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Is spacetime really a continuum, with points being described—at least locally—
by lists of real numbers? Or is this description, though immensely successful so
far, just an approximation that breaks down at short distances? Rather than
trying to answer this hard question, let us look back at the struggles with the
continuum that mathematicians and physicists have had so far.

The worries go back at least to Zeno. Among other things, he argued that
that an arrow can never reach its target:

That which is in locomotion must arrive at the half-way stage before
it arrives at the goal. — Aristotle [4].

and Achilles can never catch up with a tortoise:

In a race, the quickest runner can never overtake the slowest, since
the pursuer must first reach the point whence the pursued started, so
that the slower must always hold a lead. — Aristotle [5].

These paradoxes can now be dismissed using the theory of convergent se-
quences: a sum of infinitely many terms can still converge to a finite answer.
But this theory is far from trivial. It became fully rigorous long after the rise
of Newtonian physics. At first, the practical tools of calculus seemed to require
infinitesimals, which seemed logically suspect. Thanks to the work of Dedekind,
Cauchy, Weierstrass, Cantor and others, a beautiful formalism was developed to
handle the concepts of infinity, real numbers, and limits in a precise axiomatic
manner.

However, the logical problems are not gone. Gödel’s theorems hang like
a dark cloud over the axioms of set theory, assuring us that any consistent
theory as strong as Peano arithmetic, or stronger, will leave some questions
unsettled. For example: how many real numbers are there? The continuum
hypothesis proposes a conservative answer, but since this is independent of the
usual axioms of set theory, the question remains open: there could be vastly
more real numbers than most people think. Worse, the superficially plausible
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axiom of choice—which amounts to saying that the product of any collection
of nonempty sets is nonempty—has scary consequences, like the existence of
nonmeasurable subsets of the real line. This in turn leads to results like that
of Banach and Tarski: one can partition a ball of unit radius into six disjoint
subsets, and by rigid motions reassemble these subsets into two disjoint balls of
unit radius. (One can even do the job with five, but no fewer [90].)

Most mathematicians and physicists are inured to these logical problems.
Few of us bother to learn about attempts to tackle them head-on, such as:

• nonstandard analysis and synthetic differential geometry, which let us
work consistently with infinitesimals [52, 53, 60, 73],

• constructivism, in which one must ‘construct’ a mathematical object to
prove that it exists [8],

• finitism (which avoids completed infinities altogether) [95],

• ultrafinitism, which even denies the existence of very large numbers [10].

This sort of foundational work proceeds slowly, and is deeply unfashionable.
One reason is that it rarely seems to impact ‘real life’. For example, it seems
that no question about the experimental consequences of physical theories has
an answer that depends on whether or not we assume the continuum hypothesis
or the axiom of choice.

But even if we take a hard-headed practical attitude and leave logic to the
logicians, our struggles with the continuum are far from over. In fact, the
infinitely divisible nature of the real line—the existence of arbitrarily small real
numbers—is a serious challenge to physics.

One of the main goals of physics is to find theories that systematically gen-
erate predictions—for example, predictions of the future state of a system given
knowledge of its present state. However, even setting aside the question of
whether these predictions are correct, there is a problem. For many of the most
widely used physical theories, we have been unable to rigorously prove that they
give predictions in all circumstances. Integrals may diverge, differential equa-
tions may fail to have solutions, and so on. Underlying all these difficulties is a
struggle with the continuum nature of spacetime itself.

One might hope that a radical approach to the foundations of mathematics—
such as those listed above—would allow us to sidestep these problems. However,
I know of no significant progress along these lines. Some of the ideas of construc-
tivism have been embraced by topos theory, which also provides a foundation
for calculus with infinitesimals [52, 53]. Topos theory and especially ‘∞-topos
theory’ are becoming important in mathematical physics [81]. They shed new
light on gauge theory, string theory and other topics. But as far as I know, they
have not yet been used to solve, or get around, the problems we discuss here.

Many physicists believe that a successful theory of quantum gravity will dra-
matically change our concept of spacetime and shed new light on the problems
that plague our existing theories. I, too, am inclined to believe this. However,
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at present, no theory of quantum gravity has made a single experimentally ver-
ified prediction. Moreover, these theories are all beset with their own internal
problems. Thus, in this survey, we limit ourselves to theories that apparently
have been successful in making predictions, and examine the ‘cracks’ in these
theories: the problems that arise from assuming spacetime is a continuum.

Let us look at some examples.

1 Newtonian gravity

In its simplest form, Newtonian gravity describes ideal point particles attracting
each other with a force inversely proportional to the square of their distance. It
is one of the early triumphs of modern physics. But what happens when these
particles collide? Apparently the force between them becomes infinite. What
does Newtonian gravity predict then?

Of course real planets are not points: when two planets come too close
together, this idealization breaks down. Yet if we wish to study Newtonian
gravity as a mathematical theory, we should consider this case. Part of working
with a continuum is successfully dealing with such issues.

In fact, there is a well-defined ‘best way’ to continue the motion of two point
masses through a collision. Their velocity becomes infinite at the moment of
collision but is finite before and after. The total energy, momentum and angular
momentum are unchanged by this event. So, a 2-body collision is not a serious
problem. But what about a simultaneous collision of 3 or more bodies? This
seems more difficult.

Worse than that, Xia proved in 1992 that with 5 or more particles, there are
solutions where particles shoot off to infinity in a finite amount of time [79, 94].
This sounds crazy at first, but it works like this: a pair of heavy particles orbit
each other, another pair of heavy particles orbit each other, and these pairs toss
a lighter particle back and forth. Each time they do this, the two pairs move
further apart from each other, while the two particles within each pair get closer
together. Each time they toss the lighter particle back and forth, the two pairs
move away from each other faster. As the time t approaches a certain value
T0, the speed of these pairs approaches infinity, so they shoot off to infinity in
opposite directions in a finite amount of time, and the lighter particle bounces
back and forth an infinite number of times.

Of course this isn’t possible in the real world, but Newtonian physics has no
‘speed limit’, and we’re idealizing the particles as points. So, if two or more of
them get arbitrarily close to each other, the potential energy they liberate can
give some particles enough kinetic energy to zip off to infinity in a finite amount
of time! After that time, the solution is undefined.

You can think of this as a modern reincarnation of Zeno’s paradox. Suppose
you take a coin and put it heads up. Flip it over after 1/2 a second, and then
flip it over after 1/4 of a second, and so on. After one second, which side will
be up? There is no well-defined answer. That may not bother us, since this is a
contrived scenario that seems physically impossible. It’s a bit more bothersome
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that Newtonian gravity doesn’t tell us what happens to our particles when
t = t0.

One might argue that collisions and these more exotic ‘noncollision singu-
larities’ occur with probability zero, because they require finely tuned initial
conditions. If so, perhaps we can safely ignore them.

This is a nice fallback position. But to a mathematician, this argument
demands proof. A bit more precisely, we would like to prove that the set of
initial conditions for which two or more particles come arbitrarily close to each
other within a finite time has ‘measure zero’. This would mean that ‘almost all’
solutions are well-defined for all times, in a very precise sense.

In 1977, Saari proved that this is true for 4 or fewer particles [76]. However,
to the best of my knowledge, the problem remains open for 5 or more particles.
Thanks to previous work by Saari, we know that the set of initial conditions
that lead to collisions has measure zero, regardless of the number of particles
[77, 78]. So, the main remaining problem is to prove that for 5 or more particles,
noncollision singularities occur with probability zero. For 4 particles, nobody
knows if such singularities can occur at all. For 3 or fewer we know they do not.

It is remarkable that even Newtonian gravity, often considered a prime exam-
ple of determinism in physics, has not been proved to make definite predictions,
not even ‘almost always’. In 1840, Laplace [57] wrote:

We ought to regard the present state of the universe as the effect of
its antecedent state and as the cause of the state that is to follow. An
intelligence knowing all the forces acting in nature at a given instant,
as well as the momentary positions of all things in the universe,
would be able to comprehend in one single formula the motions of
the largest bodies as well as the lightest atoms in the world, provided
that its intellect were sufficiently powerful to subject all data to
analysis; to it nothing would be uncertain, the future as well as the
past would be present to its eyes. The perfection that the human
mind has been able to give to astronomy affords but a feeble outline
of such an intelligence.

