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Spacetime emergence from entanglement proposes an alternative to quantizing gravity and typically
derives a notion of distance based on the amount of mutual information shared across subsystems. Albeit
promising, this program still faces challenges to describe simple physical systems, such as a maximally
entangled Bell pair that is taken apart while preserving its entanglement. We propose a solution to this
problem: a reminder that quantum systems can have multiple sectors of independent degrees of freedom,
and that each sector can be entangled. Thus, while one sector can decohere, and decrease the amount of
total mutual information within the system, another sector, e.g. spin, can remain entangled. We illustrate
this with a toy model, showing that only within the particles’ momentum uncertainty there can be
considerably more entanglement than in the spin sector for a single Bell pair. We finish by introducing
some considerations about how spacetime could be tested in the lab in the future.
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I. INTRODUCTION

A century has gone by since Planck discovered the
quantum-mechanical nature of our Universe. Since then,
the three fundamental interactions that mainly govern the
microscopic scales have been quantized. Together, they
compose the Standard Model of particle physics—the most
accurate theory ever devised by us. And gravity does not fit
in it. In spite of having its first mechanical description
introduced by Newton centuries before, the program of
quantizing gravity for arbitrarily high energies remains
incomplete.
Similarly to Yukawa’s theory to describe the nuclear

force between nucleons mediated by pions, quantum
general relativity is a low-energy effective field theory [1].
As Yukawa’s theory was superseded by quantum chromo-
dynamics, where more fundamental degrees of freedom
were introduced, the same is expected to happen with
gravity. Thus, the quantized degrees of freedom in quantum

general relativity, namely the spacetime fluctuations para-
metrized by the metric field, will no longer be fundamental
in the final quantum gravity theory.
Nonetheless, most attempts to reconcile gravity with

quantum mechanics have insisted on keeping these degrees
of freedom one way or another. String theory [2], the most
prevalent approach to quantum gravity, introduces other
spacetime degrees of freedom that parametrize the strings’
worldsheet. Meanwhile, some other approaches, such as
loop quantum gravity [3], develop new ways of quantizing
the same degrees of freedom from general relativity. Still,
the single most significant insight since this program
started came from Maldacena in 1997 [4]. By introducing
the AdS/CFT correspondence, he showed that a gravita-
tional theory could be dual to a lower-dimensional quantum
mechanical theory without gravity. Since then, evidence
about the emergent nature of spacetime has piled up.
The research on spacetime emergence follows a long

thread that started with findings by Bekenstein [5], who
explored the thermodynamic properties of black holes and
related the entropy of a black hole to its surface area. Later,
Hawking [6] completed the thermodynamical description
by showing that black holes indeed emit thermal radiation.
Two decades later, the holographic principle was intro-
duced by ’t Hooft [7], stating that the boundary of a bulk
region of space encodes information about its interior.
Meanwhile, Jacobson [8] showed that Einstein’s equation
of general relativity could be seen as an equation of state
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resulting from the thermodynamic limit of local Rindler
causal horizons. Despite these developments, theories
without gravity ab initio were still lacking until
Maldacena [4] proposed the AdS/CFT correspondence. It
established a holographic relationship between anti–de
Sitter (AdS) space and conformal field theories, also
referred to as the gauge/gravity duality. Then, Ryu and
Takayanagi [9] showed that in an AdS space there is a direct
relationship between the entanglement entropy associated
with bulk regions separated by a boundary surface where a
conformal field theory is defined and the area of this
boundary. Finally, van Raamsdonk [10] extended this
relationship by suggesting that one could relate the boun-
dary surface between bulk regions and the distance between
them in an AdS/CFT setting.
More recently, Cao et al. [11,12] have combined much of

this thread into a new research program. It starts from a
purely quantum-mechanical framework and its entangle-
ment structure and derives classical spatial geometry
satisfying Einstein’s equation (as illustrated in Fig. 1). In
short, the program suggests that there is a mapping between
the mutual information of quantum subsystems and the
classical geometry connecting them, giving rise to an
emergent space purely defined in terms of the quantum
information contained in the system. This research program
builds up on several previous works (e.g. [13–17]).
Although this program still remains incomplete, we can
argue that space, and perhaps time, will no longer be
fundamental within this framework upon its completion.
Nonetheless, even at this stage the program faces some

challenges, as illustrated by the quote shown above. The
mutual information of quantum subsystems relates to the

