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Reichenbach’s principle asserts that if two observed variables are found to be correlated, then there should
be a causal explanation of these correlations. Furthermore, if the explanation is in terms of a common cause,
then the conditional probability distribution over the variables given the complete common cause should
factorize. The principle is generalized by the formalism of causal models, in which the causal relationships
among variables constrain the form of their joint probability distribution. In the quantum case, however, the
observed correlations in Bell experiments cannot be explained in the manner Reichenbach’s principle would
seem to demand.Motivated by this, we introduce a quantum counterpart to the principle.We demonstrate that
under the assumption that quantum dynamics is fundamentally unitary, if a quantum channel with inputA and
outputs B andC is compatible with A being a complete common cause of B andC, then it must factorize in a
particular way. Finally, we show how to generalize our quantum version of Reichenbach’s principle to a
formalism for quantum causal models and provide examples of how the formalism works.
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I. INTRODUCTION

It is a general principle of scientific thought—and indeed
of everyday common sense—that if physical variables are
found to be statistically correlated, then there ought to be a
causal explanation of this fact. If the dog barks every time the
telephone rings, we do not ascribe this to coincidence.
A likely explanation is that the sound of the telephone ringing
is causing the dog to bark. This is a case where one of the
variables is a cause of the other. If sales of ice cream are high
on the same days of the year that many people get sunburned,
a likely explanation is that the sun was shining on these days
and that the hot sun causes both sunburns and the desire to
have an ice cream.Here, the explanation is not that buying ice
cream causes people to get sunburned, nor vice versa, but
instead that there is a common cause of both: the hot sun.
That the principle is highly natural is most apparent

when it is expressed in its contrapositive form: if there is no
causal relationship between two variables (i.e., neither is a
cause of the other and there is no common cause), then the
variables will not be correlated. In particular, without a
general commitment to this latter statement, it would be
impossible ever to regard two different experiments as

independent from one another, or for the results of one
scientific team to be regarded as an independent confirma-
tion of the results of another.
This principle of causal explanation was first made

explicit by Reichenbach [1]. It is key in scientific inves-
tigations that aim to find causal accounts of phenomena
from observed statistical correlations.
Despite the central role of causal explanations in science,

there are significant challenges to providing them for the
correlations that are observed in quantum experiments [2].
In a Bell experiment, a pair of systems are prepared
together, then removed to distant locations where a meas-
urement is implemented on each. The choice of the
measurement made at one wing of the experiment is
presumed to be made at spacelike separation from that
at the other wing. The natural causal explanation of the
correlations that one observes in such experiments is that
each measurement outcome is influenced by the local
measurement setting as well by a common cause located
in the joint past of the two measurement events. But Bell’s
theorem [3] famously rules out this possiblity: within the
standard framework of causal models, if the correlations
violate a Bell inequality [4]—as is predicted by quantum
theory and verified experimentally [5–7]—then a common-
cause explanation of the correlations is ruled out.
Furthermore, Ref. [2] proves that it is not possible to
explain Bell correlations with classical causal models
without unwelcome fine-tuning of the parameters. This
includes any attempt to explain Bell correlations with
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exotic causal influences, such as retrocausality and super-
luminal signaling. In the study of classical causation, it is
typically assumed that causal explanations should not be
fine-tuned [8].
However, the verdict of fine-tuning applies only to

classical models of causation. It was suggested in
Ref. [2] that it might be possible to provide a satisfactory
causal explanation of Bell inequality violations, in particu-
lar one that preserves the spirit of Reichenbach’s principle
and does not require fine-tuning, using a quantum gener-
alization of the notion of a causal model. This article seeks
to develop such a generalization by first suggesting an
intrinsically quantum version of Reichenbach’s principle.
Specifically, we consider the case of a quantum system A

in the causal past of a bipartite quantum system BC and ask
what constraints on the channel from A to BC follow from
the assumption that A is the complete common cause of B
andC. In this scenario we are able to find a natural quantum
analogue to Reichenbach’s principle. This analogue can be
expressed in several equivalent forms, each of which
naturally generalizes a corresponding classical expression.
In particular, one of these conditions states that A is a
complete common cause of BC if one can dilate the channel
from A to BC to a unitary by introducing two ancillary
systems, contained in the causal past of BC, such that
each ancillary system can influence only one of B and C.
This unitary dilation codifies the causal relationship
between A and BC and illustrates the fact that no other
system can influence both B andC. Moreover, our quantum
Reichenbach’s principle contains the classical version as
a special case in the appropriate limit. This suggests that
our quantum version is the correct way to generalize
Reichenbach’s principle.
The mathematical framework of causal models [8,9] can

be seen as a direct generalization of Reichenbach’s prin-
ciple to arbitrary causal structures. By following this
classical example, we are able to generalize our quantum
Reichenbach’s principle to a framework for quantum causal
models. In each case, the original Reichenbach’s principle
becomes a special case of the framework. Just as with
classical causal models, the framework of quantum causal
models allows us to analyze the causal structure of arbitrary
quantum experiments. It also does so while preserving an
appropriate form of Reichenbach’s principle (by construc-
tion) and avoiding fine-tuning.
Although our main motivation for developing quantum

causal models is the possibility of finding a satisfactory
(i.e., non-fine-tuned) causal explanation of Bell inequality
violations [2,10], they are also likely to have practical
applications. For instance, finding quantum-classical sep-
arations in the correlations achievable in novel causal
scenarios might lead to new device-independent protocols
[11], such as randomness extraction and secure key dis-
tribution. Quantum causal models may also provide novel
schemes for simulating many-body systems in condensed

matter physics [12] and novel means for inferring the
underlying causal structure from quantum correlations
[13,14].
The structure of the paper is as follows. Section II

provides a formal statement of Reichenbach’s principle and
shows how it can be rigorously justified under certain
philosophical assumptions. The main body of results
is in Sec. III. Here, our quantum generalization of
Reichenbach’s principle is presented and justified by
reasoning parallel to that of the classical case. This is then
fleshed out with alternative characterizations of our quan-
tum version of conditional independence and some specific
examples. We return to the classical world in Sec. IV,
discussing classical causal models and providing a rigorous
justification of the Markov condition, which plays the role
of Reichenbach’s principle for general causal structures.
Section V then generalizes these ideas to the quantum
sphere and presents our proposal for quantum causal
models. Finally, in Sec. VI, we describe the relationship
of our proposal to prior work on quantum causal models,
and in Sec. VII, we summarize and describe some direc-
tions for future work.

II. REICHENBACH’S PRINCIPLE

A. Statement

Reichenbach gave his principle a formal statement in
Ref. [1]. Following Ref. [15], we here distinguish two parts
of the formalized principle. First is the qualitative part,
which expresses the intuitions described at the beginning of
the Introduction. The other is the quantitative part, which
constrains the sorts of probability distributions one should
assign in the case of a common-cause explanation.
The qualitative part of Reichenbach’s principle may be

stated as follows: if two physical variables Y and Z are
found to be statistically dependent, then there should be a
causal explanation of this fact, either (1) Y is a cause of Z,
(2) Z is a cause of Y, (3) there is no causal link between Y
and Z, but there is a common cause X influencing Y and Z,
(4) Y is a cause of Z and there is a common cause X
influencing Y and Z, or (5) Z is a cause of Y and there is a
common cause X influencing Y and Z.
Note that the causal influences we consider here may be

indirect (mediated by other variables). If none of these
causal relations hold between Y and Z, then we refer to
them as ancestrally independent (because their respective
causal ancestries constitute disjoint sets). Using this termi-
nology, the qualitative part of Reichenbach’s principle can
be expressed particularly succinctly in its contrapositive
form as follows: ancestral independence implies statistical
independence, i.e., PðYZÞ ¼ PðYÞPðZÞ [16].
The quantitative part of Reichenbach’s principle applies

only to the case where the correlation between Y and Z is
due purely to a common cause [case (3) above]. It states
that, in that case, if X is a complete common cause for Y
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and Z, meaning that X is the collection of all variables
acting as common causes, then Y and Z must be condi-
tionally independent given X, so the joint probability
distribution PðXYZÞ satisfies

PðYZjXÞ ¼ PðYjXÞPðZjXÞ: ð1Þ

B. Justifying the quantitative part
of Reichenbach’s principle

Within the philosophy of causality, providing an adequate
justification of Reichenbach’s principle is a delicate issue. It
rests on controversy over basic questions, such as what it
means for one variable to have a causal influence on another
and what is the correct interpretation of probabilistic state-
ments. In this section, we discuss one way of justifying the
principle, using an assumption of determinism, which
provides a clean motivational story with a natural quantum
analogue. Other justifications may be possible.
Suppose we adopt a Bayesian point of view on prob-

abilities: they are the degrees of belief of a rational agent.
Dutch book arguments—based on the principle that a
rational agent will never accept a set of bets on which
they are certain to lose money—can then be given as to why
probabilities should be non-negative, sum to 1, and so
forth. But why should an agent who takes X to be a
complete common cause for Y and Z arrange their beliefs
such that PðYZjXÞ ¼ PðYjXÞPðZjXÞ? If the agent does not
do this, are they irrational?
One way to justify a positive answer to this question is to

assume that in a classical world there is always an under-
lying deterministic dynamics. In this case, one variable is
causally influenced by another if it has a nontrivial func-
tional dependence upon it in the dynamics. Probabilities
can be understood as arising merely due to ignorance of the
values of unobserved variables. Under these assumptions,
one can show that the qualitative part of Reichenbach’s
principle implies the quantitative part.
In general, a classical channel describing the effective

influence of random variable X on Y is given by a
conditional probability distribution PðYjXÞ. If we assume
underlying deterministic dynamics, then although the value
of the variable Y might not be completely determined by the
value of X, it must be determined by the value of X along
with the values of some extra, unobserved, variables in the
past of Y which can collectively be denoted λ. Any
variation in the value of Y for a given value of X is then
explained by variation in the value λ. This can be
formalized as follows.
Definition 1 (Classical dilation).—For a classical chan-

nel PðYjXÞ, a classical deterministic dilation is given by
some random variable λ with probability distribution PðλÞ
and some deterministic function Y ¼ fðX; λÞ, such that

PðYjXÞ ¼
X
λ

δ(Y; fðX; λÞ)PðλÞ; ð2Þ

where δðX; YÞ ¼ 1 if X ¼ Y and 0 otherwise [17].