However, this dream has not yet been realized for Newtonian gravity.
I expect that noncollision singularities will be proved to occur with proba-

bility zero. If so, the remaining question would be why it takes so much work
to prove this, and thus prove that Newtonian gravity makes definite predictions
in almost all cases. Is this a weakness in the theory, or just the way things go?
Clearly it has something to do with three idealizations:

• point particles whose distance can be arbitrarily small,

• potential energies that can be arbitrarily large and negative, and

• velocities that can be arbitrarily large.

These are connected: as the distance between point particles approaches zero,
their potential energy approaches −∞, and conservation of energy dictates that
some velocities approach +∞.
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Does the situation improve when we go to more sophisticated theories? For
example, does the ‘speed limit’ imposed by special relativity help the situation?
Or might quantum mechanics help, since it describes particles as ‘probability
clouds’, and puts limits on how accurately we can simultaneously know both
their position and momentum?

We begin with quantum mechanics, which indeed does help.

2 Quantum mechanics of charged particles

Few people spend much time thinking about ‘quantum celestial mechanics’—
that is, quantum particles obeying Schrödinger’s equation, that attract each
other gravitationally, obeying an inverse-square force law. But Newtonian grav-
ity is a lot like the electrostatic force between charged particles. The main
difference is a minus sign, which makes like masses attract, while like charges
repel. In chemistry, people spend a lot of time thinking about charged particles
obeying Schrödinger’s equation, attracting or repelling each other electrostati-
cally. This approximation neglects magnetic fields, spin, and indeed anything
related to the finiteness of the speed of light, but it is good enough to explain
quite a bit about atoms and molecules.

In this approximation, a collection of charged particles is described by a
wavefunction ψ, which is a complex-valued function of all the particles’ positions
and also of time. The basic idea is that ψ obeys Schrödinger’s equation

dψ

dt
= −iHψ

where H is an operator called the Hamiltonian, and I’m working in units where
~ = 1.

Does this equation succeed in predicting ψ at a later time given ψ at time
zero? To answer this, we must first decide what kind of function ψ should be,
what concept of derivative applies to such funtions, and so on. These issues were
worked out by von Neumann and others starting in the late 1920s. It required
a lot of new mathematics. Skimming the surface, we can say this.

At any time, we want ψ to lie in the Hilbert space consisting of square-
integrable functions of all the particle’s positions. We can then formally solve
Schrödinger’s equation as

ψ(t) = exp(−itH)ψ(0)

where ψ(t) is the solution at time t. But for this to really work, we need H to
be a self-adjoint operator on the chosen Hilbert space. The correct definition
of ‘self-adjoint’ is a bit subtler than what most physicists learn in a first course
on quantum mechanics. In particular, an operator can be superficially self-
adjoint—the actual term for this is ‘symmetric’—but not truly self-adjoint.

In 1951, based on earlier work of Rellich, Kato proved that H is indeed
self-adjoint for a collection of nonrelativistic quantum particles interacting via
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inverse-square forces [47, 70]. So, this simple model of chemistry works fine.
We can also conclude that ’celestial quantum mechanics’ would dodge the nasty
problems involving collisions or noncollision singularities that we saw in New-
tonian gravity. The reason, simply put, is the uncertainty principle.

In the classical case, bad things happen because the energy is not bounded
below. A pair of classical particles attracting each other with an inverse square
force law can have arbitrarily large negative energy, simply by being very close to
each other. Noncollision singularities exploit this fact. Since energy is conserved,
if you have a way to make some particles get an arbitrarily large negative energy,
you can balance the books by letting others get an arbitrarily large positive
energy and shoot to infinity in a finite amount of time!

When we switch to quantum mechanics, the energy of any collection of
particles becomes bounded below. The reason is that to make the potential
energy of two particles large and negative, they must be very close. Thus, their
difference in position must be very small. In particular, this difference must
be accurately known! Thus, by the uncertainty principle, their difference in
momentum must be very poorly known: at least one of its components must
have a large standard deviation. This in turn means that the expected value of
the kinetic energy must be large.

This must all be made quantitative, to prove that as particles get close, the
uncertainty principle provides enough positive kinetic energy to counterbalance
the negative potential energy. The Kato–Lax–Milgram–Nelson theorem [69],
a refinement of the original Kato–Rellich theorem, is the key to understanding
this issue. The Hamiltonian H for a collection of particles interacting by inverse
square forces can be written as K + V , where K is an operator for the kinetic
energy and V is an operator for the potential energy. With some clever work
one can prove that for any ε > 0, there exists c > 0 such that if ψ is a smooth
normalized wavefunction that vanishes at infinity and at points where particles
collide, then

|〈ψ, V ψ〉| ≤ ε〈ψ,Kψ〉+ c.

Remember that 〈ψ, V ψ〉 is the expected value of the potential energy, while
〈ψ,Kψ〉 is the expected value of the kinetic energy. Thus, this inequality is a
precise way of saying how kinetic energy triumphs over potential energy.

By taking ε = 1, it follows that the Hamiltonian is bounded below on such
states ψ:

〈ψ,Hψ〉 ≥ −c.

But the fact that the inequality holds even for smaller values of ε is the key
to showing H is ‘essentially self-adjoint’. This means that while H is not
self-adjoint when defined only on smooth wavefunctions that vanish outside a
bounded set and at points where particles collide, it has a unique self-adjoint ex-
tension to some larger domain. Thus, we can unambiguously take this extension
to be the true Hamiltonian for this problem.

To fully appreciate this, one needs to see what could have gone wrong. Sup-
pose space had an extra dimension. In 3-dimensional space, Newtonian gravity
obeys an inverse square force law because the area of a sphere is proportional
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to its radius squared. In 4-dimensional space, the force obeys an inverse cube
law:

F = −Gm1m2

r3
.

Using a cube instead of a square here makes the force stronger at short distances,
with dramatic effects. For example, even for the classical 2-body problem, the
equations of motion no longer ‘almost always’ have a well-defined solution for
all times. For an open set of initial conditions, the particles spiral into each
other in a finite amount of time!

The quantum version of this theory is also problematic. The uncertainty
principle is not enough to save the day. The inequalities above no longer hold:
kinetic energy does not triumph over potential energy. The Hamiltonian is no
longer essentially self-adjoint on the space of wavefunctions I described. It has,
in fact, infinitely many self-adjoint extensions! Each one describes different
physics: namely, a different choice of what happens when particles collide [32,
36]. Moreover, when G exceeds a certain critical value, the energy is no longer
bounded below.

The same problems afflict quantum particles interacting by the electrostatic
force in 4d space, as long as some of the particles have opposite charges. So,
chemistry would be quite problematic in a world with four dimensions of space.

With more dimensions of space, the situation becomes even worse. This
is part of a general pattern in mathematical physics: our struggles with the
continuum tend to become worse in higher dimensions. String theory and M-
theory may provide exceptions.

3 Classical electrodynamics of point particles

Now let us consider special relativity. Special relativity prohibits instantaneous
action at a distance. Thus, most physicists believe that special relativity requires
that forces be carried by fields, with disturbances in these fields propagating
no faster than the speed of light. The argument for this is not watertight,
but we see to actually see charged particles transmitting forces via a field, the
electromagnetic field—that is, light. So, most work on relativistic interactions
brings in fields.

Classically, charged point particles interacting with the electromagnetic field
are described by two sets of equations: Maxwell’s equations and the Lorentz
force law. The first are a set of differential equations involving:

• the electric field ~E and mangetic field ~B (bundled together into the elec-
tromagnetic field F ), and

• the electric charge density ρ and current density ~ (bundled into another
field called the ‘four-current’ J).

By themselves, these equations are not enough to completely determine the
future given initial conditions. In fact, you can choose ρ and ~ freely, subject to
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the conservation law
∂ρ

∂t
+∇ · ~ = 0.

For any such choice, there exists a solution of Maxwell’s equations for t ≥ 0
given initial values for ~E and ~B that obey these equations at t = 0.

Thus, to determine the future given initial conditions, we also need equations
that say what ρ and ~ will do. For a collection of charged point particles, they
are determined by the curves in spacetime traced out by these particles. The
Lorentz force law says that the force on a particle of charge e is

~F = e( ~E + ~v × ~B)

where ~v is the particle’s velocity and ~E and ~B are evaluated at the particle’s
location. From this law we can compute the particle’s acceleration if we know
its mass.