classical geometry connecting them such that the distance
between subsystems in the emergent geometry is a mono-
tonically decreasing function of the mutual information
(see Fig. 1). The intuition here is that if quantum subsystems
are more entangled, then their locations in the emergent
geometry will be closer; if they are not entangled, then they
will be as distant as allowed in the emergent space. The
problem is that, for instance, a maximally entangled Bell pair
will always have zero distance between its subcomponents
in the emergent geometry, even though we know that its
subcomponents can be arbitrarily separated. In fact, this
resembles the ER ¼ EPR conjecture introduced in [18]. The
conjecture relates maximally entangled systems at the quan-
tum level with wormholelike geometries at the spacetime
level. Thus, it is expected that despite the subcomponents of a
Bell pair be arbitrarily far away, they would still be connected
by wormholes so that their distance is zero. Nevertheless, the
conjecture is in tension with the fact that local observers do
not see the wormhole geometry in their labs.
Thus, our objective is to show how one can recover the

nonvanishing relative distances connecting the pair in the
emergent space. We will show how the mutual information
changes due to nonlocal entanglement perturbations and
how that affects the emergent spacetime geometry. Hence,
the typical notion of relative distances across entangled
systems can be recovered instead of simply recovering
wormholes as suggested in [18].
The paper is divided as follows: Sec. II briefly reviews

the spacetime emergence program introduced in [11,12]. In
Sec. III, we model a Bell state in ever-increasing levels of
description and show one way to understand how its parts
can be arbitrarily separated. Finally, in Sec. IV we discuss
for the first time some ideas on how spacetime emergence
can be tested in the lab, and then we conclude with a
discussion in Sec. V.

II. SPACETIME EMERGENCE AND RELATIVE
DISTANCES

The general strategy to reconstruct space from the
Hilbert space introduced in [11,12] is
(1) Start with a Hilbert space H;
(2) Decompose the Hilbert space into a large numbers of

factors H ¼ ⊗
p
Hp (see Appendix A 1). Every factor

is finite dimensional1;
(3) Consider only “redundancy-constrained” (RC)

states, jψiRC, that are a generalization of states in
which the entropy of a region obeys an area law [21];

FIG. 1. Representation of how space emerges from quantum
mechanics. In the quantum Hilbert space H, different quantum
subsystems, Hp, such that H ¼ ⊗

p
Hp, are connected by their

mutual information, which is larger for darker red lines. In the
emergent classical manifold M, the relative distance of these
subsystems, Up, decays monotonically with respect to the amount
of mutual information they share.

1In [19,20] is argued why we should expect that the Hilbert
spaces associated with local regions of spacetime should be finite
dimensional. Note that this implies a radical departure from
quantum field theory, where every point in spacetime gives rise to
an infinite-dimensional Hilbert space for each field defined in it.
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(4) Consider the weighted graph, G, with vertices rep-
resented by factors, Ap, and edges represented by
mutual information among them (see Appendix A 2),
IðAp∶AqÞ ¼ SðApÞ þ SðAqÞ − SðAp∶AqÞ. Then, de-
fine a metric on the graph connecting the factors;

(5) Construct a metric graph, G̃, with smooth, flat
geometries by mapping G → G̃;

(6) Consider perturbations on the quantum state, jδψi,
which deforms the entanglement structure ofH, and
show that this yields local curvature proportional to
the local change in entropy;

(7) Finally, relate the change in entropy to the change of
entropy of an effective field theory. Then, recover
the Einstein’s equation by means of the entangle-
ment first law δS ¼ δhKi [13,14,22,23], relating the
change in entropy to the change of the vacuum
expectation value of the modular Hamiltonian,
K ≡ ln ρ, where ρ is the density matrix of the
unperturbed state.

For the remainder of the paper, we will be mostly
concerned in defining the metric in the emergent geometry
between any two factors. So we now focus on items 3 and
4, and later on 5 when we discuss how entanglement
perturbations can disturb the line element between any two
quantum systems.
The overall expectation is that systems which are near in

the emergent geometry share more mutual information than
systems which are further apart [10]. To implement that, the
metric graph G̃ is assumed to have the same vertices as G
but with reweighted edges by

