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PROJECTION OPERATOR TECHNIQUES 

As discussed in Chapter 3 the laws describing the dynamics of open quantum 
systems can be derived from the unitary dynamics of the total system. In general, 
the reduction of the degrees of freedom in the effective description of the open 
system results in non-Markovian behaviour. It is the aim of this part to introduce 
the reader to some powerful techniques which allow a systematic description of 
the non-Markovian features of the dynamics of open systems. 

A general framework to derive exact equations of motion for an open system is 
provided by projection operator techniques. These techniques were introduced by 
Nakajima (1958) and Zwanzig (1960) and independently by the Brussels school 
(Prigogine, 1962). They are widely used in non-equilibrium statistical mechanics 
(Haake, 1973; Balescu, 1975; Grabert, 1982; Kubo, Toda and Hashitsume, 1985). 

The basic idea underlying the application of projection operator techniques to 
open quantum systems is to regard the operation of tracing over the environment 
as a formal projection pl— ,  Pp  in the state space of the total system. The super-
operator P has the property of a projection operator, that is P 2  = P, and the 
density matrix Pp  is said to be the relevant part of the density p of the total 
system. Correspondingly, one defines a projection p J— Qp onto the irrelevant 
part Qp, where P + 2 is equal to the identity map. The aim is then to derive a 
closed equation of motion for the relevant part  Pp.  

We are going to discuss in this chapter two variants of projection operator 
techniques, the Nakajima—Zwanzig and the  time- convolutionless technique. Both 
methods lead to an exact equation of motion for the relevant part  Pp.  In the 
case of the Nakajima—Zwanzig method this is an integro-differential equation in-
volving a retarded time integration over the history of the reduced system, while 
the time-convolutionless equation of motion provides a first-order differential 
equation which is local in time. 

The time-convolutionless projection operator technique leads to a time-local 
expansion of the equation of motion with respect to the strength of the system—
environment coupling. It thus supports an investigation of non-Markovian effects 
beyond the Born approximation. To each order in the coupling the equation of 
motion involves a time-dependent but local generator. The rules for the per-
turbation expansion of the convolutionless generator will be developed. We are 
mainly concerned in this chapter with the derivation of the most important gen-
eral results; specific physical applications will be studied in the next chapter. 
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9.1 The Nakajima—Zwanzig projection operator technique 

We consider the general physical situation of an open system S coupled to an 
environment B. The dynamics of the density matrix p(t) of the combined system 
is specified by some microscopic Hamiltonian of the form 

H = Ho + celli, 	 (9.1) 

where Ho  generates the uncoupled time evolution of the system and environment. 
Hi- describes their interaction, and a denotes a dimensionless expansion param-
eter. When working in the interaction representation, the equation of motion for 
the density matrix reads 

—a 
p(t) = —ice[Hi (t), p(t)]  at (9.2) 

where we have set h = 1 and the interaction picture representation of the inter-
action Hamiltonian is defined by 

	

H1  (t)  = exp(illo t)HI  exp(—iHo t). 	 (9 . 3 ) 

The Liouville super-operator is denoted by f(t). 

9.1.1 Projection operators 

In order to derive an exact equation of motion for the reduced density matrix 

ps of the open system it is convenient to define a super-operator P according to 

	

p 1— P p = trB {p} 0 pB E PS 0 pB, 
	 (9.4) 

where pB  is some fixed state of the environment. This super-operator projects on 
the relevant part of the density matrix p in the sense that Pp  gives the complete 
information required to reconstruct the reduced density matrix ps of the open 
system. Accordingly, a complementary super-operator Q, 

2P = P — P P, 
	 (9.5) 

may be introduced, which projects on the irrelevant part of the density matrix. 
The super-operators P and 2 are maps in the state space of the combined system. 
that is in the space of density matrices of the total Hilbert space R = 7-is 0 RB• 
They have the obvious properties 

