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We derive necessary and sufficient conditions for the approximate correctability of a quantum code,

generalizing the Knill-Laflamme conditions for exact error correction. Our measure of success of the

recovery operation is the worst-case entanglement fidelity. We show that the optimal recovery fidelity can

be predicted exactly from a dual optimization problem on the environment causing the noise. We use this

result to obtain an estimate of the optimal recovery fidelity as well as a way of constructing a class of near-

optimal recovery channels that work within twice the minimal error. In addition to standard subspace

codes, our results hold for subsystem codes and hybrid quantum-classical codes.
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Introduction.—Given the extreme fragility of quantum
coherence, quantum error-correction procedures are be-
lieved to be essential for the successful implementation
of quantum communication or computation. Exact correct-
ability is characterized in general terms by the Knill-
Laflamme (KL) conditions [1] which specify the set of
correctable errors for a particular code. However, practi-
cally useful codes need not be exactly correctable for any
given noise model. In fact, a few exceptional examples
show that allowing for a negligible error in the recovery
can lead to surprisingly better codes [2,3]. This indicates
that assuming exact correctability is too strong a restric-
tion. It is therefore of considerable interest to find appro-
priately weaker error-correction conditions.

In this Letter, we generalize the KL conditions to the
case of approximate correctability. We view the KL con-
ditions as a statement about the information gathered by
the environment causing the noise [4] (a fact previously
noted in Ref. [5]). Thus, our analysis makes essential use of
the concept of complementary channel [6]. Together with
tools introduced in Ref. [7], this provides the basis for our
main technical result (Theorem 1), which we use to obtain
easily computable estimates of the optimal recovery error.
We also propose a class of near-optimal recovery channels,
which offers a significant simplification to the problem of
finding an optimal recovery operation [8].

The analysis of approximate error correction depends on
the figure of merit used to compare the states after correc-
tion to the input states. In this work, we focus on the
entanglement fidelity minimized over all input states
(also known as worst-case entanglement fidelity). The
entanglement fidelity [9] has been shown to be the perti-
nent fidelity measure in both quantum communication and
computation scenarios since it estimates not only how well
the state of the system under correction is preserved but
also how its entanglement with auxiliary systems is main-
tained. Minimization over all inputs is essential if one is
interested in guaranteeing a given fidelity when the state to

be corrected is not known, as in the case of quantum
computing. In contrast, most previous work has considered
input-dependent fidelities [10,11]. Sufficient conditions for
approximate correctability under the worst-case entangle-
ment fidelity were proposed in Ref. [12]. Here, we obtain
both sufficient and necessary conditions which are a direct
generalization of the KL conditions. Moreover, we prove
our result in a very general context, namely, for the ap-
proximation of any channel, not necessarily the identity
map on the code. One advantage of this generality is that
our results apply directly to the more general schemes of
subsystem, or operator quantum error correction [13–16].
The present results are also strictly stronger than those of
Refs. [4,17] which are based on the diamond-norm dis-
tance rather than the fidelity.
Background.—The problem of quantum error correction

can be formulated as follows: we are given a channel N
which can represent either a communication channel or the
open dynamics of a physical system which we would like
to use as a quantum memory. The goal is to find an
encoding operation E and a decoding (or recovery) opera-
tion R, such that the full operation RNE is equal to the
identity map. One usually assumes that the encoding is of
the form Eð�Þ ¼ V�Vy where V is an isometry embedding
a small Hilbert space (the code) into the larger physical
Hilbert space on which N acts.
GivenN and E, the KL conditions [1] provide a simple

way of testing whether a recovery channel R exists. In
addition, these conditions help reasoning about error cor-
rection. For instance, one can use them together with the
no-cloning theorem to easily demonstrate that it is not
possible to encode a qubit in n qubits and faithfully decode
it if n=4 or more arbitrary qubit errors occur. The reason we
mention this particular example is that it is known to fail
dramatically if we allow for an arbitrarily small reconstruc-
tion error (provided n is large enough). Indeed, it was
shown in Ref. [3] that one can encode quantum
information in n qubits undergoing almost n=2
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arbitrary errors and correct it with vanishing error as
n ! 1.