wðAp; AqÞ ¼
�
lRCΦðIðAp∶AqÞ=I0Þ; p ≠ q

0; p ¼ q
ð2:1Þ

for some function of themutual informationΦðIðAp∶AqÞ=I0Þ
where I0 ¼ maxfIðAp∶AqÞg, such that Φ’s argument is
∈ ½0; 1�, and lRC is the scale of the RC states. The function
Φ is defined to be a monotonically decreasing function such
that limx→1ΦðxÞ → 0 and limx→0 ΦðxÞ → ∞.2 A suitable
candidatewouldbeΦðxÞ ¼ − logðxÞ,which is expected in the
ground state of a gapped system [21].
The vertices p and q are connected by a large set of

vertices with many possible paths, such as P ¼ fp0 ¼ p;
p1;…; pk−1; pk ¼ qg, so the minimal path P giving the
distance function dðAp; AqÞ is chosen to be the path which
minimizes the sum of weights

dðAp; AqÞ ¼ min
P

�Xk−1
n¼0

wðpn; pnþ1Þ
�
; ð2:2Þ

which by construction satisfies the properties of a metric,
since the mutual information is symmetric, positive and
a scalar, and the minimization of weights along a path
satisfies the triangle inequality.
At this stage, we can contemplate our challenge: if we

take a simple Bell pair and compute the mutual information
between each qubit, then the shortest path between them
vanishes, as they are maximally entangled. One interpre-
tation is to consider this as an implementation of
ER ¼ EPR, where the vanishing metric could be inter-
preted as describing the presence of a wormhole between
Ap and Aq. Nonetheless, we still need to understand how
come we do not see the wormhole in a lab, as in the lab we
can create entangled particles and separate them arbitrarily,
in principle. This is the criticism against the program
highlighted by the quote at the beginning of the paper.
We aim to provide a way out of this conundrum. The

basic idea is simple: when we talk about quantum systems,
we often only include some of their degrees of freedom,
e.g. in the case of the Bell pair, we typically only model the
pair by describing its spin state. We will see that by
including other degrees of freedom, the Hilbert space gets
extended by the presence of multiple sectors. While each
sector can have a state which remains maximally entangled,
the full state does not need to correspond to a maximally
entangled one. Thus, the mutual information is not maxi-
mal and the distance between subsystems can be different
than zero. The null distance, or formation of wormholes
between subsystems, can be seen as an artifact of our
ignorance of the full system.

III. CLOSING DOWN WORMHOLES

We illustrate the discussions from last section by consid-
ering an initial particle of massM and spin 1 that decays into
two equal particles of mass m and spin 1

2
. The pair is shared

between Alice and Bob and we study it in ever-increasing
levels of descriptions. For illustration purposes, we mostly
focus on two qubits in an entangled triplet state for the spin
sector, but all the considerations can be easily generalized.

A. Vanilla Bell pair

Initially, we consider only the existence of the pair
with the following tensor product structure (TPS),
T ∶H → HAB ¼ HA ⊗ HB, and we assume their state to
be an entangled triplet qubit,

jψiAB ¼ 1ffiffiffi
2

p ðj↑iA ⊗ j↑iB þ j↓iA ⊗ j↓iBÞ

≡ 1ffiffiffi
2

p ðj↑↑i þ j↓↓iÞ: ð3:1Þ

We can easily see that Bob’s and Alice’s reduced
density matrices are maximally mixed and that the von
Neumann entropy associated with them is SðρiÞ ¼ log 2,

2Naturally, the true form of this function will be more
complicated than that if we expect to recover arbitrary spatial
geometries.
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where i ¼ fA; Bg, while their mutual information is
IðA∶BÞ ¼ 2 log 2. Thus, the state saturates their mutual
information, which is upper bounded by the sum of the
logarithm of each Hilbert spaces’ dimensions (see
Appendix A 2). This can be easily generalized by consid-
ering two qudits instead, such that SðρiÞ ¼ logN and
IðA∶BÞ ¼ 2 logN, where N is the dimension of each
Hilbert space factor, Hi.
Now we consider the presence of a simple environment

surrounding Alice made of a simple qubit. The extended
Hilbert space reads, H → HA ⊗ HB ⊗ HE, and after
allowing Alice’s particle to entangle with the environment
by some unitary transformation, U, the final state is

jψiAB ⊗ jei→U jψ 0i ¼ 1ffiffiffi
2

p ðj↑↑↑i þ j↓↓↓iÞ: ð3:2Þ

Different than when the pair is isolated, now the density
matrix associated with Alice’s and Bob’s pair does not
correspond anymore to a pure state, and SðρABÞ ¼ log 2,
while the entropy associated with each subsystem remains
the same, SðρiÞ ¼ log 2. This implies that the mutual
information between Alice and Bob is now IðA∶BÞ ¼
log 2 and does not saturate the upper bound anymore. This
is related to the monogamy of entanglement [24], which
prevents two qubits from being maximally entangled if any
of them is also entangled with another qubit.
As we just saw, IjψiðA∶BÞ > Ijψ 0iðA∶BÞ, while