(9.6) 
p2 _ p ,  (9.7) 
Q2 _ Q ,  (9.8) 

P2 = 2P = 0, (9.9) 

which can be easily checked using the definitions (9.4) and (9.5) and assuming 
pB  to be normalized, trB pB  = 1. 
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The density matrix pB  used in definition (9.4) is an operator in 7-1 B . It may 
represent a quite arbitrary, but known environmental state, called the reference 
state. The choice of pB strongly depends on the specific application one has 
in mind. In the following we shall suppose this state to be time independent. 
Typically, it is taken to be the stationary Gibbs state of the environment. In 
many cases it may also be assumed that the odd moments of the interaction 
Hamiltonian with respect to the reference state vanish 

trB  {1/ 1 (t 1 )Hi(t2 )...H/(t2n+1 )pB 1 = 0, 	 (9.10) 

which leads to the relation 

Pr(t1 ),C(t2)... f(t2)P = 0 	 (9.11) 

for n = 0, 1, 2, .... This technical assumption is not required for the derivation 
of the equation of motion. It will however be used later on in order to simplify 
the expressions of the perturbation expansion. It is important to remark that 
we do not demand any particular form for the initial conditions at this point. In 
particular we do not assume factorizing initial conditions. 

9.1.2 The Nakajima-Zwanzig equation 

Our aim is now to derive a closed equation for the relevant part Pp(t), i.e. 
for the density matrix ps(t) = trB p(t) of the open system. By applying the 
projection operators P and Q to the Liouville-von Neumann equation (9.2) 
and by invoking the time independence of the reference state the following set 
of coupled differential equations for the relevant and the irrelevant part of the 
density matrix is obtained, 

a 	a 
—
at

Pp(t) = P —
at

p(t) = aP f(t)p(t), 	 (9.12) 

a 	a 
— Qp(t) = Q— p(t) = a2r(t)p(t). 	 (9.13) at 	at 

On inserting the identity / = P + 2 between the Liouville operator and the 
density matrix p this may also be written as 

a 
—
at

Pp(t) = aPE(t)Pp(t) + aP,C(t)Qp(t), 	 (9.14) 

a 
—
at

Qp(t) = aQ,C(t)Pp(t) + a2r(t)Qp(t). 	 (9.15) 

To get a closed equation for the relevant part of the density matrix we solve eqn 
(9.15) and insert the solution into eqn (9.14). The formal solution of eqn (9.15) 
corresponding to a given p(to ) at some initial time to  may be expressed as 

t 

Qp(t) = g(t,to )Qp(to ) + a f dsg(t,$)Qr(s)Pp(s), 	(9.16) 

to 
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where we have introduced the propagator 

t 

g(t, 8) E T , exp [ce f ds'2,C(s1 . 
s 

(9.17) 

As usual, the operator T, describes the chronological time ordering: It orders 
any product of super-operators such that the time arguments increase from right 
to left. The propagator G(t, s) thus satisfies the differential equation 

with the initial condition 

a 
—
at

G(t
' 
8) = aQ,C(t)G (t, s) (9.18) 

g (8 , 3) = I. 	 (9.19) 

Inserting the expression (9.16) for the irrelevant part of the density matrix 
into the equation of motion (9.14) for the relevant part we obtain the desired 
exact equation for the time evolution of the relevant part of the density matrix. 

a 
Pp(t) = al) c(t)g(t, to)2p(to) + al) r(t)P p(t) 

t 

+02  f dsP f(t)G(t, .9)2,C(s)P p(s). 

to 

(9.20) 

This equation is known as the Nakajima—Zwanzig equation. It is an exact equa-
tion for the relevant degrees of freedom of the reduced system. The right-hand 
side involves an inhomogeneous term  Pr(t)o, to ) 2p(to) depending on the ini-
tial condition at time t o , and an integral over the past history of the system in the 
time interval [to , t]. It thus describes completely non-Markovian memory effects 
of the reduced dynamics. If condition (9.11) is satisfied for n = 0, the second 
term in the Nakajima—Zwanzig equation vanishes and we may cast it into the 
compact form 

t 
a atP p(t) = f ds  (t,  s)P p(s) + aP CMG (t, to)2 p(to). 