The trouble starts when we try to combine Maxwell’s equations and the
Lorentz force law in a consistent way, with the goal being to predict the future
behavior of the ~E and ~B fields, together with particles’ positions and velocities,
given all these quantities at t = 0. Attempts to do this began in the late 1800s.
The drama continues today, with no definitive resolution! Good accounts have
been written by Feynman [27], Pais [61], Janssen and Mecklenburg [45], and
Rohrlich [74]. Here we can only skim the surface.

The first sign of a difficulty is this: the charge density and current associ-
ated to a charged particle are singular, vanishing off the curve it traces out in
spacetime but ‘infinite’ on this curve. For example, a charged particle at rest
at the origin has

ρ(t, ~x) = eδ(~x), ~(t, ~x) = ~0

where δ is the Dirac delta and e is the particle’s charge. This in turn forces the
electric field to be singular at the origin. The simplest solution of Maxwell’s
equations consistent with this choice of ρ and ~ is

~E(t, ~x) =
er̂

4πε0r2
, ~B(t, ~x) = 0

where r̂ is a unit vector pointing away from the origin and ε0 is a constant called
the permittivity of free space.

In short, the electric field is ‘infinite’, or undefined, at the particle’s location.
So, it is unclear how to define the ‘self-force’ exerted by the particle’s own
electric field on itself. The formula for the electric field produced by a static
point charge is really just our old friend, the inverse square law. Since we had
previously ignored the force of a particle on itself, we might try to continue this
tactic now. However, other problems intrude.

In relativistic electrodynamics, the electric field has energy density equal to

ε0
2
| ~E|2.
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Thus, the total energy of the electric field of a point charge at rest is proportional
to

ε0
2

∫
R3

| ~E|2 d3x =
e2

8πε0

∫ ∞
0

1

r4
r2dr.

But this integral diverges near r = 0, so the electric field of a charged particle
has an infinite energy!

How, if at all, does this cause trouble when we try to unify Maxwell’s equa-
tions and the Lorentz force law? It helps to step back in history. In 1902, the
physicist Abraham assumed that instead of a point, an electron is a sphere of
radius R with charge evenly distributed on its surface [1]. Then the energy of
its electric field becomes finite, namely:

E =
e2

8πε0

∫ ∞
R

1

r4
r2dr =

1

2

e2

4πε0R

where e is the electron’s charge.
Abraham also computed the extra momentum that a moving electron of this

sort acquires due to its electromagnetic field. He got it wrong because he didn’t
understand Lorentz transformations. In 1904 Lorentz did the calculation right
[59]. Using the relationship between velocity, momentum and mass, we can
derive from his result a formula for the ‘electromagnetic mass’ of the electron:

m =
2

3

e2

4πε0Rc2

where c is the speed of light. We can think of this as the extra mass an electron
acquires by carrying an electromagnetic field along with it.

Putting the last two equations together, these physicists obtained a remark-
able result:

E =
3

4
mc2.

Then, in 1905, a fellow named Einstein came along and made it clear that the
only reasonable relation between energy and mass is

E = mc2.

What had gone wrong?
In 1906, Poincaré figured out the problem [67]. It is not a computational

mistake, nor a failure to properly take special relativity into account. The
problem is that like charges repel, so if the electron were a sphere of charge it
would explode without something to hold it together. And that something—
whatever it is—might have energy. But their calculation ignored that extra
energy.

In short, the picture of the electron as a tiny sphere of charge, with nothing
holding it together, is incomplete. And the calculation showing E = 3

4mc
2,

together with special relativity saying E = mc2, shows that this incomplete
picture is actually inconsistent. At the time, some physicists hoped that all the
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mass of the electron could be accounted for by the electromagnetic field. Their
hopes were killed by this discrepancy.

Nonetheless it is interesting to take the energy E computed above, set it
equal to mec

2 where me is the electron’s observed mass, and solve for the radius
R. The answer is

R =
1

8πε0

e2

mec2
≈ 1.4× 10−15 meters.

In the early 1900s, this would have been a remarkably tiny distance: 0.00003
times the Bohr radius of a hydrogen atom. By now we know this is roughly
the radius of a proton. We know the electron is not a sphere of this size. So
at present it makes more sense to treat the calculations so far as a prelude to
some kind of limiting process where we take R → 0. These calculations teach
us two lessons.

First, the electromagnetic field energy approaches +∞ as we let R → 0, so
it is challenging to take this limit and get a well-behaved physical theory. One
approach is to give a charged particle its own ‘bare mass’ mbare in addition to
the mass melec arising from electromagnetic field energy, in a way that depends
on R. Then as we take the R→ 0 limit we can let mbare → −∞ in such a way
that mbare +melec approaches a chosen limit m, the physical mass of the point
particle. This is an example of ‘renormalization’.

Second, it is wise to include conservation of energy-momentum as a require-
ment in addition to Maxwell’s equations and the Lorentz force law. Here is a
more sophisticated way to phrase Poincaré’s realization. From the electromag-
netic field one can compute a ‘stress-energy tensor’ T , which describes the flow
of energy and momentum through spacetime. You can compute the total energy
and momentum of the electromagnetic field by integrating T over the hyper-
surface t = 0. The resulting 4-vector will transform correctly under Lorentz
transformations if the stress-energy tensor has vanishing divergence:

∂µTµν = 0,

where as usual we sum over repeated indices. This equation says that energy
and momentum are locally conserved. However, this equation fails to hold for a
spherical shell of charge with no extra forces holding it together. The reason is
that in absence of extra forces, it violates conservation of momentum for charges
to feel an electromagnetic force yet not accelerate.

So far we have only discussed the simplest situation: a single charged particle
at rest, or moving at a constant velocity. To go further, we can try to compute
the acceleration of a small charged sphere in an arbitrary electromagnetic field.
Then, by taking the limit as the radius r of the sphere goes to zero, perhaps we
can obtain the law of motion for a charged point particle.

In fact this whole program is fraught with difficulties, but physicists boldly go
where mathematicians fear to tread, and in a rough way this program was carried
out already by Abraham [2] in 1905. His treatment of special relativistic effects
was wrong, but these were easily corrected; the real difficulties lie elsewhere.
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In 1938 his calculations were carried out much more carefully—though still
not rigorously—by Dirac [21]. The resulting law of motion is thus called the
‘Abraham–Lorentz–Dirac force law’.

There are three key ways in which this law differs from our earlier naive
statement of the Lorentz force law:

• We must decompose the electromagnetic field in two parts, the ‘external’
electromagnetic field Fext and the field produced by the particle:

F = Fext + Fret.

Here Fext is a solution of Maxwell’s equations with J = 0, while Fret is
computed by convolving the particle’s 4-current J with a function called
the ‘retarded Green’s function’. This breaks the time-reversal symmetry
of the formalism, ensuring that radiation emitted by the particle moves
outward as time goes into the future, not the past. We then decree that
the particle only feels a Lorentz force due to Fext, not Fret. This avoids
the problem that Fret becomes infinite along the particle’s path as r → 0.

• Maxwell’s equations say that an accelerating charged particle emits radia-
tion, which carries energy-momentum. Conservation of energy-momentum
implies that there is a compensating force on the charged particle. This is
called the ‘radiation reaction’. So, in addition to the Lorentz force, there
is a radiation reaction force.

• As we take the limit r → 0, we must adjust the particle’s bare mass mbare

in such a way that its physical mass m = mbare + melec is held constant.
This involves letting mbare → −∞ as melec → +∞.

It is easiest to describe the Abraham–Lorentz–Dirac force law using stan-
dard relativistic notation. So, we switch to units where c = 4πε0 = 1, let xµ

denote the spacetime coordinates of a point particle, and use a dot to denote
the derivative with respect to proper time. Then the Abraham–Lorentz–Dirac
force law says

mẍµ = eFµνext ẋν −
2

3
e2ẍαẍα ẋ

µ +
2

3
e2

...
xµ.

The first term at right is the Lorentz force, which looks more elegant in this
new notation. The second term acts to reduce the particle’s velocity at a rate
proportional to its velocity (as one would expect from friction), but also pro-
portional to the squared magnitude of its acceleration. This is the ‘radiation
reaction’.