ImaxðA∶BÞ does not depend on the state but only on the
dimensions of Hi. The emergent metric built in Sec. II
assigns zero distance to maximally entangled subsystems.
That was the case for the Bell pair without the presence
of the environmental qubit, but it is no longer the case
when the pair gets entangled with it. In fact, using the
ΦðxÞ ¼ − log x [10,11,25], we have

wðA∶BÞjψi ¼ −lRC log 1 ¼ 0; ð3:3aÞ

wðA∶BÞjψ 0i ¼ lRC log 2: ð3:3bÞ

Thus, at this level, we can start to understand how the
relative distance between the subsystems can be different
than zero. Nonetheless, we are still not done, as the jψ 0i
does not correspond any longer to a maximally entangled
spin state, so it could not possibly model a Bell pair that has
its subsystems arbitrarily far apart.

B. What do quantum states describe?

The typical Bell states representing entangled spin
systems should not be confused with an exhaustive
description of these systems. There are many other quan-
tum degrees of freedom that are tacitly suppressed when we
simply model the spin sector. In fact, the typical example of
a decaying particle into two particles that have their spin
states entangled should also conserve their momentum, for

example. In the rest mass frame, the state (3.1) would be
generalized to

jψi ¼ 1ffiffiffi
2

p ðj↑↑i þ j↓↓iÞ ⊗ jp;−pi; ð3:4Þ

where the Hilbert space is extended, H ¼ HA ⊗ HB ¼
Hs

A ⊗ Hs
B ⊗ Hp

A ⊗ Hp
B, to also take into account the

momentum degrees of freedom, here simply represented
as a two-level state (we develop more on this below) as p
can be computed classically in terms of m and M and each
particle has either p or −p as its momentum in the rest
frame of the initial system. In other words, we consider
two particles with conserved momentum and spin.
In the nonrelativistic limit (for the relativistic case, see
e.g. [26,27]), the spin and momentum sector lead to two
independent sectors in the Hilbert space and we can expect
that each sector has separable contributions to the overall
density matrix, such that

ρAB ¼ ρsAB ⊗ ρpAB: ð3:5Þ

Still, each sector can give rise to respective degrees of
freedom that are entangled,

ρsAB ≠ ρsA ⊗ ρsB; ρpAB ≠ ρpA ⊗ ρpB: ð3:6Þ

Then, the total mutual information is

IðA∶BÞ ¼ SðρAÞ þ SðρBÞ − SðρABÞ;
¼ IðAs∶BsÞ þ IðAp∶BpÞ; ð3:7Þ

which trivially implies IðA∶BÞ ≥ IðAs∶BsÞ.
Therefore, we can have an entangled Bell pair whose

total mutual information exceeds the spin sector’s mutual
information. Qualitatively, we consider that initially an
entangled Bell pair has maximal mutual information both in
spin and momentum sector, and as we separate them, the
mutual information in the momentum sector decreases.
Naturally, when the size of the Hilbert space for the
momentum sector far exceeds the size of the Hilbert space
for the spin sector, the mutual information of the spin sector
is negligible in comparison and so

IðA∶BÞ ≈ IðAp∶BpÞ; ð3:8Þ
and correspondingly the line element of a Bell pair would
be largely independent of the spin correlation.
Let us see how we can think about this for the

momentum sector now.

C. Realistic Bell pair

We now consider a more realistic example of a
Bell pair with both a spin and a momentum sector.
Once again we consider the decay of a particle
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M → mþm and suppose the momentum of the initial
particle is Δp in its frame due its the momentum
uncertainty. Since we expect we can localize our particles
in our labs to measure their spin, that naturally constrains
the uncertainty in the position by some characteristic scale
of our apparatus, lapp. By saturating the uncertainty
principle, then the momentum uncertainty is upper
bounded by papp ∼ ℏ=lapp.