to 

The convolution or memory kernel 

/C(t,$) = ct 2 P r(t)G(t, s) 2 C(s)P 

(9.21) 

(9.22) 

represents a super-operator in the relevant subspace. 
The integro-differential equation (9.21) is exact and holds for all initial con-

ditions and for almost arbitrary systems and interactions. Unfortunately, the 
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Nakajima—Zwanzig equation is usually as difficult to solve as the Liouville equa-

tion describing the dynamics of the total system. This means that perturbation 
expansions are needed in order to discuss the relevant dynamics in a way acces-
sible to analytical or numerical computations. Obviously, the equation may be 
expanded in the coupling constant a, i.e. in powers of the interaction Hamilto-
nian HI. Alternatively, it may be expanded around t in powers of the memory 
time, i.e. in the width of the kernel 1C(t, s), where, of course, for 1C(t, s) ,c:-.', (5(t — s) 
in the absence of memory effects we obtain the Markovian description. Some-
times it might also be convenient to perform the perturbation expansion for the 
Laplace transform of  Ps  (t) in the Schrödinger picture. 

For a factorizing initial condition p(to ) = ps (to) 0 pB we have P p(to) = P(to) 
and, therefore, Qp(to ) = O. Hence the inhomogeneous term of the Nakajima-
Zwanzig equation (9.21) vanishes and the exact equation for the relevant part of 
the density matrix reduces to 

t 
a 
N TI

p(t)  = f ds1C(t, s)P p(s). 
to 

(9.23) 

To second order in the coupling strength a we obtain 

/C(t,$) = a2 2.C(t)2,C(s)P + 0(a3 ), 	 (9.24) 

which leads to an equation of motion of second order for  Pp(t) 

t 
a 
NPp(t) = a2 f dsPE(t),C(s)Pp(s), 	 (9.25) 

to 

where we again made use of P,C(t)P = O. If we now introduce the explicit 
expressions for the projection operator P and for the generator f(t) we get the 
Born approximation of the master equation 

t 
a 
—
at

ps(t)= 
 _2 f  ds trB  [Hr (0, [Hr (8), Ps(s) 0 PB1 

to 

(9.26) 

which we already met in eqn (3.116). 
This approach to the non-Markovian dynamics of open quantum systems has 

some practical disadvantages. The perturbative approximation of the memory 

kernel simplifies the derivation of the equations of motion, but unfortunately 
not their structure. The approximate equation of motion is again an integro-
differential equation, whose numerical solution may be quite involved. 

9.2 The time-convolutioniess projection operator method 

In practice the time convolution in the memory kernel of the Nakajima—Zwanzig 
equation is difficult to treat. In this section we show how to remove the time 



446 	 PROJECTION OPERATOR TECHNIQUES 

convolution in the master equation. This is achieved through a method which is 
known as the time-convolutionless projection operator technique. This technique 
has been developed by Shibata et al. (Shibata, Takahashi and Hashitsume, 1977; 
Chaturvedi and Shibata, 1979; Shibata and Arimitsu, 1980) and we are going 
to apply it here to the microscopic theory of an open quantum system which 
is coupled to an environment. The method yields a systematic expansion of the 
dynamics of the system of interest in terms of the coupling strength. In particular, 
we will develop expressions for the quantum master equation up to fourth order 
in the coupling for factorizing and for non-factorizing initial conditions. 