The last term, called the ‘Schott term’, is the most shocking. Unlike all
familiar forces in classical mechanics, this involves the third derivative of the
particle’s position! This seems to shatter our original hope of predicting the
electromagnetic field and the particle’s position and velocity given their initial
values. Now it seems we need to specify the particle’s initial position, velocity
and acceleration.
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Furthermore, unlike Maxwell’s equations and the original Lorentz force law,
the Abraham–Lorentz–Dirac force law is not symmetric under time reversal. If
we take a solution, and replace t with −t, the result is not a solution. Like
the force of friction, radiation reaction acts to make a particle lose energy as it
moves into the future, not the past. The reason is that our assumptions have
explicitly broken time reversal symmetry: the splitting F = Fext + Fret says
that a charged accelerating particle radiates into the future, creating the field
Fret, and is affected only by the remaining electromagnetic field Fext.

Worse, the Abraham–Lorentz–Dirac force law has counterintuitive solutions.
Suppose for example that Fext = 0. Besides the expected solutions where the
particle’s velocity is constant, there are solutions for which the particle accel-
erates indefinitely, approaching the speed of light! These are called ‘runaway
solutions’. In a runaway solution, the acceleration as measured in the frame of
reference of the particle grows exponentially with the passage of proper time.

So, the notion that special relativity might help us avoid the pathologies of
Newtonian point particles interacting gravitationally—solutions where particles
shoot to infinity in finite time—is cruelly mocked by the Abraham–Lorentz–
Dirac force law. Particles cannot move faster than light, but even a single
particle can extract an arbitrary amount of energy-momentum from the elec-
tromagnetic field in its immediate vicinity and use this to propel itself forward
at speeds approaching that of light.

The energy stored in the field near the particle is sometimes called ‘Schott
energy’. The Schott term describes how this energy can be converted into kinetic
energy for the particle. The details have been nicely explained by Grøn [38].

Even worse, suppose we generalize the framework to include more than one
particle. Arguments for the Abraham–Lorentz–Dirac force law can be gener-
alized to this case, and the result is simply that each particle obeys this law
with an external field Fext that includes the fields produced by all the other
particles. But a problem appears when we use this law to compute the motion
of two particles of opposite charge. To simplify the calculation, suppose they
are located symmetrically with respect to the origin, with equal and opposite
velocities and accelerations. Suppose the external field felt by each particle is
solely the field created by the other particle. Since the particles have opposite
charges, they should attract each other. However, one can prove they will never
collide. In fact, if at any time they are moving toward each other, they will later
turn around and move away from each other at ever-increasing speed!

This fact was discovered by Eliezer [26] in 1943. It is so counterintuitive that
several proofs were required before physicists believed it. A self-contained proof
and review of the literature can be found in Parrott’s book [62], along with a
discussion of the runaway solutions mentioned earlier.

None of these strange phenomena have ever been seen experimentally. Faced
with this problem, physicists have naturally looked for ways out. First, why
not simply cross out the Schott term in the Abraham–Lorentz–Dirac force?
Unfortunately the resulting simplified equation

mẍµ = eFµνext ẋν −
2

3
e2ẍαẍα ẋ

µ
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has only trivial solutions. The reason is that with the particle’s path parametrized
by proper time, the vector ẋµ has constant length, so the vector ẍµ is orthogonal
to ẋµ . So is the vector Fµνext ẋν , because Fext is an antisymmetric tensor. So,
the last term must be zero, which implies ẍ = 0, which in turn implies that all
three terms must vanish.

Another possibility is that some assumption made in deriving the Abraham–
Lorentz–Dirac force law is incorrect. Of course the theory is physically incorrect,
in that it ignores quantum mechanics, but that is not the issue. The issue here
is one of mathematical physics, of trying to formulate a well-behaved classical
theory that describes charged point particles interacting with the electromag-
netic field. If we can prove this is impossible, we will have learned something.
But perhaps there is a loophole. The original arguments for the Abraham–
Lorentz–Dirac force law are by no means mathematically rigorous. They involve
a delicate limiting procedure, and approximations that were believed, but not
proved, to become perfectly accurate in the r → 0 limit. Could these arguments
conceal a mistake?

Calculations involving a spherical shell of charge has been improved by a
series of authors, and are nicely summarized by Rohrlich [74, 75]. In all these
calculations, nonlinear powers of the acceleration and its time derivatives are
neglected, and one hopes this is acceptable in the r → 0 limit.

Dirac [21], struggling with renormalization in quantum field theory, took a
different tack. Instead of considering a sphere of charge, he treated the elec-
tron as a point from the very start. However, he studied the flow of energy-
momentum across the surface of a tube of radius r centered on the electron’s
path. By computing this flow in the limit r → 0, and using conservation of
energy-momentum, he attempted to derive the force on the electron. He did
not obtain a unique result, but the simplest choice gives the Abraham–Lorentz–
Dirac equation. More complicated choices typically involve nonlinear powers of
the acceleration and its time derivatives.

Since this work, many authors have tried to simplify Dirac’s rather compli-
cated calculations and clarify his assumptions. Parrott’s book is a good guide to
much of this work [62]. But more recently, Kijowski and coauthors have made
impressive progress in a series of papers that solve many of the problems we
have seen [34, 48, 49, 50, 51].

Kijowski’s key idea is to impose conditions on precisely how the electromag-
netic field is allowed to behave near the path traced out by a charged point
particle. He decomposes the field into a ‘regular’ part and a ‘singular’ part:

F = Freg + Fsing.

Here Freg is smooth everywhere, while Fsing is singular near the particle’s path,
but only in a carefully prescribed way. Roughly, at each moment, in the parti-
cle’s instantaneous rest frame, the singular part of its electric field consists of
the familiar term proportional to 1/r2, together with a term proportional to
1/r3 which depends on the particle’s acceleration. No other singularities are
allowed.
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On the one hand, this eliminates the ambiguities mentioned earlier: in the
end, there are no ‘nonlinear powers of the acceleration and its time derivatives’
in Kijowski’s force law. On the other hand, this avoids breaking time reversal
symmetry, as the earlier splitting F = Fext + Fret did.

Next, Kijowski defines the energy-momentum of a point particle to be mẋ,
where m is its physical mass. He defines the energy-momentum of the electro-
magnetic field to be just that due to Freg, not Fsing. This amounts to eliminat-
ing the infinite ‘electromagnetic mass’ of the charged particle. He then shows
that Maxwell’s equations and conservation of total energy-momentum imply an
equation of motion for the particle.

This equation is very simple:

mẍµ = eFµνreg ẋν .

It is just the Lorentz force law. Since the troubling Schott term is gone, this is
a second-order differential equation. Thus, we can hope to predict the future
behavior of the electromagnetic field, together with the particle’s position and
velocity, given all these quantities at t = 0.

And indeed this is true! In 1998, together with Gittel and Zeidler, Ki-
jowski proved that initial data of this sort, obeying the careful restrictions on
allowed singularities of the electromagnetic field, determine a unique solution of
Maxwell’s equations and the Lorentz force law, at least for a short amount of
time [34]. Even better, all this remains true for any number of particles.

There are some obvious questions to ask about this new approach. In the
Abraham–Lorentz–Dirac force law, the acceleration was an independent vari-
able that needed to be specified at t = 0 along with position and momentum.
This problem disappears in Kijowski’s approach. But how? I mentioned that
the singular part of the electromagnetic field, Fsing, depends on the particle’s
acceleration. But more is true: the particle’s acceleration is completely deter-
mined by Fsing. So, the particle’s acceleration is not an independent variable
because it is encoded into the electromagnetic field.

Another question is: where did the radiation reaction go? The answer is: we
can see it if we go back and decompose the electromagnetic field as Fext + Fret

as we had before. If we take the law

mẍµ = eFµνregẋν

and rewrite it in terms of Fext, we recover the original Abraham–Lorentz–Dirac
law, including the radiation reaction term and Schott term.

Unfortunately, this means that ‘pathological’ solutions where particles ex-
tract arbitrary amounts of energy from the electromagnetic field are still possi-
ble. A related problem is that apparently nobody has yet proved solutions exist
for all time. Perhaps a singularity worse than the allowed kind could develop in
a finite amount of time—for example, when particles collide.

Thus, classical point particles interacting with the electromagnetic field still
present serious challenges to the physicist and mathematician. When you have
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an infinitely small charged particle right next to its own infinitely strong elec-
tromagnetic field, trouble can break out very easily!