3

As we briefly discussed in Sec. II, we only consider
finite-dimensional Hilbert spaces. As a consequence,
this naturally regularizes the entropy and the mutual
information, as these quantities typically diverge in field
theories (see [28] for comments and alternatives proposals).
Naturally this poses a problem for the position and
momentum operators, that can only satisfy the Heisenberg
algebra when defined in infinite-dimensional Hilbert
spaces. However, this can be circumvented by utilizing
generalized Pauli operators to represent the finite-
dimensional analog of the position and momentum oper-
ators, which then satisfies the Weyl’s exponential form of
the Heisenberg algebra [29]. By taking the infinite limit of
the Hilbert space’s dimension, these operators do satisfy the
Heisenberg algebra.
Notice that by imposing an upper bound on the momen-

tum uncertainty does not necessarily lead to having a finite-
dimensional Hilbert space. Thus, we further assume that the
momentum must be lower bounded by some infrared (IR)
scale, lIR, and its eigenvalues are discretized in terms of it.
We postulate it to be on the scale of the cosmological
constant [30], Λ, such that lIR ∼ Λ−1

2 ∼ 1026 m. We suppose
therefore that the lower bound is given by pIR ¼ ℏΛ1

2 which
is on the order 10−60 kg · m=s. Thus, we bound the
uncertainty in the particle’s momentum by

pIR ≤ Δp ≤ papp; ð3:9Þ

which applies to any of the particles being considered.
After the initial particle decays, by momentum conser-

vation we have

Δp ¼ p1 þ Δp1 þ p2 þ Δp2; ð3:10Þ

which generalizes the conservation law used in Eq. (3.4).
Nonetheless, as the overall momenta should still conserve,
p1 ¼ −p2 [alternatively, within the bound (3.9) typically
pi=Δpi ≫ 1], then we have

Δp1 þ Δp2 ¼ Δp: ð3:11Þ

As we are in the rest frame of the initial particle, we are
minimizing the uncertainty in position for M and so the
uncertainty Δp associated with M must be maximal,
so Δp ¼ papp.
Now we would like to model the momentum modes

associated with the momentum uncertainties of these
particles such that momentum is always conserved.
We express the overall momentum state as a linear
combination of all possible momentum states with respect
to all possible uncertainties, summing from pIR to papp in
steps of of pIR

jπi ¼
Xpapp−pIR

Δp1¼pIR

αΔp1
jp1 þ Δp1; papp − ðp1 þ Δp1Þi; ð3:12Þ

where αΔp1
determines the probability distribution

of the states. This is an entangled state between the
uncertainties around the momentum of each particle. Note
that papp=pIR ∼ 1029 for a millimeter-size apparatus. Thus,
the difference between them is large enough that we can
consider that papp is effectively an integer multiple of pIR.
Since the momentum state only depends on the uncer-

tainty, we can omit p1, and by defining N ¼ papp=pIR, and
redefining the sum and its coefficients, the state can be
written as

jΔπi ¼
XN−1

n¼1

αnjn;N − ni; ð3:13Þ

where minfN − 1g ¼ 2, corresponding to the entangled
state jΔπi ∝ jpIR; plab − pIRi þ jplab ∼ pIR; pIRi, and
maxfN − 1g ∼ lIRmc=ℏ (e.g. for an electron ∼ 1038),
corresponding to papp approaching the Compton’s momen-
tum of the particle, i.e. localizing it the most. The density
matrix associated with the momentum sector is

ρp ¼
XN−1

n;m¼1

αnα
�
mjn;N − nihm;N −mj; ð3:14Þ

such that the reduced density matrix is

ρp ¼
XN−1

n¼1

jαnj2jnihnj; ð3:15Þ

and the mutual information in the momentum sector is
given by

IðAp∶BpÞ ¼ −2
XN−1

n¼1

jαnj2 log jαnj2: ð3:16Þ

To be quantitative, let us consider a maximally entangled
state for simplicity, whereas a more realistic description

3In general, the upper bound can be much higher,Δpmax ∼mc,
which would correspond to having enough energy to create
another particle of the same mass. Considering this momentum
uncertainty, and saturating the uncertainty principle, one can find
a minimum uncertainty for the particle’s location that is half of its
reduced Compton wavelength, Δx ≥ ℏ=ð2mcÞ.
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would involve a nonflat probability distribution. Thus, we
take jαij2 ¼ 1

N−1, and the total mutual information con-
tained alone in the momentum sector is