9.2.1 The time - local master equation 

The idea of the time-convolutionless projection operator technique is to eliminate 
the dependence of the future time evolution on the history of the system from the 
Nakajima—Zwanzig master equation and thus to derive an exact master equation 
for the open system which is local in time. In order to achieve this objective we 
proceed in the following way: The density matrix p(s) on the right-hand side of 
eqn (9.16) is replaced by the expression 

p(s) = G(t, s)(P + 2) p(t), 	 (9.27) 

where G(t, s) is the backward propagator of the composite system, i.e. the inverse 
of the unitary time evolution of the total system. Formally, we may write 

t 

G (t, s) = T 	[, exp — a f ds' 
s 

(9.28) 

where T„ indicates the antichronological time-ordering. 
With the help of the relation (9.27) the equation (9.16) for the irrelevant part 

of the density matrix may now be written as 

t 

QP(t) = g(t, to)2P(to) + a f ds G(t, 8)2 r(s)P G (t, s)(P + 2)p(t). 
to 

Introducing the super-operator 

t 

E(t) = a f ds G(t , s)2,C(s)PG(t, s), 

to 

we can express the irrelevant part of the density matrix through 

[1 — E (0] Qp(t) = G(t, to ) Qp(to ) + E(t)Pp(t). 

(9.29) 

(9.30) 

(9.31) 

Note that the super-operator E(t) contains both propagators g and  G,  so that 
it does not specify a well-defined chronological order. E(t) has the obvious prop- 
erties E(t0 ) = 0 and E(t)1„ 0  = 0. Hence, 1 — E(t) may be inverted for not too 
large couplings and in any case for small t — t o . Thus, we get 
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2p(t) =  [1-  E(t)] -1  E(t)Pp(t) 4-  [1-  E(t)F 1  g(t,to)QP(to). 
	(9.32) 

This equation states that the irrelevant part Qp(t) of the density matrix can in 
principle be determined from the knowledge of the relevant part Pp(t) at time 
t and from the initial condition Qp(to ). The dependence on the history of the 
relevant part which occurs in the Nakajima-Zwanzig equation has thus been 
removed by the introduction of the exact backward propagator G (t, s). It must 
be noted, however, that for strong couplings and/or large time intervals t - to  it 
may happen that eqn (9.31) cannot be solved uniquely for Qp(t) such that the 
inverse of 1 - E(t) does not exist. We are going to exemplify this situation in 
Section 10.1.2. 

To complete the derivation of the time-convolutionless master equation, we 
insert eqn (9.32) into the equation of motion for the relevant part (9.14) and 
obtain the following exact time-convolutionless (TCL) form of the master equa- 
tion 

, 

—
8 

Pp(t) =1C(t)Pp(t) +I(t)2P(to), 
at 

with the time-local generator, called the TCL generator, 

/C(t) = a'Pr(t) [1 - E(01 -1  7) , 

and the inhomogeneity 

(9.33) 

(9.34) 

1(t) = (ARCM [1 - E (O]' g(t,t0 )Q. 	 (9.35) 

The equation of motion (9.33) is exact and local in time. Although the super-
operators /C(t) and 1(t) are, in general, extremely complicated objects, eqn (9.33) 
can be used as a starting point of a systematic approximation method by ex-
panding 1C(t) and 1(t) in powers of the coupling strength a. This will be shown 
in the following subsections. 

9.2.2 Perturbation expansion of the TCL generator 

Of course, the super-operator k(t) only exists when it is possible to invert the op-
erator [1- E(t)]. Let us assume then that E(t) may be expanded into a geometric 
series 

00 

[1 - E(t) ] -1  = E [(t)]. 	 (9.36) 

On substituting this into the expression (9.34) one gets 

DO 	 00 

/C(t) = a E RCM  [E(t)]  P = E an/Cn (t). 	(9.37) 
rt-------0 	 n-_-_-1 
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To determine the contribution kri (t) of n-th order in a to the TCL generator 
1C(t) we also expand E(t) in powers of a, 

DO 

E(t) = E anEn (t), 	 (9.38) 

insert this into eqn (9.37), and sort equal powers of a. For example, to fourth 
order in a this gives: 