Finally, I should also mention attempts, working within the framework of
special relativity, to get rid of fields and have particles interact with each other
directly. For example, in 1903 Schwarzschild [82] introduced a framework in
which charged particles exert an electromagnetic force on each other, with no
mention of fields. In this setup, forces are transmitted not instantaneously but
at the speed of light: the force on one particle at spacetime point x depends
on the motion of some other particle at spacetime point y only if the vector
x− y is lightlike. Later Fokker and Tetrode [29, 88] derived this force law from
a principle of least action. In 1949, Feynman and Wheeler checked that this
formalism gives results compatible with the usual approach to electromagnetism
using fields, except for several points:

• Each particle exerts forces only on other particles, so we avoid the thorny
issue of how a point particle responds to the electromagnetic field produced
by itself.

• There are no electromagnetic fields not produced by particles: for exam-
ple, the theory does not describe the motion of a charged particle in an
‘external electromagnetic field’.

• The principle of least action guarantees that ‘if A affects B then B affects
A’. So, if a particle at x exerts a force on a particle at a point y in its
future lightcone, the particle at y exerts a force on the particle at x in its
past lightcone. This raises the issue of ‘reverse causality’, which Feynman
and Wheeler address.

Besides the reverse causality issue, perhaps one reason this approach has not
been more pursued is that it does not admit a Hamiltonian formulation in
terms of particle positions and momenta. Indeed, there are a number of ‘no-
go theorems’ for relativistic multiparticle Hamiltonians [20, 58], saying that
these can only describe noninteracting particles. So, most work that takes
both quantum mechanics and special relativity into account uses fields. Indeed,
in quantum electrodynamics, even the charged point particles are replaced by
fields.

4 Quantum field theory

When we study charged particles interacting electromagnetically in a way that
takes both quantum mechanics and special relativity into account, we are led to
quantum field theory. The ensuing problems are vastly more complicated than in
any of the physical theories discussed so far. They are also more consequential,
since at present quantum field theory is our best description of all known forces
except gravity. As a result, many of the best minds in 20th-century mathematics
and physics have joined the fray, and it is impossible here to give more than
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a quick summary of the situation. This is especially true because the final
outcome of the struggle is not yet known.

It is ironic that quantum field theory originally emerged as a solution to
a problem involving the continuum nature of spacetime, now called the ‘ultra-
violet catastrophe’. In classical electromagnetism, a box with mirrored walls
containing only radiation acts like a collection of harmonic oscillators, one for
each vibrational mode of the electromagnetic field. If we assume waves can
have arbitrarily small wavelengths, there are infinitely many of these oscilla-
tors. In classical thermodynamics, a collection of harmonic oscillators in ther-
mal equilibrium will share the available energy equally: this result is called the
‘equipartition theorem’.

Taken together, these principles lead to a dilemma worthy of Zeno. The
energy in the box must be divided into an infinite number of equal parts. If the
energy in each part is nonzero, the total energy in the box must be infinite. If
it is zero, there can be no energy in the box.

For the logician, there is an easy way out: perhaps a box of electromagnetic
radiation can only be in thermal equilibrium if it contains no energy at all!
But this solution cannot satisfy the physicist, since it does not match what is
actually observed. In reality, any nonnegative amount of energy is allowed in
thermal equilibrium.

Experiment also rules out another cheap solution: simply forbidding, by
fiat, waves with wavelength shorter than some fixed length. This makes the
infinities go away. However, we find that for any nonzero temperature, most of
the radiation in a mirrored box will have very short wavelength. This is not
what is observed.

The right way out of the dilemma was to change our concept of the harmonic
oscillator. Planck did this in 1900, almost without noticing it [66]. Classically, a
harmonic oscillator can have any nonnegative amount of energy. Planck instead
treated the energy

... not as a continuous, infinitely divisible quantity, but as a discrete
quantity composed of an integral number of finite equal parts.

In modern notation, the allowed energies of a quantum harmonic oscillator
are integer multiples of ~ω, where ω is the oscillator’s frequency and ~ is a
new constant of nature, named after Planck. When energy can only take such
discrete values, the equipartition theorem no longer applies. Instead, the princi-
ples of thermodynamics imply that there is a well-defined thermal equilibrium in
which vibrational modes with shorter and shorter wavelengths, and thus higher
and higher energies, hold less and less of the available energy. The results agree
with experiments when the constant ~ is given the right value.

The full import of what Planck had done became clear only later, starting
with Einstein’s 1905 paper on the photoelectric effect [24]. Here he proposed
that the discrete energy steps actually arise because light comes in particles,
now called ‘photons’, with a photon of frequency ω carrying energy ~ω. It was
even later that Ehrenfest emphasized the role of the equipartition theorem in
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the original dilemma, and called this dilemma the ‘ultraviolet catastrophe’. As
usual, the actual history is more complicated than the textbook summaries [55].

The theory of the ‘free’ quantum electromagnetic field—that is, photons
not interacting with charged particles—is now well understood. It is a bit
tricky to deal with an infinite collection of quantum harmonic oscillators, but
since each evolves independently from all the rest, the issues are manageable.
Many advances in analysis were required to tackle these issues in a rigorous
way, but they were erected on a sturdy scaffolding of algebra. The reason
is that the quantum harmonic oscillator is exactly solvable in terms of well-
understood functions, and so is the free quantum electromagnetic field. By
the 1930s, physicists knew precise formulas for the answers to more or less
any problem involving the free quantum electromagnetic field. The challenge
to mathematicians was then to find a coherent mathematical framework that
takes us to these answers starting from clear assumptions. This challenge was
taken up and completely met by the mid-1960s [7].

However, for physicists, the free quantum electromagnetic field is just the
starting-point, since this field obeys a quantum version of Maxwell’s equations
where the charge density and current density vanish. Far more interesting is
‘quantum electrodynamics’, or QED, where we also include fields describing
charged particles—for example, electrons and their antiparticles, positrons—
and try to impose a quantum version of the full-fledged Maxwell equations.
Nobody has found a fully rigorous formulation of QED, nor has anyone proved
such a thing cannot be found.

QED is part of a more complicated quantum field theory, the Standard
Model, which describes the electromagnetic, weak and strong forces, quarks
and leptons, and the Higgs boson. It is widely regarded as our best theory of
elementary particles. Unfortunately, nobody has found a rigorous formulation
of this theory either, despite decades of hard work by many smart physicists
and mathematicians.

To spur progress, the Clay Mathematics Institute has offered a million-dollar
prize for anyone who can prove a widely believed claim about a class of quantum
field theories called ‘pure Yang–Mills theories’ [18]. A good example is the
fragment of the Standard Model that describes only the strong force—or in other
words, only gluons. Unlike photons in QED, gluons interact with each other. To
win the prize, one must prove that the theory describing them is mathematically
consistent and that it describes a world where the lightest particle is a ‘glueball’:
a blob made of gluons, with mass strictly greater than zero. This theory is
considerably simpler than the Standard Model. However, it is already very
challenging.

This is not the only million-dollar prize that the Clay Mathematics Institute
is offering for struggles with the continuum. They are also offering one for a
proof of global existence of solutions to the Navier–Stokes equations for fluid
flow [17]. However, their quantum field theory challenge is the only one for which
the problem statement is not completely precise. The Navier–Stokes equations
are a collection of partial differential equations for the velocity and pressure of a
fluid. We know how to precisely phrase the question of whether these equations
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have a well-defined solution for all time given smooth initial data. Describing a
quantum field theory is a trickier business!

To be sure, there are a number of axiomatic frameworks for quantum field
theory [39, 86]. We can prove physically interesting theorems from these ax-
ioms, and also rigorously construct some quantum field theories obeying these
axioms [7, 33, 72]. The easiest are the free theories, which describe noninteract-
ing particles. There are also examples of rigorously construted quantum field
theories that describe interacting particles in fewer than 4 spacetime dimen-
sions. However, no quantum field theory that describes interacting particles in
4-dimensional spacetime has been proved to obey the usual axioms. Thus, much
of the wisdom of physicists concerning quantum field theory has not been fully
transformed into rigorous mathematics.

Worse, the question of whether a particular quantum field theory studied by
physicists obeys the usual axioms is not completely precise—at least, not yet.
The problem is that going from the physicists’ formulation to a mathematical
structure that might or might not obey the axioms involves some choices.

This is not a cause for despair; it simply means that there is much work left
to be done. In practice, quantum field theory is marvelously good for calculating
answers to many physics questions. The answers involve approximations. These
approximations seem to work very well: that is, they provide answers that match
experiments. Unfortunately we do not fully understand, in a mathematically
rigorous way, what these approximations are supposed to be approximating.

