(O×R)j
P oW (A)P

r
W (B),

where the (M × N)i are nonoverlapping sets of joint valuations of the indices m and n, and sim-
ilarly (O × R)j . Assume that {PmZ(A)} 6→ {P

r
W (B)}, {P

x
X} 6→ {P

r
W (B)}, {P

n
Z(B)} 6→ {P

o
W (A)}, and

{P yY } 6→ {P
o
W (A)}. Again define the algebras A := aspan

(

{P̃mZ(A)} ∪ {P̃
x
X} ∪ {P̃

o
W (A)} ∪ {P̃

a
A}

)

and

B := aspan
(

{P̃nZ(B)} ∪ {P̃
y
Y } ∪ {P̃

r
W (B)} ∪ {P̃

b
B}

)

, where tildes now denote Heisenberg projectors on

the system Z⊗A⊗S⊗B. Deduce that A ⊆ comm(B), and thus from Lemma 4 that HD := HZ⊗HS
admits a decomposition HD =

⊕

kHDk
L
⊗HDk

R
, such that any M ∈ A and N ∈ B can be written

M =
∑

k

MADk
L
⊗ πDk

RB

N =
∑

k

πADk
L
⊗NDk

R
B.

(62)

ρ and ρ′ are defined on DL, while σ and σ′ are defined on DR. Since [ρ, σ] = [ρ′, σ′] = 0, ρσ
and ρ′σ′ are both positive operators. For any pair of positive operators O and O′, we have that
OO′ = 0⇔ Tr(OO′) = 0. Thus (18) implies that Tr(ρσρ′σ′) =

∑

ij Tr(ǫ
ijρσρ′σ′) 6= 0. Since ρσρ′σ′

is also a positive operator it follows that

∃i, j : Tr(ǫijρσρ′σ′) 6= 0. (63)
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This will allow us to show that (given the lack of an irreducible interference collider) if (18) holds
then (17) does not. To that end, we note that

Tr(ǫijρσρ′σ′) =
1

dZdAdB
Tr(P̃ iZ P̃

j
W (IAB ⊗ IZ ⊗ ρσρ

′σ′))

=
1

dZbdAdB

∑

mnor

Tr
(

P̃mZ(A)P̃
o
W (A)P̃

n
Z(B)P̃

r
W (B)(IAB ⊗ IZ ⊗ ρ)(IAB ⊗ IZ ⊗ ρ

′)

× (IAB ⊗ IZ ⊗ σ)(IAB ⊗ IZ ⊗ σ
′)
)

δi,imnδj,jor .

(64)

The operator IZ ⊗ ρ can be rewritten in the form

IZ ⊗ ρ = TrAB(P̃
a
AP̃

x
X)

=
∑

k

TrAB(ρADk
L
⊗ πDk

RB
)

=
∑

k

ρDk
L
⊗ πDk

R
,

(65)

where in the second line we used the fact that P̃ aAP̃
x
X ∈ A. Using this and similar expressions, along

with the facts that P̃mZ(A)P̃
o
W (A) ∈ A and P̃nZ(B)P̃

r
W (B) ∈ B, we can write

Tr(ǫijρσρ′σ′) =
1

dZ

∑

mnork

Tr(M imjo

Dk
L

ρDk
L
ρ′Dk

L
)Tr(N injp

Dk
R

σDk
R
σ′
Dk

R
). (66)

Together with (63), this implies that

∃ijmnork : Tr(M imjo

Dk
L

ρDk
L
ρ′Dk

L

) 6= 0 and Tr(N injr

Dk
R

σDk
R
σ′
Dk

R

) 6= 0. (67)

It follows that

∃ijmnork : M imjo

Dk
L

ρDk
L
6= 0, M imjo

Dk
L

ρ′Dk
L

6= 0, N injp

Dk
R

σDk
R
6= 0, N injp

Dk
R

σ′
Dk

R

6= 0. (68)

We can then infer that, for example, Tr(M imjo

Dk
L

ρDk
L
)Tr(N injp

Dk
R

σDk
R
) 6= 0, and so

Tr(ǫijρσ) =
1

dZ

∑

mnork

Tr(M imjo

Dk
L

ρDk
L
)Tr(N injp

Dk
R

σDk
R
) 6= 0 (69)

for this i and j (since each summed-over term is greater than or equal to zero). Similarly, we can
show that Tr(ǫijρσ′), Tr(ǫijρ′σ), and Tr(ǫijρ′σ′) are all nonzero for the same i and j, providing
us with a counterexample to (17). To summarize the proof, the lack of an irreducible interference
collider means that (18) implies that (17) fails.
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