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We derive necessary and sufficient conditions for the approximate correctability of a quantum code,
generalizing the Knill-Laflamme conditions for exact error correction. Our measure of success of the
recovery operation is the worst-case entanglement fidelity. We show that the optimal recovery fidelity can
be predicted exactly from a dual optimization problem on the environment causing the noise. We use this
result to obtain an estimate of the optimal recovery fidelity as well as a way of constructing a class of near-
optimal recovery channels that work within twice the minimal error. In addition to standard subspace
codes, our results hold for subsystem codes and hybrid quantum-classical codes.
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Introduction.—Given the extreme fragility of quantum
coherence, quantum error-correction procedures are be-
lieved to be essential for the successful implementation
of quantum communication or computation. Exact correct-
ability is characterized in general terms by the Knill-
Laflamme (KL) conditions [1] which specify the set of
correctable errors for a particular code. However, practi-
cally useful codes need not be exactly correctable for any
given noise model. In fact, a few exceptional examples
show that allowing for a negligible error in the recovery
can lead to surprisingly better codes [2,3]. This indicates
that assuming exact correctability is too strong a restric-
tion. It is therefore of considerable interest to find appro-
priately weaker error-correction conditions.

In this Letter, we generalize the KL conditions to the
case of approximate correctability. We view the KL con-
ditions as a statement about the information gathered by
the environment causing the noise [4] (a fact previously
noted in Ref. [5]). Thus, our analysis makes essential use of
the concept of complementary channel [6]. Together with
tools introduced in Ref. [7], this provides the basis for our
main technical result (Theorem 1), which we use to obtain
easily computable estimates of the optimal recovery error.
We also propose a class of near-optimal recovery channels,
which offers a significant simplification to the problem of
finding an optimal recovery operation [8].

The analysis of approximate error correction depends on
the figure of merit used to compare the states after correc-
tion to the input states. In this work, we focus on the
entanglement fidelity minimized over all input states
(also known as worst-case entanglement fidelity). The
entanglement fidelity [9] has been shown to be the perti-
nent fidelity measure in both quantum communication and
computation scenarios since it estimates not only how well
the state of the system under correction is preserved but
also how its entanglement with auxiliary systems is main-
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be corrected is not known, as in the case of quantum
computing. In contrast, most previous work has considered
input-dependent fidelities [10,11]. Sufficient conditions for
approximate correctability under the worst-case entangle-
ment fidelity were proposed in Ref. [12]. Here, we obtain
both sufficient and necessary conditions which are a direct
generalization of the KL conditions. Moreover, we prove
our result in a very general context, namely, for the ap-
proximation of any channel, not necessarily the identity
map on the code. One advantage of this generality is that
our results apply directly to the more general schemes of
subsystem, or operator quantum error correction [13—-16].
The present results are also strictly stronger than those of
Refs. [4,17] which are based on the diamond-norm dis-
tance rather than the fidelity.

Background.—The problem of quantum error correction
can be formulated as follows: we are given a channel N
which can represent either a communication channel or the
open dynamics of a physical system which we would like
to use as a quantum memory. The goal is to find an
encoding operation £ and a decoding (or recovery) opera-
tion R, such that the full operation RN is equal to the
identity map. One usually assumes that the encoding is of
the form £(p) = VpVT where V is an isometry embedding
a small Hilbert space (the code) into the larger physical
Hilbert space on which N acts.

Given N and &, the KL conditions [1] provide a simple
way of testing whether a recovery channel R exists. In
addition, these conditions help reasoning about error cor-
rection. For instance, one can use them together with the
no-cloning theorem to easily demonstrate that it is not
possible to encode a qubit in n qubits and faithfully decode
it if n/4 or more arbitrary qubit errors occur. The reason we
mention this particular example is that it is known to fail
dramatically if we allow for an arbitrarily small reconstruc-
tion error (provided n is large enough). Indeed, it was

tained. Minimization over all inputs is essential if one is shown in Ref. [3] that one can encode quantum
interested in guaranteeing a given fidelity when the state to  information in »n qubits undergoing almost n/2
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arbitrary errors and correct it with vanishing error as
n— oo,

Here, we study what becomes of the KL conditions
when we allow for imperfect reconstruction of the code.
Additionally, partly because it reveals an important sym-
metry of the problem, we also generalize quantum error
correction in a different direction. We seek a “‘recovery”
operation R such that R N € is close not necessarily to the
identity on the code, but to a fixed arbitrary channel M. In
particular, this means that our theory applies to subsystem
codes [13,14], and more generally algebraic codes [16]
(representing hybrid quantum-classical information),
when M projects on an algebra [4]. Note that since we
will never separate N from the encoding &, we will simply
work with a channel “N"” which one can think of as N'E.
It typically maps states on a small (logical) Hilbert space to
states on a larger (physical) one.