Here, we study what becomes of the KL conditions
when we allow for imperfect reconstruction of the code.
Additionally, partly because it reveals an important sym-
metry of the problem, we also generalize quantum error
correction in a different direction. We seek a ‘‘recovery’’
operationR such thatRNE is close not necessarily to the
identity on the code, but to a fixed arbitrary channelM. In
particular, this means that our theory applies to subsystem
codes [13,14], and more generally algebraic codes [16]
(representing hybrid quantum-classical information),
when M projects on an algebra [4]. Note that since we
will never separateN from the encoding E, we will simply
work with a channel ‘‘N ’’ which one can think of asNE.
It typically maps states on a small (logical) Hilbert space to
states on a larger (physical) one.

We will make essential use of the fact that a general
quantum operation, or channel N , can always be viewed
as resulting from a unitary interaction U with an ‘‘environ-
ment’’ Ewhose initial state jc i is known and which is later
discarded (traced out). It does not matter which state jc i
we use since the difference can be absorbed in the unitary.
What matters is the isometry V defined by Vj�i :¼
Uðj�i � jc iÞ so that N ð�Þ ¼ TrEðV�VyÞ. This isometry
V is not unique, but unique up to a further local unitary
map on the environment, eventually followed by an em-
bedding into a larger environment. From the isometry V,

one obtains the channel elements Ei ofN ð�Þ ¼ P
iEi�E

y
i

simply by writing the partial trace explicitly in terms of a
basis jii of E. If instead of tracing out the environment after
the unitary interaction we trace out the target system B, we

obtain a channel N̂ which is said to be complementary to

N : N̂ ð�Þ ¼ TrBðV�VyÞ. It is easy to see that

N̂ ð�Þ ¼ X
ij

TrðEi�E
y
j Þjiihjj: (1)

All complementary channels correspond to some choice of
the orthonormal family of states jii in the environment.

Main result.—Let fð�;�Þ ¼ Tr
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�

p
�

ffiffiffiffi
�

pp
be the fidelity

[18] between states � and �. For a given state �, we
introduce the ‘‘entanglement fidelity’’ between channels
N and M,

F�ðN ;MÞ ¼ fððN � idÞðjc ihc jÞ; ðM � idÞðjc ihc jÞÞ;
where jc i is a purification of �. When M ¼ id, this
quantity reduces to Schumacher’s entanglement fidelity
of N [9]. We will compare channels using the worst-
case entanglement fidelity

FðN ;MÞ ¼ min
�

F�ðN ;MÞ; (2)

which was studied in Ref. [19]. We remark that FðN ;MÞ
relates to fð�; �Þ in the same way that the diamond-norm
distance [20] relates to the trace distance. Its operational
meaning can be deduced from that of fð�;�Þ [21].

Theorem 1.—If N̂ and M̂ are channels complementary
to N and M, respectively, then

max
R

FðRN ;MÞ ¼ max
R0

FðN̂ ;R0M̂Þ; (3)

where the maxima are over all quantum channels with the
appropriate source and target spaces.
Proof.—The proof closely follows arguments used in

[7]. Let VN be the isometry for which N ð�Þ ¼
TrEðVN �Vy

N Þ and N̂ ð�Þ ¼ TrBðVN �Vy
N Þ, and VM be

the isometry yielding both M and M̂ in the same way.
Note that for a fixed state j0i, any channelR can be written
as Rð�Þ ¼ Tr~EðUð� � j0ih0jÞUyÞ for some unitary U and
appropriate environment ~E. Using this fact and applying
Uhlmann’s theorem [18], which allows us to write the
entanglement fidelity in terms of an overlap maximized
over unitary operators U0, we obtain

max
R

FðRN ;MÞ ¼ max
U

min
�

max
U0

jg�ðU;U0Þj; (4)

where g� can be expressed in terms of a circuit:

where the left half circles represent input states, while the
right half circles are states which are scalar multiplied with
the corresponding outputs. Hence, the picture represents a
complex number. The wires labeled B and B0 represent the
target systems for N and M, respectively, and E and E0
are the respective ‘‘environments.’’ The state j0i in the
picture is arbitrary, and jc �i can be any purification of