How could this be? I will try to sketch some of the key issues in the case of
quantum electrodynamics. The history of QED has been nicely told by Schweber
[84], so I will focus on concepts rather than the history, and hope that experts
forgive me for cutting corners and trying to get across the basic ideas at the
expense of many technical details. The nonexpert is encouraged to fill in the
gaps with the help of some textbooks, for example those of Zee [96], Peskin
and Schroeder [65], Itzykson and Zuber [44], or for a more mathematical view,
Ticciati [89].

QED involves just one dimensionless parameter, the fine structure constant:

α =
1

4πε0

e2

~c
≈ 1

137.036
.

We can think of α1/2 as a dimensionless version of the electron charge. It says
how strongly electrons and photons interact.

Nobody knows why the fine structure constant has the value it does. In
computations, we are free to treat it as an adjustable parameter. If we set
it to zero, quantum electrodynamics reduces to a free theory, where photons
and electrons do not interact with each other. A standard strategy in QED
is to take advantage of the fact that the fine structure constant is small and
expand answers to physical questions as power series in α1/2. This is called
‘perturbation theory’, and it allows us to exploit our knowledge of free theories.

One of the main questions we try to answer in QED is this: if we start
with some particles with specified energy-momenta in the distant past, what is
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the probability that they will turn into certain other particles with certain other
energy-momenta in the distant future? As usual, we compute this probability by
first computing a complex amplitude and then taking the square of its absolute
value. The amplitude, in turn, is computed as a power series in α1/2.

The term of order αn/2 in this power series is a sum over Feynman diagrams
with n vertices. For example, suppose we are computing the amplitude for
two electrons with some specified energy-momenta to interact and become two
electrons with some other energy-momenta. One Feynman diagram appearing
in the answer is this:

Here the electrons exhange a single photon. Since this diagram has two vertices,
it contributes a term of order α. The electrons could also exchange two photons:

giving a term of α2. A more interesting term of order α2 is this:

Here the electrons exchange a photon that splits into an electron-positron pair
and then recombines. There are infinitely many diagrams with two electrons
coming in and two going out. However, there are only finitely many with n
vertices. Each of these contributes a term proportional to αn/2 to the amplitude.

In general, the external edges of these diagrams correspond to the experimen-
tally observed particles coming in and going out. The internal edges correspond
to ‘virtual particles’: that is, particles that are not directly seen, but appear in
intermediate steps of a process.

Each of these diagrams is actually a notation for an integral. There are
systematic rules for writing down the integral starting from the Feynman dia-
gram [44, 65]. To do this, we first label each edge of the Feynman diagram with
an energy-momentum, a variable p ∈ R4. The integrand, which we shall not
describe here, is a function of all these energy-momenta. In carrying out the
integral, the energy-momenta of the external edges are held fixed, since these
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correspond to the experimentally observed particles coming in and going out.
We integrate over the energy-momenta of the internal edges, which correspond
to virtual particles, while requiring that energy-momentum is conserved at each
vertex.

However, there is a problem: the integral typically diverges! Whenever a
Feynman diagram contains a loop, the energy-momenta of the virtual particles
in this loop can be arbitrarily large. Thus, we are integrating over an infinite
region. In principle the integral could still converge if the integrand goes to zero
fast enough. However, we rarely have such luck.

What does this mean, physically? It means that if we allow virtual particles
with arbitrarily large energy-momenta in intermediate steps of a process, there
are ‘too many ways for this process to occur’, so the amplitude for this process
diverges.

Ultimately, the continuum nature of spacetime is to blame. In quantum me-
chanics, particles with large momenta are the same as waves with short wave-
lengths. Allowing light with arbitrarily short wavelengths created the ultraviolet
catastrophe in classical electromagnetism. Quantum electromagnetism averted
that catastrophe—but the problem returns in a different form as soon as we
study the interaction of photons and charged particles.

Luckily, there is a strategy for tackling this problem. The integrals for
Feynman diagrams become well defined if we impose a ‘cutoff’, integrating only
over energy-momenta p in some bounded region, say a ball of some large radius
Λ. In quantum theory, a particle with momentum of magnitude greater than
Λ is the same as a wave with wavelength less than ~/Λ. Thus, imposing the
cutoff amounts to ignoring waves of short wavelength—and for the same reason,
ignoring waves of high frequency. We obtain well-defined answers to physical
questions when we do this. Unfortunately the answers depend on Λ, and if we
let Λ→∞, they diverge.

However, this is not the correct limiting procedure. Indeed, among the
quantities that we can compute using Feynman diagrams are the charge and
mass of the electron! Its charge can be computed using diagrams in which an
electron emits or absorbs a photon:

+ + + · · ·

Similarly, its mass can be computed using a sum over Feynman diagrams where
one electron comes in and one goes out.

The interesting thing is this: to do these calculations, we must start by
assuming some charge and mass for the electron—but the charge and mass we
get out of these calculations do not equal the masses and charges we put in!
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The reason is that virtual particles affect the observed charge and mass of a
particle. Heuristically, at least, we should think of an electron as surrounded by
a cloud of virtual particles. These contribute to its mass and ‘shield’ its electric
field, reducing its observed charge. It takes some work to translate between this
heuristic story and actual Feynman diagram calculations, but it can be done.

Thus, there are two different concepts of mass and charge for the electron.
The numbers we put into the QED calculations are called the ‘bare’ charge and
mass, ebare and mbare. Poetically speaking, these are the charge and mass we
would see if we could strip the electron of its virtual particle cloud and see it
in its naked splendor. The numbers we get out of the QED calculations are
called the ‘renormalized’ charge and mass, eren and mren. These are computed
by doing a sum over Feynman diagrams. So, they take virtual particles into
account. These are the charge and mass of the electron clothed in its cloud
of virtual particles. It is these quantities, not the bare quantities, that should
agree with experiment.

Thus, the correct limiting procedure in QED calculations is a bit subtle. For
any value of Λ and any choice of ebare and mbare, we compute eren and mren.
The necessary integrals all converge, thanks to the cutoff. We choose ebare and
mbare so that eren and mren agree with the experimentally observed charge and
mass of the electron. The bare charge and mass chosen this way depend on Λ,
so call them ebare(Λ) and mbare(Λ).

Next, suppose we want to compute the answer to some other physics problem
using QED. We do the calculation with a cutoff Λ, using ebare(Λ) and mbare(Λ)
as the bare charge and mass in our calculation. Then we take the limit Λ→∞.

In short, rather than simply fixing the bare charge and mass and letting
Λ → ∞, we cleverly adjust the bare charge and mass as we take this limit.
This procedure is called ‘renormalization’, and it has a complex and fascinating
history [11]. There are many technically different ways to carry out renormal-
ization, and our account so far neglects many important issues. Let us mention
three of the simplest.

First, besides the classes of Feynman diagrams already mentioned, we must
also consider those where one photon goes in and one photon goes out, such as
this:

These affect properties of the photon, such as its mass. Since we want the
photon to be massless in QED, we have to adjust parameters as we take Λ→∞
to make sure we obtain this result. We must also consider Feynman diagrams
where nothing comes in and nothing comes out—so-called ‘vacuum bubbles’—
and make these behave correctly as well.
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Second, the procedure just described, where we impose a ‘cutoff’ and inte-
grate over energy-momenta p lying in a ball of radius Λ, is not invariant under
Lorentz transformations. Indeed, any theory featuring a smallest time or small-
est distance violates the principles of special relativity: thanks to time dilation
and Lorentz contraction, different observers will disagree about times and dis-
tances. We could accept that Lorentz invariance is broken by the cutoff and
hope that it is restored in the Λ → ∞ limit, but physicists prefer to maintain
symmetry at every step of the calculation. This requires some new ideas: for
example, replacing Minkowski spacetime with 4-dimensional Euclidean space.
In 4-dimensional Euclidean space, Lorentz transformations are replaced by ro-
tations, and a ball of radius Λ is a rotation-invariant concept. To do their
Feynman integrals in Euclidean space, physicists often let time take imaginary
values. They do their calculations in this context and then transfer the results
back to Minkowski spacetime at the end. Luckily, there are theorems justifying
this procedure [33, 39, 86].