We will make essential use of the fact that a general
quantum operation, or channel N, can always be viewed
as resulting from a unitary interaction U with an “‘environ-
ment” E whose initial state | /) is known and which is later
discarded (traced out). It does not matter which state | i)
we use since the difference can be absorbed in the unitary.
What matters is the isometry V defined by V|¢) :=
U(|¢) ® |4)) so that N(p) = Trz(VpVT). This isometry
V is not unique, but unique up to a further local unitary
map on the environment, eventually followed by an em-
bedding into a larger environment. From the isometry V,
one obtains the channel elements E; of N'(p) = Y ,E;pE lT
simply by writing the partial trace explicitly in terms of a
basis |i) of E. If instead of tracing out the environment after
the unitary interaction we trace out the target system B, we

obtain a channel " which is said to be complementary to
N: N(p) =Trg(VpV1). It is easy to see that

Np) = Y Tr(EpEDIiNI. )
ij

All complementary channels correspond to some choice of

the orthonormal family of states |i) in the environment.
Main result—Let f(p, o) = Tr\[ Jpo/p be the fidelity

[18] between states p and o. For a given state p, we

introduce the ‘“‘entanglement fidelity” between channels
N and M,

Fy(N, M) = f(N @id) (X)), (M @ id)(| )i 1)),

where |¢) is a purification of p. When M = id, this
quantity reduces to Schumacher’s entanglement fidelity
of N [9]. We will compare channels using the worst-
case entanglement fidelity

F(N, M) = minF,(N, M), 2)
p

which was studied in Ref. [19]. We remark that F(N, M)
relates to f(o, p) in the same way that the diamond-norm
distance [20] relates to the trace distance. Its operational
meaning can be deduced from that of f(o, p) [21].

Theorem 1.—If N and M are channels complementary
to N and M, respectively, then

mﬁxF(R.’N, M) = r%xF(.’f\f, R'M), 3)

where the maxima are over all quantum channels with the
appropriate source and target spaces.

Proof.—The proof closely follows arguments used in
[7]. Let Var be the isometry for which N(p) =
TrE(VNpV}\[) and N (p) = TrB(V_NpV;rv), and V4, be
the isometry yielding both M and M in the same way.
Note that for a fixed state |0), any channel R can be written
as R(p) = Trz(U(p ® |0)0)Ut) for some unitary U and
appropriate environment £. Using this fact and applying
Uhlmann’s theorem [18], which allows us to write the
entanglement fidelity in terms of an overlap maximized
over unitary operators U’, we obtain

maxF(RN, M) = max minmax |g,(U, U"), (4
R v p U

where g, can be expressed in terms of a circuit:

/] TN
gp(U’ U/) = Vi | @ v U/T 0 V_/I/( s

E E’

where the left half circles represent input states, while the
right half circles are states which are scalar multiplied with
the corresponding outputs. Hence, the picture represents a
complex number. The wires labeled B and B’ represent the
target systems for N and M, respectively, and E and E’
are the respective ‘“‘environments.” The state |0) in the
picture is arbitrary, and |¢,) can be any purification of
p. If we reflect the picture with respect to a vertical axis
through the middle, Hermitian conjugating each op-
erator [this amounts to a complex conjugation of
gp(U, U’)], and exchange the wire labels E' and B, and E