�. If we reflect the picture with respect to a vertical axis
through the middle, Hermitian conjugating each op-
erator [this amounts to a complex conjugation of
g�ðU;U0Þ], and exchange the wire labels E0 and B, and E

and B0, we see that we also have maxR0FðN̂ ;R0M̂Þ ¼
maxU0 min� maxU jg�ðU;U0Þj, where now U0 is the unitary
definingR0 whileU comes fromUhlmann’s expression for
the fidelity. Hence, we just have to show that we can
exchange the maximizations over U and U0 in Eq. (4).
First, using the strong concavity of the fidelity, it can be
shown that the max over U in Eq. (4) can as well be
taken over the convex set of operators A with operator
norm k A k� 1. Next, note that jg�ðA;U0Þj ¼ jTrðX�U

0Þj
for some operator X�. We know that maxU0 jTrðX�U

0Þj ¼
TrðjX�jÞ. Since the optimal value of TrðX�U

0Þ is real, we
only need to optimize ReTrðX�U

0Þ which is linear in

� and U0 over the real numbers. In addition, the max
over U0 can also be taken over operators A0 in the unit
ball since then jTrðX�A

0Þj � TrðjX�jÞ. We can now apply

Shiffman’s minimax theorem [22] which says that we can
exchange the rightmost min and max provided that the
function is convex-concave in the two arguments (in this
case it is bilinear), and that the variables are optimized over
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convex sets. Hence, we obtain maxRFðRN ; MÞ ¼
maxA0 maxA min� Re g�ðA; A0Þ ¼ maxR0FðN̂ ; R0M̂Þ,
where k A0 k , k A k� 1. j

Note that Eq. (3) can be seen as a necessary and suffi-
cient condition for approximate correctability: for a given
� 2 ½0; 1�, there exists a channel R such that
FðRN ;MÞ ¼ 1� �, if and only if there exists a channel

R0 such that FðN̂ ;R0M̂Þ ¼ 1� �. We will see that for a
large class of problems of interest, the existence of R0 is
much easier to establish than that of R.

Knill-Laflamme conditions.—Consider the case M ¼
id. An example of a channel complementary to the identity

is the trace: M̂ ¼ Tr, whose target is one-dimensional. A
channel whose source is one-dimensional outputs a single

state. Hence, R0M̂ð�Þ ¼ �0, 8�, where �0 is a fixed
state. Theorem 1 thus says that maxRFðRN ; idÞ ¼ 1 if

and only if N̂ ð�Þ ¼ �0Trð�Þ,8�. Explicitly, suppose that
the channel N consists of an encoding specified by an
isometry V followed by noise with channel elements Ei. In

terms of matrix components, the condition that N̂ be a

constant channel with output �0 reads VyEy
i EjV ¼ �ij1,

where �ij ¼ hij�0jji. One obtains the most familiar form

of the KL conditions by expressing these equations using

the projector P ¼ VVy on the code: PEy
i EjP ¼ �ijP.

More generally, ifM ¼ PA projects on an algebraA,
then we obtain the general correctability conditions for an

algebra [16], namely, ½A; VyEy
i EjV� ¼ 0 for all A 2 A.

This can be shown by noting that ^PA ¼ PA0 , where A0
is the commutant of A, i.e., the set of operators commut-
ing with all A 2 A (see [4] for more details.) In particular,
when the algebra A consists of all operators acting on a
subsystem, this yields the conditions for the correctability
of a subsystem code [14].