We now apply this to the situation depicted in Fig. 1,
where X is the complete common cause of Y and Z. The
conditional distribution PðYZjXÞ admits of a dilation in
terms of an ancillary unobserved variable λ, for some
distribution PðλÞ and a function f ¼ ðf0Y; f0ZÞ from ðλ; XÞ
to ðY; ZÞ, such that Y ¼ f0Yðλ; XÞ and Z ¼ f0Zðλ; XÞ. The
assumption that X is the complete common cause of Y and
Z implies that the ancillary variable λ can be split into a pair
of ancestrally independent variables, λY and λZ, where λY
influences only Y and λZ influences only Z [18]. It follows
that there must exist λY and λZ that are causally related to X,
Y, and Z, as depicted in Fig. 2, where the causal depend-
ences are deterministic and given by a pair of functions fY
and fZ such that Y ¼ fYðλY; XÞ and Z ¼ fZðλZ; XÞ.
In this case, we have

PðYZjXÞ
¼

X
λY ;λZ

δ(Y; fYðλY; XÞ)δ(Z; fZðλZ; XÞ)PðλY; λZÞ: ð3Þ

Finally, given the qualitative part of Reichenbach’s prin-
ciple, the ancestral independence of λY and λZ in the causal
structure implies that PðλY; λZÞ ¼ PðλYÞPðλZÞ. It then
follows that PðYZjXÞ ¼ PðYjXÞPðZjXÞ, which establishes
the quantitative part of Reichenbach’s principle.
A well-known converse statement is also worth noting:

any classical channel PðYZjXÞ satisfying PðYZjXÞ ¼
PðYjXÞPðZjXÞ admits of a dilation where X is the complete
common cause of Y and Z [8].
Summarizing, we can identify what it means for

PðYZjXÞ to be explainable in terms of X being a complete
common cause of Y and Z by appealing to the quali-
tative part of Reichenbach’s principle and fundamental

FIG. 1. A causal structure represented as a directed acyclic
graph depicting that X is the complete common cause of Y and Z.

FIG. 2. The causal structure of Fig. 1, expanded so that Y and Z
each have a latent variable as a causal parent in addition to X, so
that both Y and Z can be made to depend functionally on their
parents.
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determinism. The definition can be formalized into a
mathematical condition as follows.
Definition 2 (Classical compatibility).—PðYZjXÞ is said

to be compatible with X being the complete common cause
of Y and Z if one can find variables λY and λZ, distributions
PðλYÞ and PðλZÞ, a function fY from ðλY; XÞ to Y, and a
function fZ from ðλZ; XÞ to Z, such that these constitute a
dilation of PðYZjXÞ, that is, such that

PðYZjXÞ
¼

X
λY ;λZ

δ(Y; fYðλY; XÞ)δ(Z; fZðλZ; XÞ)PðλYÞPðλZÞ: ð4Þ

With this definition, we can summarize the result
described above as follows.
Theorem 1.—Given a conditional probability distribu-

tion PðYZjXÞ, the following are equivalent.
(1) PðYZjXÞ is compatible with X being the complete

common cause of Y and Z.
(2) PðYZjXÞ ¼ PðYjZÞPðZjXÞ.
The ð1Þ → ð2Þ implication is what establishes that a

rational agent should espouse the quantitative part of
Reichenbach’s principle if they espouse the qualitative part
and fundamental determinism.
The ð2Þ → ð1Þ implication allows one to deduce a

possible causal explanation of an observed distribution
from a feature of that distribution. However, it is important
to stress that it only establishes a possible causal explan-
ation. It does not state that this is the only causal
explanation. Indeed, it may be possible to satisfy this
conditional independence relation within alternative causal
structures by fine-tuning the strengths of the causal depend-
ences. However, as noted above, fine-tuned causal explan-
ations are typically rejected as bad explanations in the field
of causal inference. Therefore, the best explanation of the
conditional independence of Y and Z given X is that X is
the complete common cause of Y and Z.

III. QUANTUM VERSION OF
REICHENBACH’S PRINCIPLE

In this section, we introduce our quantum version of
Reichenbach’s principle. The definition of a quantum
causal model that we provide in Sec. V can be seen as
generalizing these ideas in much the same way that
classical causal models generalize the classical version
of Reichenbach’s principle.

A. Quantum preliminaries

For simplicity, we assume throughout that all quantum
systems are finite dimensional. Given a quantum system A,
we writeHA for the corresponding Hilbert space, dA for the
dimension of HA, and IA for the identity on HA. We also
writeH�

A for the dual space toHA and IA� for the identity on

the dual space. If a quantum system is initially uncorrelated
with any other system, then the most general time evolution
of the system corresponds to a quantum channel, i.e., a
completely positive trace-preserving (CPTP) map. If the
system at the initial time is labeled A, with Hilbert space
HA, and the system at the later time is labeled B, with
Hilbert space HB, then the CPTP map is

EBjA∶ LðHAÞ → LðHBÞ; ð5Þ

where LðHÞ is the set of linear operators on H.
An alternative way to express the channel EBjA is as

an operator, using a variant of the Choi-Jamiołkowski
isomorphism [19,20]:

ρBjA ≔
X
ij

EBjAðjiiAhjjÞ ⊗ jiiA� hjj: ð6Þ

Here, the vectors fjiiAg form an orthonormal basis of the
Hilbert space HA. The vectors fjiiA�g form the dual basis,
belonging to H�

A. The operator ρBjA therefore acts on the
Hilbert space HB ⊗ H�

A. Although the expression above
involves an arbitrary choice of orthonormal basis, the
operator ρBjA thus defined is independent of the choice
of basis. This version of the Choi-Jamiołkowski isomor-
phism is chosen because it is both basis independent and a
positive operator. Following Ref. [21], we choose the
operator ρBjA to be normalized in such a way that
TrBðρBjAÞ ¼ IA� [in analogy with the normalization con-
dition

P
YPðYjXÞ ¼ 1 for a classical channel PðYjXÞ].

Suppose that ρB ¼ EBjAðρAÞ. Given that the operator ρBjA
contains all of the information about the channel EBjA, the
question arises of how one can express ρB in terms of ρBjA
and ρA. Recall that ρBjA is defined on HB ⊗ HA� , while ρA
is defined on HA. As we discuss further in Sec. V, by
defining an appropriate “linking operator” on HA ≔
HA ⊗ HA� ,

τidA ≔
X
lm

jliA� hmj ⊗ jliAhmj; ð7Þ

where fjliAgl and fjliA�gl are orthonormal bases on HA

and HA� , respectively, one can write ρB ¼ TrAðρBjAτidAρAÞ.
This expression is meant to be reminiscent of the classical
formula PðYÞ ¼ P

YPðYjXÞPðXÞ.
Given an operator ρAB���jCD���, acting on HA⊗HB⊗ ���

⊗HC�⊗HD�⊗���, we use the same expression withmissing
indices to denote the result of taking partial traces on the
corresponding factor spaces. For example, given a channel
ρABjCD, we write ρAjCD ≔ TrBðρABjCDÞ.
When writing products of operators, we sometimes

suppress tensor products with identities. For example,
ðρBjA ⊗ ICÞðρCjA ⊗ IBÞ is written simply as ρBjAρCjA.
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B. Main result

The qualitative part of Reichenbach’s principle can be
applied to quantum theory with almost no change: if
quantum systems B and C are correlated, then this must
have a causal explanation in one of the five forms listed in
Sec. II A (except with classical variables X, Y, and Z
replaced by quantum systems A, B, and C). Here, for two
quantum systems to be correlated means that their joint
quantum state does not factorize.
Finding a quantum version of the quantitative part of

Reichenbach’s principle is more subtle. If a quantum
system A is a complete common cause of B and C (as
depicted in Fig. 3), then one expects there to be some
constraint analogous to the classical constraint that
PðYZjXÞ ¼ PðYjXÞPðZjXÞ. If one tries to do this by
generalizing the joint distribution PðXYZÞ, then one
immediately faces the problem that textbook quantum
theory has no analogue of a joint distribution for a
collection of quantum systems in which some are causal
descendants of others. The situation is improved if one
focuses on finding an analogue of PðYZjXÞ instead. In
standard quantum theory, as long as a system A is initially
uncorrelated with its environment, then the evolution from
A to BC is described by a channel EBCjA. The operator that
is isomorphic to this channel by Eq. (6), denoted ρBCjA,
seems to be a natural analogue of PðYZjXÞ. However, even
in this case, it is not obvious what constraint on ρBCjA
should serve as the analogue of the classical constraint
PðYZjXÞ ¼ PðYjXÞPðZjXÞ.
The treatment of generic causal networks of quantum

systems is deferred to the full definition of quantum causal
models in Sec. V. This section focuses on the case of a
channel ρBCjA.
In Sec. II B, we demonstrated how to justify the

quantitative part of Reichenbach’s principle from the
qualitative part in the classical case under the assumption
that all dynamics are fundamentally deterministic. We shall
now make an analogous argument in the quantum case by
assuming that quantum dynamics are fundamentally uni-
tary. Just as in the classical case, this assumption simply
provides a clean way to motivate our result, and alternative
justifications may be possible.
In general, a quantum channel from A to B is given by a

CPTP map EBjA. Assuming underlying unitary dynamics,
the output state at B must depend unitarily on A along with

some extra ancillary system λ in the past of B. This can be
formalized as follows.
Definition 3 (Unitary dilation).—For a quantum channel

EBjA, a quantum unitary dilation is given by some ancillary
quantum system λ with state ρλ and some unitary U from
HA ⊗ Hλ to HB ⊗ HB̄, such that

EBjAð·Þ ¼ TrB̄(Uð· ⊗ ρλÞU†);

where the dimension of B̄ is fixed by the requirement for
unitarity that dAdλ ¼ dBdB̄.
If we represent the channels by our variant of the Choi-

Jamiołkowski isomorphism, Eq. (6), with ρBjA representing
EBjA and ρUBB̄jAλ representing Uð·ÞU†, then the dilation

equation has the form

ρBjA ¼ TrB̄λðρUBB̄jAλτidλ ρλÞ;

where τidλ is the linking operator defined in Eq. (7).
Just as in the classical case, we would like to apply this to

the situation depicted in Fig. 3, where A is the complete
common cause for B and C. This is easy classically, as it is
clear what it means for a classical variable X to have no
causal influence on another, Y, in a deterministic system.
Specifically, if the collection of inputs other than X is
denoted X̄ so there is a deterministic function f such that
Y ¼ fðX; X̄Þ, then the assumption that X has no causal
influence on Y is formalized as fðX; X̄Þ ¼ f0ðX̄Þ for some
function f0. In unitary quantum theory the corresponding
condition is less obvious, so we spell it out explicitly with a
definition.
Definition 4 (No influence).—Consider a unitary

channel ρU
BB̄jAĀ from AĀ to BB̄. A has no causal influence

on B if and only if for ρBjAĀ ≔ trB̄ρ
U
BB̄jAĀ, we have

ρBjAĀ ¼ IA� ⊗ ρBjĀ.
An equivalent definition states that A has no causal

influence on B in some unitary channel if and only if the
following holds: for every initial state ρAĀ, if an operation is
performed on the A system alone, followed by the action of
the unitary channel, then the marginal output state at B is
independent of the choice of operation on A. The equiv-
alence is shown in Ref. [22], where other equivalent
definitions are also presented (under the terminology
“nonsignalling” rather than “no causal influence”). There
is in fact a rich literature concerning related properties of
unitary operators from various perspectives: see, for exam-
ple, Refs. [23–25].
We can now apply this to the complete common-cause

situation of Fig. 3. The channel EBCjA admits a unitary
dilation in terms of an ancillary system λ, for some state ρλ
and unitaryU from λA to BDC. Here, an ancillary outputD
is generally required so that dimensions of inputs and
outputs match, but is not important and will always be