and B’, we see that we also have maxR/F(.’JV, RIM) =
maxy min, maxy |g,(U, U')|, where now U’ is the unitary
defining R’ while U comes from Uhlmann’s expression for
the fidelity. Hence, we just have to show that we can
exchange the maximizations over U and U’ in Eq. (4).
First, using the strong concavity of the fidelity, it can be
shown that the max over U in Eq. (4) can as well be
taken over the convex set of operators A with operator
norm || A [|= 1. Next, note that |g,(A4, U')| = |Tr(X,U")|
for some operator X,. We know that max|Tr(X,U’)| =
Tr(|X,]). Since the optimal value of Tr(X,U’) is real, we
only need to optimize ReTr(X,U’) which is linear in
p and U’ over the real numbers. In addition, the max
over U’ can also be taken over operators A’ in the unit
ball since then |Tr(X,A’)| = Tr(|X,[). We can now apply
Shiffman’s minimax theorem [22] which says that we can
exchange the rightmost min and max provided that the
function is convex-concave in the two arguments (in this
case it is bilinear), and that the variables are optimized over
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convex sets. Hence, we obtain maxg F(RN, M) =
max, max, min, Re g,(A4, A’) = maxR/F(j\f, R/'M),
where || A ||, [| A ||= 1. [ |

Note that Eq. (3) can be seen as a necessary and suffi-
cient condition for approximate correctability: for a given
8 €[0,1], there exists a channel 7R such that
F(RN, M) =1 — 8, if and only if there exists a channel

R such that F(N, R' M) = 1 — 8. We will see that for a
large class of problems of interest, the existence of R’ is
much easier to establish than that of R.

Knill-Laflamme conditions.—Consider the case M =
id. An example of a channel complementary to the identity
is the trace: M = Tr, whose target is one-dimensional. A
channel whose source is one-dimensional outputs a single
state. Hence, R'M(p) = p,y, Vp, where p, is a fixed
state. Theorem 1 thus says that maxg F(RN, id) = 1 if
and only if N(p) = poTrip), Yp. Explicitly, suppose that
the channel N consists of an encoding specified by an
isometry V followed by noise with channel elements E;. In
terms of matrix components, the condition that N bea
constant channel with output p, reads VTEZTE V=21,
where A;; = (ilp|j). One obtains the most familiar form
of the KL conditions by expressing these equations using
the projector P = VVT on the code: PE}LE]-P = A;;P.

More generally, if M = P 4 projects on an algebra A,
then we obtain the general correctability conditions for an
algebra [16], namely, [A, VTEZTE}»V] =0forallA € A.
This can be shown by noting that ?Aﬂ = P 4/, where A’
is the commutant of A, i.e., the set of operators commut-
ing withall A € A (see [4] for more details.) In particular,
when the algebra A consists of all operators acting on a
subsystem, this yields the conditions for the correctability
of a subsystem code [14].

Let us show explicitly how Theorem 1 can be under-
stood as a perturbation of the KL conditions in the case
M = id. Since later in our analysis we will use triangle
inequalities, it is convenient to measure the error of im-
perfect recovery by a fidelity-based distance function. We
will consider the Bures distance [23] based on the entan-

glement fidelity, d,,(IN, M) = /1 — F ,(N, M). Note that
d(N, M) := maxd,(N, M) =1 — F(N, M) (5)
p

satisfies ~ the  triangle inequality: d(IN, M) =
max,d,(N, M) = max,[d,(N, R) + d,(R, M)] =
d(N, R) + d(R, M).

Definition 1.—We will say that a code characterized by
the encoding map £ is e-correctable under the noise chan-
nel I\, if there exists a recovery channel R such that
d(RNE id) = &.

Corollary 2.—A code defined by the projector P is
e-correctable under a noise channel /N, if and only if
PE;ijP = A;jP + PB;;P, where A;; are the components
of a density operator, and d(A + B, A) =& where

Alp) = XA, Tr(p)li)(jl  and
> Tr(pB i)l

Proof.—Let us denote the encoding channel by £. It is
clear from Theorem 1 that the code is e-correctable if and
only if there exists a state p, such that d(NE, A) = &,
where A is defined as in the statement of the corollary with
Aij = (ilpolj). Also, from Eq. (1), we see that indeed
NE=A+ B since the operators V*BUV are defined
by PB,;P = PEE;P — \;;P. |

It is not a priori clear how useful this condition can be
since it does not specify how to find an optimal set of
coefficients A;;. We will now show, in a more general
setting, that we can find a whole set of explicit guesses
for A;; which are guaranteed to yield a value of & which is
less than twice the optimal one. Explicitly, this is the case
whenever A;; = Tr(o-E;rEj) for some state o.