Let us show explicitly how Theorem 1 can be under-
stood as a perturbation of the KL conditions in the case
M ¼ id. Since later in our analysis we will use triangle
inequalities, it is convenient to measure the error of im-
perfect recovery by a fidelity-based distance function. We
will consider the Bures distance [23] based on the entan-

glement fidelity, d�ðN ;MÞ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�F�ðN ;MÞ

q
. Note that

dðN ;MÞ :¼ max
�

d�ðN ;MÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� FðN ;MÞp

(5)

satisfies the triangle inequality: dðN ;MÞ ¼
max�d�ðN ;MÞ � max�½d�ðN ;RÞ þ d�ðR;MÞ� �
dðN ;RÞ þ dðR;MÞ.

Definition 1.—We will say that a code characterized by
the encoding map E is "-correctable under the noise chan-
nel N , if there exists a recovery channel R such that
dðRNE; idÞ � ".

Corollary 2.—A code defined by the projector P is
"-correctable under a noise channel N , if and only if

PEy
i EjP ¼ �ijPþ PBijP, where �ij are the components

of a density operator, and dð�þB;�Þ � " where

�ð�Þ ¼ P
ij�ijTrð�Þjiihjj and ð�þBÞð�Þ¼�ð�ÞþP

ijTrð�BijÞjiihjj.
Proof.—Let us denote the encoding channel by E. It is

clear from Theorem 1 that the code is "-correctable if and

only if there exists a state �0 such that dðN̂ E;�Þ � ",
where� is defined as in the statement of the corollary with
�ij ¼ hij�0jji. Also, from Eq. (1), we see that indeed

N̂ E ¼ �þB since the operators VyBijV are defined

by PBijP ¼ PEy
i EjP� �ijP. j

It is not a priori clear how useful this condition can be
since it does not specify how to find an optimal set of
coefficients �ij. We will now show, in a more general

setting, that we can find a whole set of explicit guesses
for �ij which are guaranteed to yield a value of " which is

less than twice the optimal one. Explicitly, this is the case

whenever �ij ¼ Trð�Ey
i EjÞ for some state �.

Near-optimal correction.—We saw that in the exact case
(fidelity one), Theorem 1 yields the necessary and suffi-
cient conditions for all quantum error-correction schemes
when M projects on an algebra. Here, we want to show
that it also yields useful conditions for the approximate
version of these schemes. The problem is that in general it

may not be easier to compute maxR0FðN̂ ;R0M̂Þ than

maxRFðRN ;MÞ. However, we will show that when M̂

is a projection, i.e., it satisfies M̂2 ¼ M̂ (which is the case
for error correction), we can guess a whole class of chan-

nels ~R0 for which FðN̂ ; ~R0M̂Þ yields a good approxima-
tion to the optimal worst-case fidelity maxRFðRN ;MÞ.
Moreover, we can build the corresponding near-optimal

recovery channels ~R.

Corollary 3.—Suppose that M̂2 ¼ M̂. Then,
1
2dðN̂ ; N̂ M̂Þ � minRdðRN ;MÞ � dðN̂ ; N̂ M̂Þ.
Proof.—First note that Theorem 1 expressed in terms of

d reads "0 :¼ minRdðRN ;MÞ ¼ minR0dðN̂ ;R0M̂Þ.
The rightmost inequality follows from picking the non-

optimal R0 ¼ N̂ . For the leftmost inequality, sup-

pose that R0
0 minimizes dðN̂ ;R0M̂Þ. Then using the

triangle inequality, dðN̂ ; N̂ M̂Þ � dðN̂ ;R0
0M̂Þ þ

dðR0
0M̂; N̂ M̂Þ. We know that the first term is equal to

"0 since R0
0 is optimal. For the second term, note

that dðR0
0M̂; N̂ M̂Þ ¼ dðR0

0M̂
2; N̂ M̂Þ � dðR0

0M̂;