Third, besides infinities that arise from waves with arbitrarily short wave-
lengths, there are infinities that arise from waves with arbitrarily long wave-
lengths. The former are called ‘ultraviolet divergences’. The latter are called
‘infrared divergences’, and they afflict theories with massless particles, like the
photon. For example, in QED the collision of two electrons will emit an infinite
number of photons with very long wavelengths and low energies, called ‘soft
photons’. In practice this is not so bad, since any experiment can only detect
photons with energies above some nonzero value. However, infrared divergences
are conceptually important. It seems that in QED any electron is inextricably
accompanied by a cloud of soft photons [12]. This is distinct from the ‘virtual
particle cloud’ that I mentioned before: these are real particles, emitted by the
electron whenever it accelerates.

Now let us summarize what we do and do not know about perturbation
theory in QED. On the bright side, thanks to the efforts of many brilliant
physicists and mathematicians, QED has been proved to be ‘perturbatively
renormalizable’ [30, 80]. This means that we can indeed carry out the procedure
roughly sketched above, obtaining answers to physical questions as power series
in α1/2. On the dark side, we do not know if these power series converge. In
fact, it is widely believed that they diverge! This puts us in a curious situation.

A good example is the magnetic dipole moment of the electron. An electron,
being a charged particle with spin, has a magnetic field. A classical computation
says that its magnetic dipole moment is

~µ = − e

2me

~S

where ~S is its spin angular momentum. Quantum effects correct this computa-
tion, giving

~µ = −g e

2me

~S

for some constant g called the ‘gyromagnetic ratio’. This constant can be com-
puted using QED as a sum over Feynman diagrams in which an electron ex-
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changes a single photon with a massive charged particle:

+ + + · · ·

The answer is a power series in α1/2, but since all these diagrams have an even
number of vertices, it only contains integral powers of α. The lowest-order term
gives simply g = 2. In 1948, Schwinger [83] computed the next term and found
a small correction to this simple result:

g = 2 +
α

π
≈ 2.00232.

By now have people have computed g up to order α5. This requires computing
over 13,000 integrals, one for each Feynman diagram of the above form with
up to 10 vertices [3]. The answer agrees very well with experiment: in fact,
if we also take other Standard Model effects into account we get agreement to
roughly one part in 1012. This is the most accurate prediction in all of science!

However, if we continue adding up terms in this power series, there is no
guarantee that the answer converges. Indeed, in 1952 Dyson [22] gave a heuristic
argument that makes physicists expect that the series diverges, along with most
other power series in QED.

The argument goes as follows. If these power series converged for small
positive α, they would have a nonzero radius of convergence, so they would also
converge for small negative α. Thus, QED would make sense for small negative
values of α, which correspond to imaginary values of the electron’s charge.
If the electron had an imaginary charge, electrons would attract each other
electrostatically, since the usual repulsive force between them is proportional to
e2. Thus, if the power series converged, we would have a theory like QED for
electrons that attract rather than repel each other.

However, there is a good reason to believe that QED cannot make sense for
electrons that attract. The reason is that it describes a world where the vacuum
is unstable. That is, there would be states with arbitrarily large negative energy
containing many electrons and positrons. Thus, we expect that the vacuum
could spontaneously turn into electrons and positrons together with photons
(to conserve energy). Of course, this is not a rigorous proof that the power
series in QED diverge: just an argument that it would be strange if they did
not.

To see why electrons that attract could have arbitrarily large negative energy,
consider a state ψ with a large number N of such electrons inside a ball of radius
R. We require that these electrons have small momenta, so that nonrelativistic
quantum mechanics gives a good approximation to the situation. Since its
momentum is small, the kinetic energy of each electron is a small fraction of its
rest energy mec

2. If we let 〈ψ,Eψ〉 be the expected value of the total rest energy
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and kinetic energy of all the electrons, it follows that 〈ψ,Eψ〉 is approximately
proportional to N .

The Pauli exclusion principle puts a limit on how many electrons with mo-
mentum below some bound can fit inside a ball of radius R. This number is
asymptotically proportional to the volume of the ball. Thus, we can assume N
is approximately proportional to R3. It follows that 〈ψ,Eψ〉 is approximately
proportional to R3.

There is also the negative potential energy to consider. Let V be the opera-
tor for potential energy. Since we have N electrons attracted by a 1/r potential,
and each pair contributes to the potential energy, we see that 〈ψ, V ψ〉 is ap-
proximately proportional to −N2R−1, or −R5. Since R5 grows faster than R3,
we can make the expected energy 〈ψ, (E + V )ψ〉 arbitrarily large and negative
as N,R→∞.

Note the interesting contrast between this result and some previous ones
we have seen. In Newtonian mechanics, the energy of particles attracting each
other with a 1/r potential is unbounded below. In quantum mechanics, thanks
to the uncertainty principle, the energy is bounded below for any fixed number
of particles. However, quantum field theory allows for the creation of particles,
and this changes everything! Dyson’s disaster arises because the vacuum can
turn into a state with large numbers of electrons and positrons. This disaster
only occurs in an imaginary world where α is negative—but it may be enough to
prevent the power series in QED from having a nonzero radius of convergence.

We are left with a puzzle: how can perturbative QED work so well in prac-
tice, if the power series in QED diverge?

Much is known about this puzzle. There is an extensive theory of ‘Borel
summation’, which allows one to extract well-defined answers from certain di-
vergent power series. For example, consider a particle of mass m on a line in a
potential

V (x) = x2 + βx4.

When β ≥ 0 this potential is bounded below, but when β < 0 it is not: clas-
sically, it describes a particle that can shoot to infinity in a finite time. Let
H = K + V be the quantum Hamiltonian for this particle, where

K = − ~2

2m

∂2

∂x2

is the usual operator for the kinetic energy and V is the operator for potential
energy. When β ≥ 0, the Hamiltonian H is essentially self-adjoint on the set
of smooth wavefunctions that vanish outside a bounded set. Moreover, in this
case H has a ‘ground state’: a state ψ whose expected energy 〈ψ,Hψ〉 is as low
as possible. Call this expected energy E(β). One can show that E(β) depends
smoothly on β for β ≥ 0, and one can write down a Taylor series for E(β).

On the other hand, when β < 0, the Hamiltonian H is not essentially self-
adjoint on the set of smooth wavefunctions that vanish outside a bounded in-
terval. This means that the quantum mechanics of a particle in this potential
is ill-behaved when β < 0. Heuristically speaking, the problem is that such a
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particle could tunnel through the barrier given by the local maxima of V (x) and
shoot off to infinity in a finite time.

This situation is similar to Dyson’s disaster, since we have a theory that is
well behaved for β ≥ 0 and ill behaved for β < 0. As before, the bad behavior
seems to arise from our ability to convert an infinite amount of potential energy
into other forms of energy. However, in this simpler situation one can prove that
the Taylor series for E(β) does not converge. Simon [85] did this around 1969.
Moreover, one can prove that Borel summation, applied to this Taylor series,
gives the correct value of E(β) for β ≥ 0 [37]. The same is known to be true for
certain quantum field theories [72]. Analyzing these examples, one can see why
summing the first few terms of a power series can give a good approximation to
the correct answer even though the series diverges. The terms in the series get
smaller and smaller for a while, but eventually they become huge.

Unfortunately, nobody has been able to carry out this kind of analysis for
quantum electrodynamics. In fact, the current conventional wisdom is that this
theory is inconsistent, due to problems at very short distance scales. In our
discussion so far, we summed over Feynman diagrams with ≤ n vertices to get
the first n terms of power series for answers to physical questions. However, one
can also sum over all diagrams with ≤ n loops: that is, graphs with genus ≤ n.
This more sophisticated approach to renormalization, which sums over infinitely
many diagrams, may dig a bit deeper into the problems faced by quantum field
theories.

If we use this alternate approach for QED we find something surprising.
Recall that in renormalization we impose a momentum cutoff Λ, essentially
ignoring waves of wavelength less than ~/Λ, and use this to work out a relation
between the the electron’s bare charge ebare(Λ) and its renormalized charge eren.
We try to choose ebare(Λ) that makes eren equal to the electron’s experimentally
observed charge e. If we sum over Feynman diagrams with ≤ n vertices this is
always possible. But if we sum over Feynman diagrams with at most one loop,
it ceases to be possible when Λ reaches a certain very large value, namely

Λ = exp

(
3π

2α
+

5

6

)
mec ≈ e647mec.

According to this one-loop calculation, the electron’s bare charge becomes in-
finite at this point! This value of Λ is known as a ‘Landau pole’, since it was
first noticed in about 1954 by Landau and his colleagues [56].