IðAp∶BpÞ ¼ 2 logðN − 1Þ: ð3:17Þ

When the Bell pair is separated, it is this initial mutual
information in the momentum sector that decreases as the
momentum degrees of freedom decohere with respect to
the environment. The more the initial system is localized,
the more states are initially entangled (up to N ∼ lIRMc=ℏ).
As the pair is more and more localized in Alice’s and Bob’s
labs (see Fig. 2), which corresponds to nonlocal entangle-
ment perturbations of its initial state (see Appendix A 3),
more of these modes are decohering, until all the mutual
information in the momentum sector is depleted, dropping
to zero once any of the systems is completely localized in
any of the labs. The decoherence happens gradually, from
the most IR modes (∼ΛIR), thermal states in the environ-
ment that get entangled with the pair, to modes that
typically further localize the particles in their labs
(∼ llab), all the way to the most UV ones (∼ lapp), repre-
sented by Alice’s and Bob’s apparatuses. Thus, as more
momentum modes get entangled with the environment,
more distance is allowed between the subsystems. All
along, we can preserve the spin sector untouched, remain-
ing maximally entangled.

IV. SPACETIME EMERGENCE IN THE LAB?

In recent years, applied methods of quantum information
to gravitational-quantum systems led to the development of
tabletop experimental proposals that intend to exhibit the
quantum nature of gravity. By demonstrating that gravity
can induce entanglement, they will allow us to infer the
existence of superimposed metric fluctuations [31,32]. For
instance, in the Bose-Marletto-Vedral experiment [33,34],
two particles start off in a superposition of two different
spatial positions, leading to four different branches of the
wave function. In each branch the gravitational interaction
between the particles yields a different phase shift, entan-
gling them. It is argued that if gravity can entangle two
systems then we should conclude that is indeed quantum
[34] (for a critical analysis of these proposals, see [35,36]).
However, suppose space(time) is emergent from more

fundamental quantum degrees of freedom. In that case, it is
unclear what to conclude from these experiments, as we do
expect that these more fundamental degrees of freedom are
ruled by interactions that produce entanglement, despite not
being gravitational. One way to parse out this degeneracy
about the nature of gravity is by probing its emergent nature
in the lab. Here we discuss some of the theory behind
possible experimental setups and sketch possible experi-
mental prototypes.

A. Nonlocal entanglement perturbations

In the context of space emerging from the entanglement
structure contained in the Hilbert space, we have seen that
the mutual information across quantum subsystems may
gives rise to their emergent relative distance. One way of
changing the amount of mutual information between
subsystems is to consider entanglement perturbations
(see Appendix A 3), which will lead to fluctuations in
the line element associated with these subsystems in the
emergent space [12].
There is a way to induce such spacetime fluctuations. As

the mutual information provides an upper bound on
correlations in a system [10,21],

IðC∶DÞ ≥ ðhOCODi − hOCihODiÞ2
2jOCj2jODj2

; ð4:1Þ

we can consider varying any sort of correlations across two
subsystems, hence inducing a variation of their mutual
information, and consequently varying their emergent
relative distance. Since we could modulate the mutual
information very precisely at a set frequency, a lock-in
amplification type technique coupled with precise distance
measurements could be used to search for the correspond-
ing distance modulation.
One natural system for realizing this type of measure-

ment would be a collection of hyperpolarized spins. Large
volumes of hyperpolarized atomic spins can be produced

FIG. 2. Different sets of modes associated with the system need
to decohere so that local observers can infer the subsystems’
relative distance: (i) llab < λ < ΛIR are the modes that decohere
giving rise to the relative distance between the subsystems, while
(ii) at each lab, lapp < λ < llab are the modes that decohere with
the local environment/apparatus, allowing the local observers to
localize each subsystem. Naturally, as more modes decohere with
the environment, the overall mutual information across the
subsystems further decreases, therefore increasing their relative
distance.
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by various techniques including parahydrogen-induced
polarization, signal amplification by reversible exchange,
or xenon hyperpolarization by spin exchange with optically
pumped rubidium atoms. All of these techniques can
produce on order liters of liquid targets containing atomic
spin polarization fractions of order one. Using standard
nuclear magnetic resonance pulse sequences such as Carr-
Purcell-Meiboom-Gill sequence one can modulate the spin
polarization direction of the spin ensemble at regular
intervals. With two such spin ensembles at opposite ends
of a very sensitive interferometer, one could look for small
fluctuations in the distance between the spin ensembles at
the modulation frequency. While the correlation between
the spin ensembles in this case would be classical, this
does not necessarily present a problem for the scheme.
For a classical mixture of separable states, represented by
ρMAB ¼ 1=2ðj↓↓ih↓↓j þ j↑↑ih↑↑jÞ, IðA∶BÞ ¼ log 2, half
of the mutual information corresponding to a maximally
entangled qubit. Thus, the classical version4 of the experi-
ment will have less resolving power per unit of correlation
but could have more total resolving power given the sheer
number of correlated spins.
A quantum version of such an experiment could be a