K: 1  (t) = 	 (9.39) 

1(2(0 = 	 (9.40) 

1(3(0 = PL(t) { [El MP + E2(01 7) , 
	 (9.41) 

/C4 (t) = RCM {[Ei (t) ] 3  + Et (0E2 (t) + E2 (t) E1 (t) +  3 (t)} P. (9.42) 

Finally, the contributions E n  (t) are found with the help of eqns (9.30) and (9.38) 
by expanding also the propagators 0,8) and G(t, s) defined in eqns (9.17) and 
(9.28) in powers of a. 

Let us determine more explicitly the first four terms of the expansion. To 
simplify the expressions we use condition (9.11) and take t o  = 0. Equation (9.39) 
immediately gives 

1( 1 (0 = RCMP = 0. 	 (9.43) 

The first-order term E i (t) is given by 

t 
= f dt i  Qr(ti  )P, 	 (9.44) 

o 

which yields 

t 

/(2 (t) = f dtiP,C(t),C(ti YP. 	 (9.45) 

o 

The second-order term E2  (t) is found to be 

	

i 	ti 

E2 (t) = f dt i  f dt2 [Q,C(4)2,C(t2)P — 2E(t2)Pr(t1)] . 	(9.46) 

	

o 	o 

Since P2 = 0 we conclude from eqn (9.44) that [Ei  (O] 2  = 0 and, therefore, 

t 	t i  

1C 3 (t) = PC(t)E2(OP = f dti f dt2P,C(t)C(t i )C(t2 )P = 0, 	(9.47) 

o 	o 
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where we made use of condition (9.11) for n = 0 and n = 1. To find /C 4 (t) we 
first note that [El(t) ] 3  = Ei (t)E2(t) = 0 because of P2 = 0. Thus we have from 
eqn (9.42) 

1C4 (t) = P r(t)  [ 2 (t) 1  (t) + E3  (t)] P. 	 (9.48) 

Invoking eqns (9.44) and (9.46) the first term is found to be 

	

t 	t i 	t 2  

P r(t)E2(t)El (t)P = — f dt i  f dt2 f dt 3 	 (9.49) 

	

o 	o 	o 
xPr(t)[r(t2)PE(ti),C(t3)P + 03yp,02),c(t1)P + r(t3)P r(ti) 02)P1 • 

Note that to get this expression the triple time integral has been brought into 
time-ordered form, t > t 1  > t2 > t3 > O. Similarly, one finds 

Pr(t)E3(t)P 	 (9.50) 

	

t 	t 2  

= f dt i  f dt 2  f dt3P.C(t)[f(t1)2f(t2),C(t3)P+ r(t3)7) ,C(t2),C(ti)Pl. 

	

o 	o 	o 

Summarizing, the fourth-order contribution to the TCL generator takes the form, 

t2 

(t) = f dtl f dt2 f dt3 (Pf(t)r(t1 )r(t2),C(t3)P Pr(t),C(ti)P,C(t2),C(t3)P 

	

0 	0 	0 

—Pr(t),C(t2)P,C(t 1 ),C(t3)P —Pf(t),C(t 3 )P,C(t i ),C(t2)P). 

(9.51) 

The second-order generator /C2 (t) of the TCL master equation leads to the 
following equation for the reduced density matrix ps(t), 

a 
—atps(t)= —a2  f ds tr B [I / (t), [1-1/(8),Ps(t) pg, 

o 

(9.52) 

which should be contrasted to the corresponding second-order approximation 
(9.26) of the Nakajima—Zwanzig equation: Both equations are of second order 
and it is therefore to be expected that they approximate the exact dynamics 
with the same accuracy. This point will be illustrated in Section 10.1.2 with the 
help of a simple example. In practice, the TCL form is to be preferred because 
it involves a time-local generator instead of a convolution kernel. 