Near-optimal correction.—We saw that in the exact case
(fidelity one), Theorem 1 yields the necessary and suffi-
cient conditions for all quantum error-correction schemes
when M projects on an algebra. Here, we want to show
that it also yields useful conditions for the approximate
version of these schemes. The problem is that in general it

(A+B)(p)=A(p)+

may not be easier to compute maxg:F (N, R'M) than
maxg F(RN, M). However, we will show that when ‘M
is a projection, i.e., it satisfies M2 =M (which is the case
for error correction), we can guess a whole class of chan-
nels R’ for which F(N, R' M) yields a good approxima-
tion to the optimal worst-case fidelity maxg F(R N, M).
Moreover, we can build the corresponding near-optimal
recovery channels R.
Corollary ~ 3.—Suppose  that M2 = M. Then,
LA(N, N M) = mingd(RN, M) = d(N, N M).
Proof.—First note that Theorem 1 expressed in terms of
d reads g, := mingd(RN, M) = ming d(N, R'‘M).
The rightmost inequality follows from picking the non-
optimal R’ = N. For the leftmost inequality, sup-
pose that R{ minimizes d(N, R'M). Then using the
triangle  inequality, AN, N M) < d(N, ’R(’).’]AVZ) +
d(R(’)le, N M). We know that the first term is equal to
go since R{, is optimal. For the second term, note
that d(RyM, N M) = d(RyM*, N° M) = d(R}M,
.’f\f) = g. Hence, d(.’f\f, .’f\fj\/l) = 2g,. [ |
Note that computing AN, N M) requires a convex
maximization over inputs only [19], which is a significant
simplification over the minimax ming d(R N, M).
Near-optimal recovery channel.—Let us show how we

can construct a recovery channel R which performs as
well as guaranteed by our bounds, i.e.,

ARN, M) = d(N, N M). (6)
We first need to find a saddle point (py, Ay) of
Re g, (A, U'), where U’ yields N through N (p) =
Tr,[U'(p ® |0)0)) (U] This implies that
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F(N, N M) = Re 8p,(Ap, U'). For instance, in the
case M =id, one may first find a p, that mini-
mizes Tr(|X, |), which is a convex optimization problem
[19]. If pg is full rank and unique, then A, can be cho-
sen to be any unitary obtained from the polar de-
composition of X, . Generally, the saddle-point operator
Ay yields a channel S(p) := Try(Ay(p ® |O>(O|)Ag ) which
may be trace decreasing but can always be com-
pleted to a trace-preserving channel R(p) =
S(p) + Ti[p — S(p)]r for any fixed state 7. R then
satisfies Eq. (6). Indeed, F(N, N M) =
min,Re g,(4,, U') = max,y =) Min, Re g,(Ag, AY) =
min, max;s Re g,(Ap, U') = F(RN, M).

Example.—In the standard case M = id, the estimate
S(N) = d(N, N M) from Corollary 3 is given explic-
itly in terms of the fidelity by

F(N, N M) = minTr | Ep*EIT(E,0 E)),
P 5 ’

where o is an arbitrary state resulting from the freedom in

choosing the complementary channel M. As an example,
we applied our results to the code proposed in Ref. [2], for
which we numerically computed §(IN'E), where £ is the
encoding, and N, is the noise model with strength y
considered there [24]. Our calculations show that this
code is good in terms of the worst-case entanglement
fidelity, in the sense that it yields a fidelity distance of
order v instead of the uncorrected order ,/y. The necessity
of our criterion shows, in particular, that one cannot obtain
a better asymptotic behavior with this code.

Fixed-state fidelity.—We finally note that our method
can also be applied to the problem of error correction
on a fixed input state (a scenario studied, e.g., in
Ref. [10]). Indeed, for any state p we also have
maxg F,(RN, M) = maxR/Fp(j\f, R/M). The argu-
ment is simpler as no minimization over p is involved. In
the case M = id, and using a reasoning very similar to the
one we used for the worst-case fidelity, we can obtain the
estimate  1d,(N, ) = mingd,(RN, id) = d (N, S)
where S(o) := N (p)Tr(o). In addition, the correspond-
ing near-optimal recovery channel can be built using the
same method as for the worst-case fidelity with the sim-
plification that no search of a saddle point is involved.