FIG. 3. A causal structure relating three quantum systems with
A the complete common cause of B and C.
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traced out. This dilation is such that EBCjAð·Þ ¼
TrD(Uð· ⊗ ρλÞU†).
Just as in Sec. II B, the assumption that A is a complete

common cause for B and C implies that the ancilla λ can be
factorized into ancestrally independent λB and λC, where λB
has no causal influence on C and λC has no causal influence
on B. It follows that systems λB and λC are causally related
to A, B, and C as depicted in Fig. 4.
The ancestral independence of λB and λC implies that the

quantum state on λ factorizes across the λB, λC partition,
ρλ ¼ ρλBρλC , suggesting the following quantum analogue to
our classical compatibility condition of Definition 2.
Definition 5 (Quantum compatibility).—ρBCjA is said to

be compatible with A being a complete common cause of B
and C, if it is possible to find ancillary quantum systems λB
and λC, states ρλB and ρλC , and a unitary channel where λB
has no causal influence on C and λC has no causal influence
on B, such that these constitute a dilation of ρBCjA.
All that remains is to show that this, together with the

qualitative part of the quantum Reichenbach’s principle,
implies an appropriate quantitative part (generalizing
Theorem 1).
Theorem 2.—The following are equivalent.
(1) ρBCjA is compatible with A being the complete

common cause of B and C.
(2) ρBCjA ¼ ρBjAρCjA.
The proof is in Appendix A. Note that there is no

ordering ambiguity on the right-hand side of the second
condition, because the two terms must commute. This is
seen by taking the Hermitian conjugate of both sides of the
equation and recalling that ρBCjA is Hermitian.
The strong analogy that exists between Theorems 1 and

2 suggests the following definition.
Definition 6 (Quantum conditional independence of

outputs given input).—Given a quantum channel ρBCjA,
the outputs are said to be quantum conditionally indepen-
dent given the input if and only if ρBCjA ¼ ρBjAρCjA.
It is easily seen that the quantum definition reduces to the

classical definition in the case that the channel ρBCjA is
invariant under the operation of completely dephasing the
systems A, B, and C in some basis. More precisely, if fixed
bases are chosen forHA,HB,HC, and the operator ρBCjA is
diagonal when written with respect to the tensor product of
these bases, then the outputs are quantum conditionally

independent given the input if and only if the classical
channel defined by the diagonal elements of the matrix has
the property that the outputs are conditionally independent
given the input.
With this terminological convention in hand, we can

express our quantum version of the quantitative part of
Reichenbach’s principle as follows: if a channel ρBCjA is
compatible with A being a complete common cause of B
and C, then for this channel, B and C are quantum
conditionally independent given A.
The ð1Þ → ð2Þ implication in the theorem is what

establishes the quantum version of the quantitative part
of Reichenbach’s principle.
The ð2Þ → ð1Þ implication is pertinent to causal infer-

ence: analogously to the classical case, if one grants the
implausibility of fine-tuning, then one must grant that the
most plausible explanation of the quantum conditional
independence of outputs B andC given input A is that A is a
complete common cause of B and C.
Theorem 2, and the surrounding discussion, motivates

the definition of quantum causal models given in Sec. V.
For the rest of this section, we make some further remarks
about the quantum version of Reichenbach’s principle.

C. Alternative expressions for quantum conditional
independence of outputs given input

Classically, conditional independence of Y and Z given
X is standardly expressed as PðYZjXÞ ¼ PðYjXÞPðZjXÞ.
However, there are alternative ways of expressing this
constraint.
For instance, if onedefines the joint distributionoverX,Y,Z

that one obtains by feeding the uniform distribution on X into
the channel PðYZjXÞ—that is, P̂ðXYZÞ≔PðYZjXÞð1=dXÞ,
where dX is the cardinality of X—then Y and Z being
conditionally independent given X in PðYZjXÞ can be
expressed as the vanishing of the conditional mutual infor-
mation of Y and Z given X in the distribution P̂ðXYZÞ [8].
This conditional mutual information is defined as
IðY∶ZjXÞ ≔ HðY; XÞ þHðZ; XÞ −HðX; Y; ZÞ −HðXÞ,
withHð·Þ denoting theShannonentropyof themarginal on the
subset of variables indicated in its argument. Therefore, the
condition is simply IðY∶ZjXÞ ¼ 0 [26].
Similarly, if Y and Z are conditionally independent given

X in PðYZjXÞ, then it is possible to mathematically
represent the channel PðYZjXÞ as the following sequence
of operations: copy X, then process one copy into Y via the
channel PðYjXÞ and process the other into Z via the
channel PðZjXÞ.
We present here the quantum analogues of these alter-

native expressions. They are found to be useful for devel-
oping intuitions about quantum conditional independence
and in proving Theorem 2. Recall that the quantum condi-
tional mutual information of B and C given A is defined as
IðB∶CjAÞ≔ SðB;AÞþSðC;AÞ−SðA;B;CÞ−SðAÞ, where
Sð·Þ denotes the von Neumann entropy of the reduced state

FIG. 4. The causal structure of Fig. 3, expanded so that B and C
each have a latent system as a causal parent in addition to A. By
analogy to the classical case, we take B and C to depend unitarily
on λB, A, and λC.
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on the subsystem that is specified by its argument.
Analogously to the classical case, we use a hat to denote
an operator renormalized such that the trace is 1. For
example, if ρBjA is the operator representing a channel from
A to B, then ρ̂BjA ≔ ð1=dAÞρBjA.
Theorem 3.—Given a channel ρBCjA, the following

conditions are also equivalent to the quantum conditional
independence of the outputs given the input [condition (2)
of Theorem 2].
(3) IðB∶CjAÞ ¼ 0, where IðB∶CjAÞ is the quantum

conditional mutual information of B and C given
A evaluated on the (positive, trace-one) operator
ρ̂BCjA ≔ ð1=dAÞρBCjA.

(4) TheHilbert space for theA systemcanbedecomposed
as HA ¼ ⨁iHAL

i
⊗ HAR

i
and ρBCjA¼

P
iðρBjAL

i
⊗

ρCjAR
i
Þ, where for each i, ρBjAL

i
represents a CPTP

map BðHAL
i
Þ → BðHBÞ, and ρCjAR

i
a CPTP

map BðHAR
i
Þ → BðHCÞ.

The proof is in Appendix A. That conditions (3) and (4)
are equivalent follows as a corollary of Theorem 6 of
Ref. [27]. Our main contribution is showing that these are
also equivalent to condition (2) of Theorem 2.
The final condition can be described as follows. First,

one imagines decomposing the system A into a direct sum
of subspaces, each of which is denoted Ai. For each i, the
subspace Ai is split into two factors, denoted AL

i and AR
i ,

with one factor evolving via a channel ρBjAL
i
into system B,

and the other factor evolving via ρCjAR
i
into system C. In the

special case where there is only a single value of i, this is
simply a factorization of the A system into two parts. In the
special case where all of the AL

i and A
R
i are one-dimensional

Hilbert spaces, the channel ρBCjA may be thought of as an
incoherent copy operation applied to the A system with
respect to the i basis, followed by the processing of one
copy into B and one copy into C. It is noteworthy that in the
general case, B only gets the information carried by the AL

i
and C only gets the information carried by the AR

i : hence,
the only information about A that both B and C receive is
the classical information carried by the index i.

D. Circuit representations

It is instructive to summarize the contents of Theorems 1
and 2 using circuit diagrams.
The classical case is shown inFig. 5,where four equivalent

circuits represent the action of a channelPðYZjXÞ, for which
the outputs YZ are conditionally independent given the
input X. The dot in the lower two circuits represents a
classical copy operation. Equality (1) simply asserts that the
conditional probability distribution PðYZjXÞ admits a
classical dilation, as in Definition 1. Equality (4) asserts that
the channel is equivalent to a sequence of operations inwhich
X is copied, with one copy the input to a channelPðYjXÞ and
one copy the input to a channelPðZjXÞ. As we discuss at the

beginning of Sec. III C, this is oneway of expressing the fact
that Y andZ are conditionally independent givenX. Equality
(3) asserts thatPðYjXÞ andPðZjXÞ separately admit classical
dilations. Finally, equality (2) asserts that PðYZjXÞ is
compatible with X being a complete common cause of Y
and Z by depicting conditions under which λY has no
influence on Z and λZ has no influence on Y.
Analogous circuit diagrams can be provided in the

quantum case, as depicted in Fig. 6, with analogous inter-
pretations of the various equalities. Since quantum systems
cannot be copied, however, something must replace the dot

FIG. 5. Diagrammatic representation of Theorem 1 and of
alternative expressions for conditional independence of outputs
given input (the classical analogue of Theorem 3).

FIG. 6. Diagrammatic representation of Theorem 2 and of
alternative expressions for quantum conditional independence of
outputs given input (Theorem 3). Following Ref. [28], we use to
denote partial trace (here, slightly generalized to include the partial
trace of a wire carrying an i index, defined in an obvious way).
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that appears in the lower two circuits of Fig. 5. For the lower
two circuits of Fig. 6, we introduce a new symbol that
indicates the decomposition of the Hilbert space HA into a
direct sum of tensor products, as per condition (4) of
Theorem 3. The symbol is a circle decorated with the set
fig, where thevalue i indexes the terms in the direct sum. For
each value of i, the left-hand wire carries the factorHAL

i
and

the right-hand wire the factor HAR
i
.

In the lower right circuit of Fig. 6, the gates represent
unitary channels, and are labeled with the corresponding
unitary operators V and W (as opposed to the Choi-
Jamiołkowski channel operators). The unitary operator V,
for example, labels a gatewhose action is confined to the left-
hand factors in this decomposition, alongwith the system λB.
The interpretation, roughly, is that the form ofV must respect
the decomposition of HA. More precisely, the unitary
operator can be written as a matrix that is block diagonal
with respect to the subspace decomposition, with the ith
block being of the form Vi ⊗ IAR

i
for a unitary matrix Vi

acting onHλB ⊗ HAL
i
. Similarly,W can bewritten as a block

diagonalmatrix,with the ith blockof the form IAL
i
⊗ Wi for a

unitary matrix Wi acting on HAR
i
⊗ HλC .

In the lower left circuit of Fig. 6, in a slight mixing of
notation, gates are labeled with the channel operators ρBjA
and ρCjA [29]. Suppose that, as in the figure, a channel
operator ρBjA labels a gate whose action is confined to the
left-hand factors in the decomposition, along with another
system λB. This indicates that the channel corresponds to a
set of Kraus operators fKjg, where for each j, the Kraus
operator Kj is block diagonal, with the ith block being of
the form Kj

i ⊗ IAR
i
, with Kj

i acting on HλB ⊗ HAL
i
. The

channel operator ρCjA has a similar form, with a non-trivial
action on the right-hand factors and the system λC [30,31]
The equivalences of Fig. 6 can now be summarized as

follows. Equality (1) simply asserts the fact that ρBCjA admits
a unitary dilation. Equality (4) asserts that the channel
ρBCjA is such that B and C are quantum conditionally
independent given A, according to the definition we propose
(Definition 6). This equality follows from the expression for
quantum conditional independence described in condition
(4) of Theorem 3. Equality (3) asserts that the channels ρBjA
and ρCjA separately admit unitary dilations. Equality (2)
asserts that ρBCjA is compatible with A being a complete
common cause of B and C by depicting conditions under
which λB has no influence onC and λC has no influence onB.
Here, the unitary matrix U is decomposed as U ¼
ðIλB ⊗ WÞðV ⊗ IλCÞ, as per the proof of Theorem 2.