modification of certain current atomic interferometry ini-
tiatives. A typical atomic interferometer uses a highly
correlated ensemble of cold atoms (often a Bose-Einstein
condensate), launches it on a geodesic trajectory, and uses a
series of laser pulses to serve as beam splitters for the
matter wave. The spatially separated wave packets then
probe different regions of space before being interfered
with each other and the interference pattern measured. The
spatially separated wave packets naturally have a high
degree of quantum correlation, being part of the same
quantum state. The spatial separation allows the interfer-
ometer to very precisely measure the separation of its own
wave packets by for example placing a gradient field on the
interferometer.
One could also imagine using a device such as the

underconstruction MAGIS-100 interferometer [37] which
is an atomic interferometer designed to measure gravity
waves. The MAGIS-100 interferometer uses two independ-
ently produced simultaneous populations of cold atoms to
do two independent simultaneous measurements to detect
gravitational waves. Were the two populations produced in
an entangled state and the result compared to an identical
experiment with unentangled cold atom packets, the result
would be an extremely sensitive test of emergent spacetime

in this framework. This presents a significant experimental
challenge but is in principle possible [38].
Classical and quantum versions of these proposals are

currently being developed [39].

V. DISCUSSION

We have proposed one way to understand how, if relative
distance between quantum subsystems are to be understood
as emerging from their shared mutual information, we can
have maximally entangled systems which have their sub-
components taken apart while preserving their entangle-
ment. Our proposal relies on the fact that our typical
representation of quantum states oversees most of their
degrees of freedom. Thus, it is expected that the full
quantum state of a Bell pair, considered our toy model,
lives in an extended Hilbert space that is considerably
larger than just the two-dimensional Hilbert space used to
model the spin sector. By decohering the extra sector
associated with these other degrees of freedom, the mutual
information shared across the subsystems decreases con-
siderably, allowing their relative distance to be different
than zero.
To implement such an idea, in the Bell pair example we

considered that the extended Hilbert space had to do with
momentum modes. Is that reasonable if we are attempting
to discuss space(time) emergence? This is not unprec-
edented, as the idea that we live in a spacetime is actually
constructed by inference from our measurements of
momenta and energy. The notion that we all live in the
same spacetime, also known as absolute locality, can be
relaxed in the framework of relative locality [40].
As we have not tried to address the absolute existence
of spacetime, but rather just understand how maximally
entangled systems can have nonvanishing relative distances
in an already existing spacetime, we tacitly assumed a limit
in which degrees of freedom associated with momentum
are already present. This is intrinsically related to
recovering quasiclassical dynamics, since we can find a
TPS in which the quantum system is best represented by
emerging degrees of freedom, such as the ones described by
position and momentum, in which its Hamiltonian is
local [41].
Other ideas have been proposed to explain how come

excited maximally entangled states corresponding to
composite systems can be taken apart. In [12,42], they
focus on the entanglement contained exclusively in the
vacuum state surrounding excited quantum systems, which
is believed to overwhelm the entanglement contained
exclusively within the systems. We believe that both
approaches are complementary.
As we start to further understand how entanglement can

give rise to spatial distances, we also realize that the
reconstruction remains incomplete. In particular, we still
do not know how to precisely relate both as the map
ΦðIðA∶BÞÞ remains unknown. Nonetheless, we can strip