N̂ Þ ¼ "0. Hence, dðN̂ ; N̂ M̂Þ � 2"0. j

Note that computing dðN̂ ;N̂ M̂Þ requires a convex
maximization over inputs only [19], which is a significant
simplification over the minimax minRdðRN ;MÞ.
Near-optimal recovery channel.—Let us show how we

can construct a recovery channel ~R which performs as
well as guaranteed by our bounds, i.e.,

dð ~RN ;MÞ � dðN̂ ;N̂ M̂Þ: (6)

We first need to find a saddle point (�0, A0) of

Re g�ðA;U0Þ, where U0 yields N̂ through N̂ ð�Þ ¼
Tr2½U0ð� � j0ih0jÞðU0Þy�. This implies that
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FðN̂ ; N̂ M̂Þ ¼ Re g�0
ðA0; U

0Þ. For instance, in the

case M ¼ id, one may first find a �0 that mini-
mizes TrðjX�0

jÞ, which is a convex optimization problem

[19]. If �0 is full rank and unique, then A0 can be cho-
sen to be any unitary obtained from the polar de-
composition of X�0

. Generally, the saddle-point operator

A0 yields a channel Sð�Þ :¼ Tr2ðA0ð� � j0ih0jÞAy
0 Þ which

may be trace decreasing but can always be com-

pleted to a trace-preserving channel ~Rð�Þ ¼
Sð�Þ þ Tr½�� Sð�Þ�� for any fixed state �. ~R then

satisfies Eq. (6). Indeed, FðN̂ ; N̂ M̂Þ ¼
min�Re g�ðA0; U

0Þ � maxA0;kA0k�1 min� Re g�ðA0; A
0Þ ¼

min� maxU0 Re g�ðA0; U
0Þ � Fð ~RN ;MÞ.

Example.—In the standard case M ¼ id, the estimate

�ðN Þ ¼ dðN̂ ; N̂ M̂Þ from Corollary 3 is given explic-
itly in terms of the fidelity by

FðN̂ ; N̂ M̂Þ ¼ min
�
Tr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
ij

Ei�
2Ey

j TrðEj�E
y
i Þ

s
;

where � is an arbitrary state resulting from the freedom in

choosing the complementary channel M̂. As an example,
we applied our results to the code proposed in Ref. [2], for
which we numerically computed �ðNEÞ, where E is the
encoding, and N � is the noise model with strength �

considered there [24]. Our calculations show that this
code is good in terms of the worst-case entanglement
fidelity, in the sense that it yields a fidelity distance of
order � instead of the uncorrected order

ffiffiffiffi
�

p
. The necessity

of our criterion shows, in particular, that one cannot obtain
a better asymptotic behavior with this code.

Fixed-state fidelity.—We finally note that our method
can also be applied to the problem of error correction
on a fixed input state (a scenario studied, e.g., in
Ref. [10]). Indeed, for any state � we also have

maxRF�ðRN ;MÞ ¼ maxR0F�ðN̂ ;R0M̂Þ. The argu-

ment is simpler as no minimization over � is involved. In
the caseM ¼ id, and using a reasoning very similar to the
one we used for the worst-case fidelity, we can obtain the

estimate 1
2 d�ðN̂ ;SÞ � minRd�ðRN ; idÞ � d�ðN̂ ;SÞ

where Sð�Þ :¼ N̂ ð�ÞTrð�Þ. In addition, the correspond-
ing near-optimal recovery channel can be built using the
same method as for the worst-case fidelity with the sim-
plification that no search of a saddle point is involved.

Conclusion.—In summary, we have generalized the
Knill-Laflamme conditions to the case of approximate
correctability, including standard codes, subsystem codes,
and hybrid quantum-classical codes. We obtained easy-to-
calculate estimates of the optimal recovery error and pro-
posed a class of near-optimal recovery channels for the
worst-case entanglement fidelity that work within twice of
the optimal error. These results provide a framework for
studying error correction under general noise models and
allow for a significant simplification to the task of finding
optimal error-correction procedures, thus offering a prom-

ising tool to efficiently address the problem of decoherence
control in realistic scenarios.
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