E. Examples

1. Unitary transformation

Consider the case in which inputs A and D evolve, via a
generic unitary transformation U into outputs B and C. In

Fig. 7, we illustrate the circuit and the corresponding causal
diagram.
The channel ρBCjAD which one obtains in this case is

compatible with the complete common cause of B and C
being the composite system AD. This follows from the fact
that ρBCjAD has a trivial dilation, which is to say that the
ancillary system is not required, and therefore trivially
satisfies the condition for compatibility laid out in
Definition 5. It follows from Theorem 2 that for such a
ρBCjAD, the outputs B and C are quantum conditionally
independent given the input AD, which means that
ρBCjAD ¼ ρBjADρCjAD, as can also be verified by direct
calculation. Similarly, the alternative expressions for this
sort of quantum conditional independence, namely, con-
ditions (3) and (4) of Theorem 3, can be verified to hold.

2. Coherent copy versus incoherent copy

Consider the simple example of a classical channel,
taking X to Y, Z, where X, Y, Z are bit-valued and the
mapping between input strings and output strings is

0X → 0Y0Z;

1X → 1Y1Z: ð8Þ

The outputs of the channel are conditionally independent
given the input; variation in X fully explains any correlation
between Y and Z. Indeed, this example may be seen as the
paradigmatic case of the explanation of classical correla-
tions via a complete common cause.
One quantum analogue of this channel is the incoherent

copy of a qubit: a qubit A is measured in the computational
basis; if 0 is obtained, then prepare the state j00iBC, and if 1
is obtained, prepare j11iBC. The operator representing this
channel is

ρBCjA ¼ j000ih000jBCA� þ j111ih111jBCA� :

It is easily verified that this operator satisfies each of the
conditions of Theorem 2, so that B and C are quantum
conditionally independent given A for this channel. The
decomposition of the A Hilbert space implied by condition
(4) is

HA ¼ ðC ⊗ CÞ ⊕ ðC ⊗ CÞ;

FIG. 7. For a generic unitary transformation from AD to BC, the
complete common cause of B and C is the composite system AD.
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where C is the one-dimensional complex Hilbert space, i.e.,
the complex numbers.
The other direct quantum analogue of the classical copy

above is the channel that makes a coherent copy of a qubit,
where the mapping from input states to output states is

αj0iA þ βj1iA → αj0iBj0iC þ βj1iBj1iC: ð9Þ

This channel is represented by the operator

ρBCjA ¼ ðj000iBCA� þ j111iBCA� Þðh000jBCA� þ h111jBCA� Þ;

which corresponds to an unnormalized Greenberger-
Horne-Zeilinger state. It can easily be verified that
IðB∶CjAÞ ¼ 1 for a trace-one version of this state; hence,
it is not the case that outputs B and C are quantum
conditionally independent given the input A. There is,
then, no way in which this channel can arise as a marginal
channel in a situation in which A is the complete common
cause of B and C.
At first blush, this conclusion may seem surprising.

Given the mapping described by Eq. (9), where would
correlations between outputs B and C come from, other
than being completely explained by the input A?
The puzzle is resolved by considering the dilation of the

coherent copy to a unitary transformation, and the inter-
pretation of quantum pure states. Consider Figs. 8 and 9,
which, respectively, show a classical copy operation via the
classical CNOT gate and a quantum coherent copy operation
via the quantum CNOT gate [32].
In the classical case, there are two reasons why any

correlation between Y and Z must be entirely explained by
statistical variation in the value of X. First, the ancillary
variable λ is prepared deterministically with value 0, so
there is no possibility that statistical variation in the value of
λ underwrites the correlations between B and C. Second,
the mapping between input strings and output strings for
the classical CNOT gate,

0X0λ → 0Y0Z;

0X1λ → 0Y1Z;

1X0λ → 1Y1Z;

1X1λ → 1Y0Z ð10Þ

[which one easily verifies to reduce to the classical copy of
Eq. (8) when one sets λ to 0], has the causal structure
depicted in Fig. 8, so that λ does not act as a common cause
of Y and Z but only a local cause of Z.
In the quantum case, neither reason applies. Concerning

the second reason, the quantum CNOT has the causal
structure depicted in Fig. 9: the quantum CNOT is such
that not only does A have a causal influence on C, but λ has
a causal influence on B as well. In other words, unlike the
classical CNOT, there is a backaction of the target on the
control. It follows that in the quantum case, λ can act as a
common cause of B and C. Furthermore, the ancilla is
prepared in a quantum pure state j0i. This is disanalogous
to a point distribution on the value 0 for the classical
variable λ if one takes the view that a quantum pure state
represents maximal but incomplete information about a
quantum system [34–38]. In this case, one must allow for
the possibility that some correlation betweenB andC is due
to the ancilla, in which case A is not the complete common
cause of B and C [39].

F. Generalization to one input, k outputs

Theorems 2 and 3, which apply to quantum channels
with one input and two outputs, can be generalized to the
case of one input and k outputs.
Consider a channel ρB1…BkjA, and let B̄i denote the

collection of all outputs apart from Bi. The notion of
quantum compatibility from Definition 5 generalizes in the
obvious way: ρB1…BkjA is said to be compatible with A
being a complete common cause of B1…Bk, if it is possible
to find ancillary quantum systems λ1;…; λk, states
ρλ1 ;…; ρλk , and a unitary channel where, for each i, λi
has no causal influence on B̄i, such that these constitute a
dilation of ρB1…BkjA.
The generalization of Theorems 2 and 3, consolidated

into a single theorem, is as follows.
Theorem 4.—The following are equivalent.
(1) ρB1…BkjA is compatible with A being a complete

common cause of B1…Bk.
(2) ρB1…BkjA ¼ ρB1jA � � � ρBkjA, where for all i,

j, ½ρBijA; ρBjjA� ¼ 0.
(3) For each i, IðBi∶B̄ijAÞ ¼ 0, where IðBi∶B̄ijAÞ is the

quantum conditional mutual information evaluated
on the (positive, trace-one) operator ρ̂B1…BkjA.

(4) The Hilbert space for the A system can be decom-
posed as HA ¼ ⨁iHA1

i
⊗ � � � ⊗ HAk

i
, such that

ρB1…BkjA ¼ P
iðρB1jA1

i
⊗ � � � ⊗ ρBkjAk

i
Þ, where for

FIG. 8. Classical realization of a copy operation using an
ancilla and classical CNOT gate.

FIG. 9. Quantum realization of the coherent copy using an
ancilla and quantum CNOT gate.
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each i, and each l ∈ f1;…; kg, ρBjAl
i
represents a

CPTP map BðHAl
i
Þ → BðHBl

Þ.
The proof is in Appendix B. By analogy to the classical

case, if conditions (2)–(4) of Theorem 4 hold, we say that
B1…Bk are quantum conditionally independent given A for
the channel ρB1…BkjA.

IV. CLASSICAL CAUSAL MODELS

A. Definitions

Reichenbach’s principle is important because it general-
izes to the modern formalism of causal models [8,9].
A causal model consists of two entities: (i) a causal

structure, represented by a directed acyclic graph (DAG)
where the nodes represent random variables and the
directed edges represent the directed causal influences
among these (several examples have already been presented
in this article), and (ii) some parameters, which specify the
strength of the causal dependences and the probability
distributions for the variables associated to root nodes in the
DAG (i.e., those with no incoming arrows). Some termi-
nology is required to present the formal definitions.
Given a DAG with nodes X1;…; Xn, let ParentsðiÞ

denote the parents of node Xi, that is, the set of nodes
that have an arrow into Xi, and let ChildrenðiÞ denote the
children of node Xi, that is, the set of nodes Xj such that
there is an arrow from Xi to Xj. The descendants of Xi are
those nodes Xj, j ≠ i, such that there is a directed path from
Xi to Xj. The ancestors of Xi are those nodes Xj such that
Xi is a descendant of Xj.
Definition 7.—A causal model specifies a DAG, with

nodes corresponding to random variables X1;…; Xn,
and a family of conditional probability distributions
fP½XijParentsðiÞ�g, one for each i.
Definition 8.—Given a DAG, with random variables

X1;…; Xn for nodes, and given an arbitrary joint distribu-
tion PðX1…XnÞ, the distribution is said to be Markov for
the graph if and only if it can be written in the form of

PðX1…XnÞ ¼
Yn
i¼1

P½XijParentsðiÞ�: ð11Þ

[Recall that each conditional P½XijParentsðiÞ� can be
computed from the joint PðX1…XnÞ.]
The generalization of Reichenbach’s principle that is

afforded by the formalism of causal models is as follows: if
there are statistical dependences among variables
X1;…; Xn, expressed in the particular form of the joint
distribution PðX1…XnÞ, then there should be a causal
explanation of these dependences in terms of a DAG
relative to which the distribution PðX1…XnÞ is Markov.
Note that an alternative way of formalizing the Markov

property is that PðX1…XnÞ is Markov for the graph if and
only if, for each i, P½XijParentsðiÞ� ¼ P½XijNondescðiÞ�,

where NondescðiÞ is the set of nondescendants of node Xi.
The intuitive idea is that the parents of a node screen off that
node from the other nondescendants: once the values of the
parents are fixed, the values of other nondescendant nodes
are irrelevant to the value of Xi.
Note also that Reichenbach’s principle is easily seen to

be a special case of the requirement that for a joint
distribution to be explainable by the causal structure of
some DAG, it must be Markov for that DAG: if two
variables, Y and Z, are ancestrally independent in the graph,
then any distribution that is Markov for this graph must
factorize on these, PðYZÞ ¼ PðYÞPðZÞ, which is the
qualitative part of Reichenbach’s principle in its contra-
positive form; if two variables, Y and Z, have a variable X
as a complete common cause, as in the DAG of Fig. 1, then
any distribution that is Markov for the graph must satisfy
PðYZjXÞ ¼ PðYjXÞPðZjXÞ, which is the quantitative part
of Reichenbach’s principle.