4Considering that fundamentally the world is quantum, we can
imagine that all classical correlations are quantum in origin by the
Schrödinger-Hughston-Jozsa-Wootters theorem, such that any
mixed state can be represented as the partial trace of a pure state
defined in an enlarged Hilbert space. Thus, manipulating seem-
ingly classical correlations is another way of changing the
entanglement across systems.
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down most of the proposal and keep only its core
principle that directly relates entanglement and relative
distances, allowing us to envision how such ideas can be
tested in the lab in the future. We briefly sketched two
proposals above and plan to elaborate on them in future
works [39].
Note that despite our considerations being purely kin-

ematical, we can anticipate a future challenge for their
corresponding dynamics.5 Once the notion of distance
becomes emergent and directly connected to the size of
the Hilbert space, there is room for tension between this
approach and the weak equivalence principle, i.e., the
universality of free fall. There are a few ways out of this
conundrum: (i) the equivalence principle is not fundamen-
tal: this is already the case in theories with fundamental
extended objects, such as string theory [43]. Thus, this
might become one of the empirical windows to be explored
in the future as experimental protocols are developed to test
this framework; (ii) the Hilbert space is locally infinite:
although we have used heuristic arguments in this paper to
impose both UVand IR cutoffs, and there are arguments in
favor of a locally finite Hilbert space [19], the question is
not settled. Having an infinite Hilbert space would render
any finite difference negligible in defining distances,
effectively recovering the equivalence principle; (iii) not
all entanglement is the same: there are known cases where
coherent states hold the same amount of entanglement as
the vacuum with an arbitrary region [43], meaning that a
change of energy does not register a change of entangle-
ment. Thus, it might be that Einstein’s equation does not
follow in complete generality from the framework [44], and
at this stage, it is unclear whether this is a curse or a
blessing.
Finally, we point out that a crucial assumption through-

out the paper was that we had a particular tensor product
structure defined in the Hilbert space. As the entanglement
structure depends on the TPS of the Hilbert space, different
TPS’s will result in having different emergent geometries.
Thus, we still need to clarify why it seems that there is a
preferred emergent geometry in our world. It is conceivable
that this puzzle is closely related to the transition quantum
classical [41] and the imposition of locality [45]. We will
elaborate on these ideas in future works [46].
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APPENDIX

1. Tensor product structures

ATPS T of a Hilbert space H is an equivalence class of
isomorphisms

T∶ H → ⊗
p
Hp; ðA1Þ

where T1 ∼ T2 whenever T1T−1
2 can be written as a

product of local unitaries ⊗ Up and permutations of
subsystems [45]. In this regard, operators acting only on
their respective factors of the Hilbert space introduces the
notion of locality.
Note that the entanglement structure of the Hilbert space

is dependent on the choice of TPS.

2. von Neumann entropy and mutual information

Given a density matrix ρ, the entropy associated with it is
given by the von Neumann entropy

S ¼ −trðρ log ρÞ: ðA2Þ

Since we can always diagonalize ρ, we can rewrite it in
terms of its eigenvalues, λi, as

S ¼ −
X
i

λi log λi: ðA3Þ

We can see that the entropy associated with a pure state is
zero, while for a maximally mixed state of dimension N,
the entropy is maximal, logN. The joint entropy for some
partitioned Hilbert space for which the density matrix can
be written as ρ ¼ ⊗

p
ρp, is SðρÞ ¼

P
p SðρpÞ.

The mutual information between two subsystems
A and B is

IðA∶BÞ ¼ SðAÞ þ SðBÞ − SðA;BÞ; ðA4Þ

with the following properties [24]: (i) positive: IðA∶BÞ ≥ 0;
(ii) upper bounded: IðA∶BÞ ≤ logðdimðAÞÞ þ logðdimðBÞÞ;
(iii) symmetric: IðA∶BÞ ¼ IðB∶AÞ, and (iv) IðA∶BCÞ ≥
IðA∶BÞ.

3. Entanglement perturbations

We can consider a variety of entanglement perturbations
that change the amount of entanglement shared between
Alice and Bob [11]. Local perturbations are generated by
some unitary operator, UAB, acting on the original system,
HAB. As the total entropy of the system does not change,
the mutual information varies as δIðA∶BÞ ¼ 2δSA.
Meanwhile, nonlocal perturbations entangle only part of
the original system with new degrees of freedom, e.g. a
local environment HE. The nonlocal perturbation is
instantiated by a unitary over the extended Hilbert space,

5We thank the anonymous referee for pointing this tension
between spacetime emergence from entanglement and the equiv-
alence principle.
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UABE ¼ UAE ⊗ IB, here acting over Alice’s and environ-
mental degrees of freedom. This can also be modeled as
nonunitary transformations acting only on HA. Due to

monogamy of entanglement, nonlocal perturbations always
lead to δIðA∶BÞ ≤ 0. This is also known as data processing
inequality [47].
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