Conclusion.—In summary, we have generalized the
Knill-Laflamme conditions to the case of approximate
correctability, including standard codes, subsystem codes,
and hybrid quantum-classical codes. We obtained easy-to-
calculate estimates of the optimal recovery error and pro-
posed a class of near-optimal recovery channels for the
worst-case entanglement fidelity that work within twice of
the optimal error. These results provide a framework for
studying error correction under general noise models and
allow for a significant simplification to the task of finding
optimal error-correction procedures, thus offering a prom-

ising tool to efficiently address the problem of decoherence
control in realistic scenarios.

0. 0. was supported by Spanish MICINN (Consolider-
Ingenio QOIT). Part of this work was done during the QI
workshop at the Benasque Center for Science, Benasque,
Spain, and during the Fields Institute Thematic Program on
Mathematics in Quantum Information. The Centre for
Quantum Technologies is funded by the Singapore Mini-
stry of Education and the National Research Foundation as
part of the Research Centres of Excellence programme.

[1] E. Knill and R. Laflamme, Phys. Rev. A 55, 900 (1997).

[2] D.W. Leung, M.A. Nielsen, I.L. Chuang, and Y.
Yamamoto, Phys. Rev. A 56, 2567 (1997);

[3] C. Crépeau, D. Gottesman, and A. Smith, Lect. Notes
Comput. Sci. 3494, 285 (2005).

[4] C. Bény, Lect. Notes Comput. Sci. 5906, 6675 (2009).

[5] T. Ogawa, arXiv:quant-ph/0505167.

[6] I. Devetak and P. W. Shor, Commun. Math. Phys. 256, 287
(2005).

[7] D. Kretschmann, D. Schlingemann, and R. Werner, IEEE
Trans. Inf. Theory 54, 1708 (2008).

[8] N. Yamamoto, S. Hara, and K. Tsumura, Phys. Rev. A 71,
022322 (2005); M. Reimpell and R. F. Werner, Phys. Rev.
Lett. 94, 080501 (2005); A.S. Fletcher, P. W. Shor, and
M.Z. Win, Phys. Rev. A 77, 012320 (2008); R. L. Kosut,
A. Shabani, and D. A. Lidar, Phys. Rev. Lett. 100, 020502
(2008).

[91 B.W. Schumacher, Phys. Rev. A 54, 2614 (1996).

[10] H. Barnum and E. Knill, J. Math. Phys. (N.Y.) 43, 2097
(2002); B. Schumacher and M. D. Westmoreland, Quant.
Info. Proc. 1, 5 (2002).

[11] J. Tyson, arXiv:0907.3386; F. Buscemi, Phys. Rev. A 77,
012309 (2008).

[12] P. Mandayam and D. Poulin, The First International
Conference on Quantum Error Correction, 2007.

[13] D. Kribs, R. Laflamme, and D. Poulin, Phys. Rev. Lett. 94,
180501 (2005).

[14] D.W. Kribs, R. Laflamme, D. Poulin, and M. Lesosky,
Quantum Inf. Comput. 6, 383 (2006).

[15] D. Poulin, Phys. Rev. Lett. 95, 230504 (2005).

[16] C. Beny, A. Kempf, and D. W. Kribs, Phys. Rev. Lett. 98,
100502 (2007).

[17] D. Kretschmann, D. W. Kribs, and R. W. Spekkens, Phys.
Rev. A 78, 032330 (2008).

[18] A. Uhlmann, Rep. Math. Phys. 9, 273 (1976).

[19] A. Gilchrist, N.K. Langford, and M. A. Nielsen, Phys.
Rev. A 71, 062310 (2005).

[20] A.Y. Kitaev, Russ. Math. Surv. 52, 1191 (1997).

[21] J.L. Dodd and M. A. Nielsen, Phys. Rev. A 66, 044301
(2002); C. A. Fuchs, arXiv:quant-ph/9601020.

[22] M. do Rosario Grossinho and S.A. Tersian, An Intro-
duction to Minimax Theorems and their Applications to
Differential  Equations  (Kluwer, Dordrecht, the
Netherlands, 2001).

[23] D. Bures, Trans. Am. Math. Soc. 135, 199 (1969).

[24] See supplementary material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.104.120501 for graph.

120501-4