B. Justifying the Markov condition

Just as we previously asked whether there was some
principle that forced a rational agent to assign probability
distributions in accordance with the quantitative part of
Reichenbach’s principle, we can similarly ask why a
rational agent who takes causal relationships to be given
by a particular DAG should arrange their beliefs so that the
joint distribution is Markov for the DAG.
The justification of the Markov condition parallels the

justification of the quantitative part of Reichenbach’s
principle that we presented in Sec. II B. We begin by
outlining what the qualitative part of Reichenbach’s prin-
ciple and the assumption of fundamental determinism
imply for any arbitrary causal structure.
Definition 9 (Classical compatibility with a

DAG).—PðX1…XnÞ is said to be compatible with a
DAG G with nodes X1;…; Xn if one can find a DAG G0
that is obtained from G by adding extra root nodes
λ1;…; λn, such that for each i, the node λi has a single
outgoing arrow, to Xi, and one can find, for each i, a
distribution PðλiÞ and a function fi from ½λi; ParentsðiÞ� to
Xi, such that

PðX1…XnÞ

¼
X
λ1…λn

�Yn
i¼1

δ(Xi; fi½λi;ParentsðiÞ�)PðλiÞ
�
:

Theorem 5 (Ref. [8])—Given a joint distribution
PðX1…XnÞ and a DAG G with nodes X1;…; Xn, the
following are equivalent.
(1) PðX1…XnÞ is compatible with the causal structure

described by the DAG G.
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(2) PðX1…XnÞ is Markov for G; that is,

PðX1…XnÞ ¼
Yn
i¼1

P½XijParentsðiÞ�:

The ð1Þ → ð2Þ implication in Theorem 5 can be read as
follows: if it is granted that causal relationships are
indicative of underlying deterministic dynamics, and that
the qualitative part of Reichenbach’s principle is valid,
then, on pain of irrationality, an agent’s assignment
PðX1…XnÞ must be Markov for the original graph.
The ð2Þ → ð1Þ implication in Theorem 5, like that of

Theorem 1, is pertinent for causal inference. It asserts that if
one observes a distribution PðX1…XnÞ that is Markov for a
graph G, then the causal structure described by G provides
a possible causal explanation of the observed distribution.
Note that, given PðX1…XnÞ, there is not in general a
unique graph G such that PðX1…XnÞ is Markov for G;
hence there are in general competing causal explanations.
Those causal models that require fine-tuning of parameters
are typically rejected.

V. QUANTUM CAUSAL MODELS

A. Proposed definition

In our treatment of the simple causal scenario where A is
a complete common cause of B and C (the DAG of Fig. 3),
we focused on what form is implied for the quantum
channel ρBCjA. But there has not been any attempt to define
a quantity analogous to the classical joint distribution, that
is, a quantity analogous to PðXYZÞ in the case of the DAG
of Fig. 1, nor indeed other classical Bayesian conditionals
such as PðXjYZÞ. For works that aim to achieve such
analogues, see Refs. [21,37]. See also Ref. [40], however,
where it is shown that if one associates a single Hilbert
space to a system at a given time, then there are significant
obstacles to establishing an analogue of a classical joint
distribution when the set of quantum systems includes
some that are causal descendants of others
This work takes a different approach. The interpretation

of a quantum causal model will be that each node
represents a local region of time and space, with channels
such as ρBCjA describing the evolution of quantum systems
in between these regions. At each node, there is the
possibility that an agent is present with the ability to
intervene inside that local region. Each node Ai will then be
associated with two Hilbert spaces, one corresponding to
the incoming system (before the agent’s intervention) and
the dual space, which corresponds to the outgoing system
(after the agent’s intervention). A quantum causal model
will consist of a specification, for every node, of the
quantum channel from its parents to the node, with the
operational significance of a network being that it is used to
calculate joint probabilities for the agents to obtain the
various possible joint outcomes for their interventions. This
way of treating quantum systems over time has appeared in

various different approaches in the literature, including the
multitime formalism [41–44], the quantum combs formal-
ism [45–47], the process matrices formalism [48–50], and a
number of other works as well [14,51–53].
The discussion of classical causal models in Sec. IV, and

the results of Sec. III for the special case where A is a
complete common cause of B and C, suggest the following
generalization.
Definition 10.—A quantum causal model specifies a

DAG, with nodes A1;…; An, supplemented with the follow-
ing. For each nodeAi, there is associated a finite-dimensional
Hilbert space Hi (the “input” Hilbert space) and the dual
space H�

i (the “output” Hilbert space). For each node Ai,
there is associated a quantum channel, described by an
operator ρAijParentsðiÞ ∈ BðHi ⊗ H�

ParentsðiÞÞ, where H�
ParentsðiÞ

is the tensor product of the output Hilbert spaces associated
with the parents of Ai. These channels commute pairwise;
i.e., for any i, j, ½ρAijParentsðiÞ; ρAjjParentsðjÞ� ¼ 0 [which is a
nontrivial constraint whenever ParentsðiÞ∩ParentsðjÞ is
nonempty].
Recall from Sec. III that, given a quantum channel ρBCjA,

it is compatible with A being the complete common cause
of B andC if and only if ρBCjA ¼ ρBjAρCjA, and if this holds,
then ½ρBjA; ρCjA� ¼ 0. The definition of a quantum causal
model, in particular, the stipulation that the channels
commute pairwise, generalizes this idea.
Definition 11.—Given a quantum causal model, speci-

fying a DAG with nodes A1;…; An, and commuting
channels ρAijParentsðiÞ, the state is an operator σA1…An

on
⊗n

i¼1 HAi
, where HAi

≔ HAi
⊗ H�

Ai
, given by

σA1…An
¼

Yn
i¼1

ρAijParentsðiÞ: ð12Þ

The operator σA1…An
is referred to as the state of the

quantum causal model since, as we discuss in the next
subsection, σA1…An

is used to calculate the probabilities for
outcomes when measurements are performed on the
systems that the model describes [54].

B. Making predictions

In order to see how a quantum causal model is used to
calculate probabilities for the outcomes of agents’ inter-
ventions, consider a quantum causal model with nodes
A1;…; An and state σA1…An

. Let the intervention at node Ai

have classical outcomes labeled by ki. The intervention is
defined by a quantum instrument (that is, by a set of
completely positive trace-nonincreasing maps, one for each
outcome, which sum to a trace-preserving map). In order to
write the probabilities for the outcomes in a simple form, it
is useful to define the instrument in such a way that the map
associated to each outcome takes operators on H�

Ai
into

operators on H�
Ai
. Hence, suppose that the outcome ki

corresponds to the map Eki
Ai
∶ BðH�

Ai
Þ → BðH�

Ai
Þ and let
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τkiAi
¼

X
lm

Eki
Ai
ðjliA�

i
hmjÞ ⊗ jliAi

hmj:

The outcome ki of the agent’s intervention can then be
represented by the (positive, basis-independent) operator
τkiAi

isomorphic to Eki
Ai
.

If an agent does not intervene at the node Ai, this
corresponds to the linking operator itself:

τidAi
¼

X
lm

jliA�
i
hmj ⊗ jliAi

hmj:

The joint probability for the agents to obtain outcomes
k1;…; kn is given by

Pðk1…knÞ ¼ Tr½σA1…An
ðτk1A1

⊗ � � � ⊗ τknAn
Þ�: ð13Þ

We can also define operations on the state σA1…An

corresponding to marginalization over the outcome ki of
an intervention on node Ai by

P
kiTrAi

. In this case, the
joint state on the rest of the nodes after such marginali-
zation is

σA1…Aði−1ÞAðiþ1Þ…An
¼

X
ki

TrAi
ðσA1…An

τkiAi
Þ:

If the intervention at node Ai is trivial, then

σA1…Aði−1ÞAðiþ1Þ…An
¼ TrAi

ðσA1…An
τidAi

Þ:

C. Classical interventional models

Given the proposed definition of a quantum causal
model, and the interpretation in terms of agents intervening
at nodes, there is a stronger analogy to be made with a
classical formalism that similarly involves interventions
than there is to the standard classical causal models
introduced in Sec. IV.
In order to make this explicit, consider a classical

interventional causal model constructed as follows. For a
given DAG, split every node Xi into a pair of disconnected
nodes, denoted XO

i and XI
i , such that in the DAG

that results, XI
i has as parents the set of nodes

ParentsOðiÞ ≔ fXO
j ∶Xj ∈ ParentsðiÞg, and XO

i has as chil-
dren fXI

j∶Xj ∈ ChidrenðiÞg. In other words, the “I”
version of each node Xi has as parents the “O” version
of each node that was a parent of Xi in the original graph,
and the “O” version of each node Xi has as children the “I”
version of each node that was a child of Xi in the original
graph. In this case, one can represent the resulting DAG by
a conditional probability distribution:

PðXI
1…XI

njXO
1 …XO

n Þ ¼
Yn
i¼1

P½XI
i jParentsOðiÞ�: ð14Þ

Our association of each node Ai of the DAG with a pair of
Hilbert spaces, HAi

and H�
Ai
, is simply a quantum version

of the splitting of a classical variable Xi into XO
i and XI

i , and
our joint state σA1…An

is the quantum analogue of the
conditional probability PðXI

1…XI
njXO

1 …XO
n Þ.

In a classical interventional causal model, one can
imagine an intervention at node Xi as a causal process
acting between XI

i and XO
i and possibly outputting an

additional classical variable ki which acts as a record of
some aspect of the intervention. The most general such
intervention is described by a conditional probability
distribution Pðki; XO

i jXI
iÞ [55]. After specifying the nature

of the intervention at each node, fPðki; XO
i jXI

iÞgi, one can
compute the joint probability distribution over the record
variables to be

Pðk1…knÞ ¼
X

XI
1
;XO

1
…XI

n;XO
n

PðXI
1…XI

njXO
1 …XO

n Þ

×
Yn
i¼1

Pðki; XO
i jXI

iÞ: ð15Þ

Clearly, our intervention operators τkiAi
are the quantum

analogue of the intervention conditionals Pðki; XO
i jXI

iÞ, and
our Eq. (13) is the quantum analogue of Eq. (15).

D. Examples

1. Confounding common cause

Consider a quantum causal model with the DAG
depicted in Fig. 10. The DAG is supplemented with the
quantum channels ρCjAB, ρBjA, and ρA, where the latter is
simply a quantum state on HA (which can also be thought
of as a channel from the trivial, or one-dimensional, system
into A).
The corresponding state is σABC ¼ ρCjBAρBjAρA, where σ

acts on the Hilbert space H�
C ⊗ HC ⊗ H�

B ⊗ HB ⊗
H�

A ⊗ HA. By stipulation, the channels commute pairwise.
This is immediate in the case of, say, ρBjA and ρA, since
these operators are nontrivial on distinct Hilbert spaces. But

FIG. 10. A causal network with A a common cause for B and C
and with B a parent of C.
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it is significant in the case of ρCjBA and ρBjA, both of which
act nontrivially on H�

A. From Theorem 2, this implies that
H�

A decomposes as H�
A ¼ ⨁iH

�
AL
i
⊗ H�

AR
i
, with ρCjBA act-

ing trivially on (say) the right-hand factors and ρBjA acting
trivially on the left-hand factors.
The fact that the output Hilbert space of the A system

decomposes in this manner is a significant constraint on the
kinds of quantum evolution that can be compatible with the
DAG of Fig. 10. In words, the evolution undergone by
the system emerging from A is as follows: a (possibly
degenerate) von Neumann measurement is performed and,
controlled on the outcome, the A system is split into two
pieces. One piece evolves to become the input at B. The
output at B is then recombined with the other piece and
evolves to become the input at C.
By way of contrast, it is also instructive to consider

quantum causal models with the causal structure shown in
Fig. 11. Such a quantum causal model may represent, for
example, the non-Markovian evolution of a qubit over three
time steps, with A, B, and C representing the qubit at each
time step, and where the qubit interacts with an environ-
ment whose initial state is ρλ. The qubit is initially
uncorrelated with the environment. Suppose that the state
of the environment at the second and third time steps is not
of interest; hence, corresponding nodes do not appear in the
DAG. Given that over the course of this evolution infor-
mation can flow from the qubit to the environment, and
back again, it is necessary to include an arrow from A to C,
as well as from λ to B and λ to C.
A quantum causal model with this DAG defines com-

muting channels ρCjBAλ, ρBjAλ, ρA, ρλ. From the fact that
ρCjBAλ and ρBjAλ commute, we conclude that the Hilbert
space H�

A ⊗ H�
λ decomposes as a direct sum over direct

products. However, a decomposition of H�
A ⊗ H�

λ as a
direct sum over direct products does not imply a decom-
position of the Hilbert spaceH�

A alone as a direct sum over
direct products. Hence, the evolution of the qubit is not

strongly constrained as it was in the previous example.
Physically, this is important: if the qubit, for example, is
interacting only weakly with the environment, then its
evolution certainly could not be paraphrased in terms of a
strong von Neumann measurement, as it was for evolutions
compatible with Fig. 10.
One further remark concerning this example will help to

illustrate a distinction between quantum and classical
causal models. Suppose that ρλ is the pure state j0ih0j
and that we marginalize over λ under the assumption that an
agent at the λ node does not intervene. In classical causal
models, if a root note has a point distribution, then
marginalizing over that node yields a distribution over
the remaining variables that is compatible with the DAG
obtained by removing that node and its outgoing arrows.
This does not hold in the quantum case: even for ρλ a pure
state, marginalizing over the λ node (assuming no inter-
vention there) in general yields an operator σABC that is not
compatible with the DAG obtained by removing λ (Fig. 10).
As with the example of the coherent copy in Sec. III E 2,
this makes intuitive sense if one takes the view that a
quantum pure state represents maximal but incomplete
information. Incomplete information about the λ system
may underwrite correlations between B and C, so that such
correlations cannot be attributed entirely to system A as
Fig. 10 requires. Hence, even for the environment initially
in a pure state, the non-Markovian evolution of a qubit need
not obey the strong constraint implied by the causal
structure of Fig. 10.

2. Simple case of Bayesian updating

This section discusses another sense in which the
quantum notion of conditional independence of the outputs
of a channel given the input mirrors qualitatively an
important aspect of the classical case.
Consider a classical causal model with the DAG of

Fig. 1 and distribution PðXYZÞ such that PðYZjXÞ ¼
PðYjXÞPðZjXÞ. A particular feature of this causal scenario
is that if new information is obtained about the variable Y,
for example, if an agent learns that the value of Y is y, then
the process of Bayesian updating proceeds as follows. First,
update the distribution over X by applying the rule

~PðXÞ ≔ PðXjY ¼ yÞ ¼ PðY ¼ yjXÞPðXÞ
PðY ¼ yÞ :

Then use the new probability distribution on X, ~PðXÞ, to
get an updated distribution for Z:

PðZjY ¼ yÞ ¼
X
x

PðZjXÞ ~PðXÞ; ð16Þ

where the sum ranges over the values that X may take.
Roughly speaking, the process of Bayesian updating
“follows the arrows” of the graph. For this it is crucial

FIG. 11. The causal structure of Fig. 10 with an extra node λ,
which is a common cause for B and C. A causal model with this
DAG may describe a qubit interacting with an environment: A, B,
C represent the qubit system at three different times and λ the
environment at the initial time.
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that the joint distribution PðXYZÞ satisfies PðYZjXÞ ¼
PðYjXÞPðZjXÞ, otherwise the term PðZjXÞ in Eq. (16)
would have to be replaced with PðZjX; Y ¼ yÞ.
Consider now a quantum causal model, with the DAG of

Fig. 3 and with state σABC ¼ ρBjAρCjAρA. Suppose that an
agent at B intervenes, obtaining outcome kB, corresponding
to the operator τkBB . The agent wishes to calculate the
probability that an intervention at C yields outcome kC
corresponding to τkCC , conditioned on having obtained the
outcome kB, and assuming that there is no intervention at A.
This can be done as follows. First, update the state assigned
to A given the knowledge of kB to

~σA ≔ σAjkB ¼ TrBðσABτ
kB
B Þ

Tr½σABðτidA ⊗ τkBB Þ� :

Then apply the channel ρCjA to ~σA to get the state assigned
to C given the knowledge of kB:

σCjkB ¼ TrAðρCjA ~σAτidAÞ:

Finally, calculate the probability of kC:

PðkCjkBÞ ¼ TrðσCjkBτkCC Þ:

Again, the process of Bayesian updating follows the arrows
of the graph. Note that for this to work, it is crucial that the
channel ρBCjA satisfies ρBCjA ¼ ρBjAρCjA.

VI. RELATION TO PRIOR WORK

We now present a short review of prior works on
quantum causal models and describe how our own proposal
relates to these.
Generalizations of Reichenbach’s principle of common

cause were discussed in Refs. [56–59], although the
approach is quite different from ours. In these works,
the focus of attention is a Boolean algebra of events (in the
classical case), or a nondistributive algebra of projectors (in
the quantum case), with probabilities induced in each case
by a state on the algebra. Given a pair of events, or
projectors, a common cause is a third event, or projector,
such that the probabilities satisfy certain constraints. For a
critical analysis of Refs. [58,59], see Ref. [15].
Preliminary work more directly pertaining to quantum

causal models took the form of explorations of Bell-type
inequalities (and whether they admit quantum violations)
for novel causal scenarios [60,61]. Several researchers
recognized that the formalism of classical causal models
could provide a unifying framework in which to pose the
problem of deriving Bell-type constraints, and that this
framework might be extended to address the problem of
deriving constraints on the correlations that can be obtained
with quantum resources [2,10,11,62]. Note that such
constraints are expressed entirely in terms of classical

settings and classical outcomes of measurements.
Henson, Lal, and Pusey [63] and Fritz [64] independently
proposed definitions of quantum causal models with the
purpose of expressing such constraints. In these appro-
aches, each node of the DAG represents a process (which
may have a classical outcome), while each directed edge is
associated with a system that is passed between processes.
However, despite the fact that their frameworks incorporate
the possibility of post-classical resources, they do not have
sufficient structure to define conditional independences
between quantum systems.
Operational reformulations of quantum theory such as

Refs. [65–70] helped to set the stage for the development of
quantum causal models. Although they were conceived
independently of the framework of classical causal models,
they were quite similar to that framework insofar as
they made heavy use of DAGs—in the form of circuit
diagrams—to depict structural features of a set of proc-
esses. When the authors of these formulations turned their
attention to relativistic causal structure, the frameworks
they devised drew even closer in spirit to that of causal
models. Prominent examples include the causaloid frame-
work of Ref. [71], the multitime formalism [41–44],
quantum combs [45–47], the causal categories of
Ref. [28], and the process matrix formalism [48,49]. A
common aim of these approaches is to be able to compute
the consequences of an intervention upon a particular
quantum system within the circuit, and this is precisely
one of the tasks that a quantum analogue of a causal model
should be able to handle.
Many of these frameworks represent a quantum system

at a given region of space-time by two copies of its Hilbert
space, one corresponding to the system that is input into
the region and one corresponding to the system that is
output from it. In this way, the region becomes a “locus of
intervention” for the system. By inserting a particular
quantum process into the “slot,” one determines the nature
of the intervention. This is the approach taken, for instance,
in the multitime formalism of Ref. [42], the quantum combs
of Ref. [45], and the process matrices of Ref. [48]. This
representation of interventions has a counterpart in classical
causal models, for instance, in the work of Ref. [72], as was
noted in Refs. [14,50].
Costa and Shrapnel [50] in particular have sought to

explicitly cast this sort of framework as a quantum
generalization of a causal model. In their approach, the
nodes of the DAG are associated with a quantum system
localized in a region (understood as a potential locus of
intervention) and the collection of edges from one set of
nodes to another represent causal processes.
An approach of this sort is required if one seeks to find

intrinsically quantum versions of important theorems of
classical causal models. For instance, while Henson, Lal,
and Pusey [63] derive a generalization of the d-separation
theorem of classical causal models, it only infers
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conditional independence relations from d-separation rela-
tions for the classical variables in the graph. An intrinsically
quantum version of the d-separation theorem, by contrast,
would be one which concerns the causal relations among
quantum systems (see, for instance, Ref. [73]). If a set of
nodes representing quantum systems can be described by a
joint or conditional state, then one can seek to determine
whether factorization conditions on this state are implied by
d-separation relations among the quantum systems on the
graph. Similarly, while the approaches both of Henson, Lal,
and Pusey [63] and of Fritz [64] allow one to derive, from
the structure of the DAG, constraints on the joint distri-
bution over classical variables embedded therein, they do
not address an intrinsically quantum version of this
problem. If a set of nodes representing quantum systems
can be described by a joint or conditional state, then one
can seek to derive constraints on this state directly from the
structure of the DAG.
Our own approach aims at an intrinsically quantum

generalization of the notion of a causal model. We therefore
associate to each node of the DAG a quantum system
localized to a space-time region, and we represent it by a
pair of Hilbert spaces, corresponding to the input and
output of an intervention upon the system. Consequently,
our approach is very similar to that of Costa and Shrapnel
[50]. Nonetheless, there are significant differences in how
we represent common causes.
First, in the work of Costa and Shrapnel, any node with

multiple outgoing edges is represented as a locus of
intervention where the output Hilbert space is a tensor
product of Hilbert spaces, one for each outgoing edge. As
such, any node acting as a common cause must be
associated with a composite quantum system. It cannot,
for instance, be associated with a single qubit. By contrast,
our approach does not constrain the representation of
common causes in this fashion. Any quantum system,
including a single qubit, may constitute a complete
common cause of a collection of other quantum systems.
This extra generality is required since, as our examples
show, the complete common cause of a set of systems can
be a single qubit. Second, and more importantly, our work
shows that for a quantum channel whose input is the
complete common cause of its n outputs, it is not the case
that the channel must split the input into n components,
each of which exerts a causal influence on a different
output. This is merely one special case of the most general
form that such a channel can take. Third, if the complete
common causes consist of multiple nodes in the DAG, then
it is only the joint Hilbert space of the collection of these
that must satisfy the condition of factorizing in subspaces,
while each individual Hilbert space need not.
These differences are likely to have a significant impact

on the form of any intrinsically quantum d-separation
theorem.

Finally, we mention a third purpose to which quantum
causal models can be put. Theorems about classical causal
models often concern the sorts of inferences one can make
about one variable given information about another. As an
example, if Z is a common effect of X and Y, then learning
Z can induce correlations between X and Y. As such, one
might expect quantum causal models to also constrain the
sort of inferences one can make among quantum variables.
Early work by Leifer and Spekkens [21] had this purpose in
mind. The authors noted various scenarios in which their
proposal could not be applied, and subsequent work [40]
has narrowed down the scope of possibilities for any such
proposal. Our own proposal provides the means of making
many of the Bayesian inferences considered in Ref. [21].
The case we discuss in Sec. V D 2 is one such example.
There is also prior work on quantum causal models that

takes a significantly different approach to the ones
described above and for which the relation to our work
is less clear. The work of Tucci [74,75], which is in fact the
earliest attempt at a quantum generalization of a causal
model, represents causal dependences by complex transi-
tion amplitudes rather than quantum channels.

VII. CONCLUSIONS

The field of classical statistics has benefited greatly from
analysis provided by the formalism of causal models [8,9].
In particular, this formalism allows one to infer facts about
the underlying causal structure purely from uncontrolled
statistical data, a tool with significant applications in all
branches of the physical and social sciences. Given that
some seemingly paradoxical features of classical correla-
tions have found satisfying resolutions when viewed
through a causal lens, one might wonder to what extent
the same is true of quantum correlations.
Starting with the idea that whatever innovation quantum

theory might hold for causal models, the intuition contained
in Reichenbach’s principle ought to be preserved, we
motivate the problem of finding a quantum version of
the principle. This requires us to determine what constraint
a channel from A to BC must satisfy if A is the complete
common cause of B and C. We solve the problem by
considering a unitary dilation of the channel and by noting
that there is no ambiguity in how to represent the absence of
causal influences between certain inputs and certain outputs
of a unitary. From this, we derive a notion of quantum
conditional independence for the outputs of the channel
given its input. This inference from a common-cause
structure to quantum conditional independence is then
generalized to obtain our quantum version of causal
models.
Given a state on a quantum causal model, we describe

how to construct a marginal state for a subset of nodes. We
discuss a number of simple examples of quantum channels
and causal structures. A theme of the examples is that when
there is a difference between the quantum and classical
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cases, this can often be understood if one takes the view that
a quantum pure state represents maximal but incomplete
information about a system, and hence may underwrite
correlations between other systems in a way that a classical
pure state cannot.
There are many directions for future work. In the case of

classical causal networks, an important theorem states that
the d-separation relation among nodes of a DAG is sound
and complete for a conditional independence relation to hold
among the associated variables in the joint probability
distribution [8]. Here, for arbitrary subsets of nodes S, T,
and U, subsets S and T are said to be d-separated by U if a
certain criterion holds, where this is determined purely by the
structure of the DAG. An important question is, therefore,
whether d-separation is sound and complete for some natural
property of the state σ on a quantum causal network.
It is also desirable to relate properties of a quantum

causal network to operational statements involving the
outcomes of agents’ interventions: under what circum-
stances, for example, does it follow that there is an
intervention by the agents at nodes in a subset U, such
that, conditioned on its outcome, the outcomes of any
interventions by agents at S and T must be independent?
Such a result would have an application to quantum
protocols. Imagine, for example, a cryptographic scenario
in which agents at S and T desire shared correlations that
are not screened off by the information held by agents at U.
In the classical case, there has been a great deal of work

on the problem of causal inference [8,9,76–78]: given only
certain facts about the joint probabilities, for instance, a set
of conditional independences, what can be inferred about
the underlying causal structure? For an initial approach to
quantum causal inference, with a quantum-over-classical
advantage in a simple scenario, see Ref. [14]. The formal-
ism of quantum causal networks described here is the
appropriate framework for inferring facts about underlying,
intrinsically quantum, causal structure, given observed
facts about the outcomes of interventions by agents.
Recently, there has been much interest in deriving

bounds on the correlations achievable in classical causal
models [76,77,79,80] using insights from the literature on
Bell’s theorem. Such bounds constitute Bell-like inequal-
ities for arbitrary causal structures. The main technical
challenge in deriving such inequalities is that the set of
correlations is generally not convex if the DAG has more
than one latent variable, so that standard techniques for
deriving Bell inequalities are not applicable. By adapting
these new techniques to the formalism we present here, one
could perhaps systematically derive bounds on the quantum
correlations achievable in certain quantum causal models,
thereby providing a general method of deriving Tsirelson-
like bounds [81,82] for arbitrary causal structures.
Finally, it would be interesting to extend the formalism

to explore the possibility that certain quantum scenarios
are best understood as involving a quantum coherent

combination of different causal structures [46,48,83,84].
It has been argued that the possibility of such indefinite
causal structure may be significant for the project of
unifying quantum theory with general relativity [71].
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APPENDIX A: PROOF OF THEOREMS 2 AND 3

We here provide the proof of Theorems 2 and 3. This
amounts to proving that for a channel ρBCjA, the following
four conditions are equivalent.
(1) ρBCjA admits of a unitary dilation where A is a

complete common cause of B and C.
(2) ρBCjA ¼ ρBjAρCjA.
(3) IðB∶CjAÞ ¼ 0, where IðB∶CjAÞ is the quantum

conditional mutual information evaluated on the
(positive, trace-one) operator ρ̂BCjA.

(4) The Hilbert space for the A system can be
decomposed as HA ¼ ⨁iHAL

i
⊗ HAR

i
and ρBCjA¼P

iðρBjAL
i
⊗ρCjAR

i
Þ, where for each i, ρBjAL

i
represents

a completely positive map BðHAL
i
Þ → BðHBÞ, and

ρCjAR
i
a completely positive map BðHAR

i
Þ → BðHCÞ.

We show various implications that collectively give
Theorem 2.
Proof that ð3Þ ↔ ð4Þ.—This follows easily from the

results of Ref. [27], where a characterization is given of
tripartite quantum states over systems A, B, C that
satisfy IðB∶CjAÞ ¼ 0.
Lemma 1 [Ref. [27], Theorem 6).—For any tripartite

quantum state ρABC, the quantum conditional mutual
information IðB∶CjAÞ ¼ 0 if and only if the Hilbert space
of the A system decomposes as HA ¼ ⨁iHAL

i
⊗ HAR

i
,

such that

ρABC¼
X
i

piðρBAL
i
⊗ρCAR

i
Þ; pi≥0;

X
i

pi¼1; ðA1Þ
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where for each i, ρBAL
i
is a quantum state onHB ⊗ HAL

i
and

ρCAR
i
is a quantum state on HC ⊗ HAR

i
.

Theorem 2 concerns the channel operator ρBCjA, which
satisfies TrBCðρBCjAÞ ¼ IA� . Applying Lemma 1 to the
operator ρ̂BCjA ¼ ð1=dAÞρBCjA yields the decomposition

ρ̂BCjA ¼
X
i

piðρ̂BjAL
i
⊗ ρ̂CjAR

i
Þ:

Using TrBCðρ̂BCjAÞ ¼ ð1=dAÞIA� , it follows that for each i,
the components satisfy TrBðρ̂BjAL

i
Þ ¼ ð1=dAL

i
ÞIðAL

i Þ�, and
TrCðρ̂CjAR

i
Þ ¼ ð1=dAR

i
ÞIðAR

i Þ� , with pi ¼ ðdAL
i
dAR

i
Þ=dA. The

result follows.
Proof that ð1Þ → ð4Þ.—Let ρUBFCjAλBλC be the Choi-

Jamiołkowski operator for the unitary U, defined according
to the conventions set out in the main text. Let missing
indices indicate that a partial trace is taken, as also in
the main text. Note that, in general, ρUBCjA ≠ ρBCjA, since
the latter is obtained via a particular choice of input states
for λB and λC. The proof proceeds by proving relations
between quantum conditional mutual information
evaluated on the renormalized operator ρ̂UBFCjAλBλC ¼
ð1=dλBdAdλCÞρUBFCjAλBλC and its partial traces.
First,

IðB∶FCjλBAλCÞ ¼ 0: ðA2Þ

This follows by expanding in terms of von Neumann
entropies:

IðB∶FCjλBAλCÞ ¼ Sðρ̂UBjλBAλCÞ þ Sðρ̂UFCjλBAλCÞ
− Sðρ̂UBFCjλBAλCÞ − Sðρ̂U·jλBAλCÞ: ðA3Þ

The third term is zero, since the unitarity of U implies that
ρ̂UBFCjλBAλC is a pure state. The final term is logðdλBdAdλCÞ,
since ρ̂U·jλBAλC ¼ ð1=dλBdAdλCÞIðλBAλCÞ� . Noting also that

TrλBAλCðρ̂UBFCjλBAλCÞ ¼ ð1=dλBdAdλCÞIðλBAλCÞ� , and using

the fact that the von Neumann entropy of the partial trace
of a pure state is equal to the von Neumann entropy of the
complementary partial trace, yields that the first two terms
equal logðdFdCÞ and logðdBÞ, respectively, hence, their
sum is equal to logðdλBdAdλCÞ, and Eq. (A2) follows.
Second,

IðλB∶λCjAÞ ¼ 0: ðA4Þ

This follows immediately from ρ̂U·jλBAλC¼ð1=dλBdAdλCÞ×
IðλBAλCÞ� .
Third,

IðB∶λCjλBAÞ ¼ 0: ðA5Þ

To see this, write

IðB∶λCjλBAÞ ¼ Sðρ̂UBjλBAÞ þ Sðρ̂U·jλBAλCÞ
− Sðρ̂UBjλBAλCÞ − Sðρ̂U·jλBAÞ: ðA6Þ

The second and fourth terms are entropies of maximally
mixed states on their respective systems, and hence, sum to
logdλC . For the first and third terms, it follows from the
assumption that there is no causal influence from λC to B in
U that ρ̂UBjλBAλC ¼ ρ̂UBjλBA ⊗ ð1=dλCÞIðλCÞ� . Hence, the third

term is equal to Sðρ̂UBjλBAÞ þ logðdλCÞ, which gives Eq. (A5).
Fourth,

IðC∶λBjAλCÞ ¼ 0: ðA7Þ

This follows from a similar argument as Eq. (A5), using the
assumption that there is no influence from λB to C in U.
The aim is now to use Eqs. (A2), (A4), (A5), and (A7) to

show that ρ̂BCjA satisfies IðB∶CjAÞ ¼ 0. This follows using
a result from Ref. [12], which states that quantum condi-
tional mutual information on partial traces of a multipartite
quantum state satisfies the semigraphoid axioms familiar
from the classical formalism of causal networks [8]. The
semigraphoid axioms are as follows:

½IðX∶YjZÞ ¼ 0� ⇒ ½IðY∶XjZÞ ¼ 0�; ðA8Þ

½IðX∶YWjZÞ ¼ 0� ⇒ ½IðX∶YjZÞ ¼ 0�; ðA9Þ

½IðX∶YWjZÞ ¼ 0� ⇒ ½IðX∶YjZWÞ ¼ 0�; ðA10Þ

½IðX∶YjZÞ¼0�∧ ½IðX∶WjYZÞ¼0�⇒ ½IðX∶YWjZÞ¼0�:
ðA11Þ

Applying Eqs. (A8)–(A11) to Eqs. (A2), (A4), (A5), and
(A7) gives

½IðB∶FCjλBAλCÞ ¼ 0� ⇒ ½IðB∶CjλBAλCÞ ¼ 0�; ðA12Þ

½IðC∶λBjAλCÞ ¼ 0� ∧ ½IðB∶CjλBAλCÞ ¼ 0�
⇒ ½IðC∶BλBjAλCÞ ¼ 0�; ðA13Þ

½IðλB∶λCjAÞ ¼ 0� ∧ ½IðλC∶BjλBAÞ ¼ 0�
⇒ ½IðλC∶BλBjAÞ ¼ 0�; ðA14Þ

½IðBλB∶λCjAÞ ¼ 0� ∧ ½IðBλB∶CjAλCÞ ¼ 0�
⇒ ½IðBλB∶CλCjAÞ ¼ 0�: ðA15Þ

Hence, condition (1) of the theorem implies that
IðBλB∶CλCjAÞ ¼ 0, where this quantity is calculated on
the trace-one Choi-Jamiołkowski operator representing the
dilation unitary U. Using Lemma 1 gives
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ρ̂UBCjλBAλC ¼
X
i

piðρ̂UBjλBAL
i
⊗ ρ̂UCjAR

i λC
Þ; ðA16Þ

for some appropriate decomposition of ðHAÞ� and proba-
bility distribution fpigi. The form of the decomposition,
and the fact that TrBCðρ̂UBCjλBAλCÞ ¼ ð1=dλBdAdλCÞIðλBAλCÞ� ,
gives

ρUBCjλBAλC ¼
X
i

ðρUBjλBAL
i
⊗ ρUCjAR

i λC
Þ; ðA17Þ

where for each i, the components satisfy TrBðρUBjλBAL
i
Þ ¼

IðAL
i Þ� and TrCðρUCjλCAR

i
Þ ¼ IðAR

i Þ� . The operator ρBCjA is

obtained by acting with this channel on the input states
j0iλB for λB and j0iλC for λC. This gives

ρBCjA ¼
X
i

ðρBjAL
i
⊗ ρCjAR

i
Þ;

where TrBðρBjAL
i
Þ ¼ IðAL

i Þ� and TrCðρCjAR
i
Þ ¼ IðAR

i Þ� , as
required.
Proof that ð4Þ → ð1Þ.—Let HA ¼ ⨁iHAi

, with
HAi

¼ HAL
i
⊗ HAR

i
, and ρBCjA ¼ P

iðρBjAL
i
⊗ ρCjAR

i
Þ.

Each term ρBjAL
i
corresponds to a valid quantum channel,

i.e., a CPTP map BðHAL
i
Þ → BðHBÞ. Similarly, each term

ρCjAR
i
corresponds to a CPTP map BðHAR

i
Þ → BðHCÞ.

The channel ρBjAL
i
can be dilated to a unitary trans-

formation Vi, with ancilla input λB in a fixed state j0iλB ,
such that Vi acts on the Hilbert space HλB ⊗ HAL

i
.

Similarly, ρCjAR
i
can be dilated to a unitary transformation

Wi, with ancilla λC in a fixed state j0iλC , acting on
HAR

i
⊗ HλC . By choosing the dimension of λB large

enough, we can identify the system λB and the state
j0iλB that are used for each value of i, and similarly λC.
Let V 0

i be the operator that acts as Vi ⊗ IAR
i
on the

subspace HλB ⊗ HAi
, and as zero on the subspace

HλB ⊗ HAj
, for j ≠ i. Similarly, let W0

i be the operator
that acts as IAL

i
⊗ Wi on the subspace HAi

⊗ HλC , and as
zero on the subspace HAj

⊗ HλC for j ≠ i. Let

V ¼
X
i

V 0
i; ðA18Þ

W ¼
X
i

W0
i; ðA19Þ

where W and V are unitary and ½V ⊗ IλC ; IλB ⊗ W� ¼ 0.
The channel represented by ρBCjA can be dilated to the
unitary transformation U ¼ ðIλB ⊗ WÞðV ⊗ IλCÞ, with
ancillas λB and λC. From the form of V and W, it follows
immediately that there is no causal influence from λC to B
in U. From ½V ⊗ IλC ; IλB ⊗ W� ¼ 0 and the form of V and

W, it follows immediately that there is no influence from λB
to C in U.
Proof that ð2Þ → ð3Þ.—As remarked in the main text,

taking the Hermitian conjugate of ρBCjA ¼ ρBjAρCjA
immediately gives ½ρBjA; ρCjA� ¼ 0. Hence,

ρBCjA ¼ ρBjAρCjA; ðA20Þ

ρBCjA ¼ exp½log ρBjA þ log ρCjA�; ðA21Þ

log ρBCjA ¼ log ρBjA þ log ρCjA; ðA22Þ

log ρBCjA þ log ρ·jA ¼ log ρBjA þ log ρCjA; ðA23Þ

logðd−1A ρBCjAÞ þ logðd−1A ρ·jAÞ
¼ logðd−1A ρBjAÞ þ logðd−1A ρCjAÞ: ðA24Þ

The second line follows as ½ρBjA; ρCjA� ¼ 0; the fourth
because ρ·jA ¼ IA� , and therefore has the zero matrix as its
logarithm; and the final line by adding 2 log d−1A to both
sides. It is proved in Ref. [85] that for any trace-one density
operator ρXYZ, log ρXYZ þ log ρZ ¼ log ρXZ þ log ρYZ is
equivalent to the condition IðX∶YjZÞ ¼ 0.
Proof that ð4Þ → ð2Þ.—Condition (4) is that HA ¼

⨁iHAL
i
⊗ HAR

i
, with ρBCjA ¼ P

iðρBjAL
i
⊗ ρCjAR

i
Þ. It fol-

lows that

ρBjA ¼
X
i

ðρBjAL
i
⊗ IðAR

i Þ�Þ; ðA25Þ

ρCjA ¼
X
i

ðIðAL
i Þ� ⊗ ρCjAR

i
Þ: ðA26Þ

The product is

ρBjAρCjA ¼
X
i;j

ðρBjAL
i
⊗ IðAR

i Þ�ÞðIðAL
j Þ� ⊗ ρCjAR

j
Þ: ðA27Þ

The only nonzero terms correspond to i ¼ j; hence,

ρBjAρCjA ¼
X
i

ρBjAL
i
⊗ ρCjAR

i
¼ ρBCjA: ðA28Þ

APPENDIX B: PROOF OF THEOREM 4

Proof that ð3Þ → ð2Þ.—The proof proceeds via an
inductive argument. Consider

ρB1…BnjA ¼ TrBnþ1…Bk
ðρB1…BkjAÞ;

with 2 ≤ n < k, and assume that the claim holds for this
channel; hence,

ρB1…BnjA ¼ ρB1jA � � � ρBnjA; ðB1Þ
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with ½ρBijA; ρBjjA� ¼ 0, for i; j ¼ 1;…; n. It is shown
that the claim remains true if one fewer system is traced
out. To see this, recall that condition (3) gives
IðBnþ1∶B̄nþ1jAÞ ¼ 0, where IðBnþ1∶B̄nþ1jAÞ is evaluated
on ρ̂B1…BkjA. Using Theorem 2 gives

ρB1…BkjA ¼ ρB̄nþ1jAρBnþ1jA;

with ½ρB̄nþ1jA; ρBkþ1jA� ¼ 0. Tracing out systems Bnþ2…Bk

results in

ρB1…Bnþ1jA ¼ ρB1…BnjAρBnþ1jA;

with ½ρB1…BnjA; ρBnþ1jA� ¼ 0. Since ρB1…BnjA satisfies
Eq. (B1), it follows that

ρB1…Bnþ1jA ¼ ρB1jA � � � ρBnþ1jA:

For any i ¼ 1;…; n, trace out all systems but Bi, Bnþ1 and
A to see that ½ρBijA; ρBnþ1jA� ¼ 0.
Hence, if ρB1…BnjA satisfies the claim, so too does

ρB1…Bnþ1jA. As ρB1B2jA ¼ ρB1jAρB2jA, with ½ρB1jA;ρB2jA� ¼ 0,
follows from IðB1∶B̄1jAÞ ¼ 0, and tracing out all but
systems B1, B2, and A, the proof is complete.
Proof that ð2Þ → ð3Þ.—This is immediate from Theorem

2, by grouping outputs into Bi and B̄i for each i.
Proof that ð3Þ ↔ ð4Þ.—The proof that ð4Þ → ð3Þ is

immediate from Theorem 2, by grouping outputs into Bi

and B̄i for each i.
It remains to show that if IðBi∶B̄ijAÞ ¼ 0 for all i, then

there exists a decomposition

HA ¼ ⨁
i

�
⊗
k

j¼1
HAj

i

�
; ðB2Þ

with ρB1…BkjA ¼ P
iðρB1jA1

i
⊗ � � � ⊗ ρBkjAk

i
Þ.

Given IðB1∶B̄1jAÞ ¼ 0, Theorem 2 implies that HA
decomposes as

HA ¼ ⨁
i
HAL

i
⊗ HAR

i
;

with ρB1…BkjA ¼ P
iρB1jAL

i
⊗ ρB2…BkjAR

i
. By assumption,

IðB2∶B̄2jAÞ ¼ IðB2∶B1; B3;…; BkjAÞ ¼ 0. As the
conditional mutual information never increases if systems
are discarded, we have 0¼ IðB2∶B1;B3;…;BkjAÞ≥
IðB2∶B3;…;BkjAÞ. Non-negativity of the conditional mutual
information then yields IðB2∶B3;…; BkjAÞ ¼ 0.
The above decomposition ensures

ρ̂B2…BkjA ¼
X
i

pi

�IAL
i

dAL
i

�
⊗ ρ̂B2…BkjAR

i
;

with pi ¼ dAL
i
dAR

i
=dA. As the terms in the sum on the rhs

have support on orthogonal subspaces,

Sðρ̂B2B3…BkjAÞ¼HðpÞþ
X
i

pi logdAL
i
þ
X
i

piSðρ̂B2…BkjAR
i
Þ;

Sðρ̂B2jAÞ¼HðpÞþ
X
i

pi logdAL
i
þ
X
i

piSðρ̂B2jAR
i
Þ;

Sðρ̂B3…BkjAÞ¼HðpÞþ
X
i

pi logdAL
i
þ
X
i

piSðρ̂B3…BkjAR
i
Þ;

Sðρ̂·jAÞ¼HðpÞþ
X
i

pi logdAL
i
þ
X
i

piSðρ̂·jAR
i
Þ:

Substituting into

IðB2∶B3;…; BkjAÞ ¼ Sðρ̂B2jAÞ þ Sðρ̂B3…BkjAÞ
− Sðρ̂B2B3…BkjAÞ − Sðρ̂·jAÞ;

theHðpÞ terms and the
P

ipi logdAL
i
terms cancel, and one

is left with

IðB2∶B3;…; BkjAÞ ¼
X
i

piIðB2∶B3;…; BkjAR
i Þ ¼ 0:

Non-negativity of both the conditional mutual information
and the pi implies

IðB2∶B3…BkjAR
i Þ ¼ 0:

Hence, each HAR
i

in the above decomposition further
decomposes into a direct sum of tensor products. Iterating
this procedure results in the required decomposition.
Proof that ð1Þ ↔ ð4Þ.—The proof that ð4Þ → ð1Þ is a

straightforward extension of the proof in Appendix A that
condition ð4Þ → ð1Þ in Theorem 2.
To show that ð1Þ → ð4Þ, first use Definition 4 to show that

if, for each i, there is no causal influence from λi to B̄i, it
follows that, for each i, there is no causal influence from λ̄i
to Bi. Partitioning the output systems into Bi and B̄i, and
the ancilla systems λ1;…; λk into λi and λ̄i, it follows from
Theorem 2 that IðBi∶B̄ijAÞ ¼ 0. Hence, condition
ð1Þ → ð3Þ, and since condition ð3Þ → ð4Þ, the result follows.
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