What is the meaning of the Landau pole? I said that poetically speaking,
the bare charge of the electron is the charge we would see if we could strip off
the electron’s virtual particle cloud. A somewhat more precise statement is that
ebare(Λ) is the charge we would see if we collided two electrons head-on with a
momentum on the order of Λ. In this collision, there is a good chance that the
electrons would come within a distance of ~/Λ from each other. The larger Λ
is, the smaller this distance is, and the more we penetrate past the effects of the
virtual particle cloud, whose polarization ‘shields’ the electron’s charge. Thus,
the larger Λ is, the larger ebare(Λ) becomes. So far, all this makes good sense:
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physicists have done experiments to actually measure this effect. The problem
is that ebare(Λ) becomes infinite when Λ reaches a certain huge value.

Of course, summing only over diagrams with ≤ 1 loops is not definitive.
Physicists have repeated the calculation summing over diagrams with ≤ 2 loops,
and again found a Landau pole. But again, this is not definitive. Nobody knows
what will happen as we consider diagrams with more and more loops. Moreover,
the distance ~/Λ corresponding to the Landau pole is absurdly small! For the
one-loop calculation quoted above, this distance is about

e−647
~
mec

≈ 6× 10−294 meters.

This is hundreds of orders of magnitude smaller than the length scales physicists
have explored so far. Currently the Large Hadron Collider can probe energies
up to about 10 TeV, and thus distances down to about 2 × 10−20 meters, or
about 0.00002 times the radius of a proton. Quantum field theory seems to
be holding up very well so far, but no reasonable physicist would be willing
to extrapolate this success down to 6 × 10−294 meters, and few seem upset at
problems that manifest themselves only at such a short distance scale.

Indeed, attitudes on renormalization have changed significantly since 1948,
when Feynman, Schwinger and Tomonoga developed it for QED. At first it
seemed a bit like a trick. Later, as the success of renormalization became ever
more thoroughly confirmed, it became accepted. However, some of the most
thoughtful physicists remained worried. In 1975, Dirac said:

Most physicists are very satisfied with the situation. They say:
‘Quantum electrodynamics is a good theory and we do not have
to worry about it any more.’ I must say that I am very dissatisfied
with the situation, because this so-called ‘good theory’ does involve
neglecting infinities which appear in its equations, neglecting them
in an arbitrary way. This is just not sensible mathematics. Sensible
mathematics involves neglecting a quantity when it is small—not
neglecting it just because it is infinitely great and you do not want
it!

As late as 1985, Feynman wrote:

The shell game that we play [...] is technically called ‘renormaliza-
tion’. But no matter how clever the word, it is still what I would
call a dippy process! Having to resort to such hocus-pocus has pre-
vented us from proving that the theory of quantum electrodynamics
is mathematically self-consistent. It’s surprising that the theory still
hasn’t been proved self-consistent one way or the other by now; I
suspect that renormalization is not mathematically legitimate.

By now renormalization is thoroughly accepted among physicists. The key move
was a change of attitude emphasized by Wilson in the 1970s [93]. Instead of
treating quantum field theory as the correct description of physics at arbitrar-
ily large energy-momenta, we can assume it is only an approximation. For
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renormalizable theories, one can argue that even if quantum field theory is in-
accurate at large energy-momenta, the corrections become negligible at smaller,
experimentally accessible energy-momenta. If so, instead of seeking to take the
Λ→∞ limit, we can use renormalization to relate bare quantities at some large
but finite value of Λ to experimentally observed quantities.

From this practical-minded viewpoint, the possibility of a Landau pole in
QED is less important than the behavior of the Standard Model. Physicists
believe that the Standard Model would suffer from Landau pole at momenta
low enough to cause serious problems if the Higgs boson were considerably more
massive than it actually is. Thus, they were relieved when the Higgs was discov-
ered at the Large Hadron Collider with a mass of about 125 GeV/c2. However,
the Standard Model may still suffer from a Landau pole at high momenta, as
well as an instability of the vacuum [46].

Regardless of practicalities, for the mathematical physicist, the question of
whether or not QED and the Standard Model can be made into well-defined
mathematical structures that obey the axioms of quantum field theory remain
open problems of great significance. Most physicists believe that this can be
done for pure Yang–Mills theories, but actually proving this is the first step
towards winning $1,000,000 from the Clay Mathematics Institute.

5 General relativity

Combining electromagnetism with relativity and quantum mechanics led to
QED, and we have seen the immense struggles with the continuum this caused.
Combining gravity with relativity led Einstein to general relativity.

In general relativity, infinities coming from the continuum nature of space-
time are deeply connected to its most dramatic successful predictions: black
holes and the Big Bang. In this theory, the density of the Universe approaches
infinity as we go back in time toward the Big Bang, and the density of a star
approaches infinity as it collapses to form a black hole. Thus we might say that
instead of struggling against infinities, general relativity accepts them and has
learned to live with them.

General relativity does not take quantum mechanics into account, so the
story is not yet over. Many physicists hope that quantum gravity will eventually
save physics from its struggles with the continuum. Simple dimensional analysis
suggests that quantum gravity effects may become important at length scales
near the ‘Planck length’:

`p =

√
~G
c3
≈ 1.6× 10−35 meters.

Unfortunately, this is too small for direct experiments at present. The hope
that something new happens around this length scale has motivated a profusion
of new ideas on spacetime: too many to survey here. Instead, I shall focus on
the humbler issue of how singularities arise in general relativity—and why they
might not rob this theory of its predictive power.
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General relativity says that spacetime is a 4-dimensional Lorentzian mani-
fold. Thus, it can be covered by patches equipped with coordinates, so that
in each patch we can describe points by lists of four numbers. Any curve
γ(s) going through a point then has a tangent vector v whose components are
vµ = dγµ(s)/ds. Furthermore, given two tangent vectors v, w at the same point
we can take their inner product

g(v, w) = gµνv
µwν

where as usual we sum over repeated indices, and gµν is a 4 × 4 matrix called
the metric, depending smoothly on the point. We require that at any point we
can find some coordinate system where this matrix takes the usual Minkowski
form:

g =


−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 .

However, as soon as we move away from our chosen point, the form of the matrix
g in these particular coordinates may change.

General relativity says how the metric is affected by matter. It does this in a
single equation, Einstein’s equation, which relates the ‘curvature’ of the metric
at any point to the flow of energy and momentum through that point.

To work with the concept of curvature, Einstein had to learn differential
geometry from his mathematician friend Marcel Grossman. One of the great
delights of general relativity is how much more can be rigorously proved about
this theory than quantum field theory, where even the basic formalism remains
problematic. The price to pay is a lot of differential geometry. Instead of
explaining all this, I will take some shortcuts and focus on providing intuition.
It helps to reformulate Einstein’s equation in terms of the motion of particles.
For more details, and a list of resources for further study, see [6].

To understand Einstein’s equation, let us see what it says about a small
round ball of test particles that are initially all at rest relative to each other. The
scenario here requires a bit of explanation. First, because spacetime is curved,
it only looks like Minkowski spacetime—the world of special relativity—in the
limit of a very small region. The concepts of ‘round’ and ‘at rest relative to
each other’ only make sense in this limit. Thus, the forthcoming statement of
Einstein’s equation is precise only in this limit. Of course, taking this limit
relies on the fact that spacetime is a continuum.

Second, a ‘test particle’ is a classical point particle with so little mass that
while it is affected by gravity, its effects on the geometry of spacetime are neg-
ligible. We assume our test particles are affected only by gravity, no other
forces. In general relativity this means that they move along timelike geodesics.
Roughly speaking, these are paths that go slower than light and bend as little
as possible. We can make this precise without much work.
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For a path in space to be a geodesic means that if we slightly vary any small
portion of it, it can only become longer. However, a path γ(s) in spacetime
traced out by a particle moving slower than light must be ‘timelike’, meaning
that its tangent vector v = γ′(s) satisfies g(v, v) < 0. We define the proper time
along such a path from s = s0 to s = s1 to be∫ s1

s0

√
−g(γ′(s), γ′(s)) ds.

This is the time ticked out by a clock moving along that path. A timelike path
is a geodesic if the proper time can only decrease when we slightly vary any
small portion of it. Particle physicists prefer the opposite sign convention for
the metric, and then we do not need the minus sign under the square root. But
the fact remains the same: timelike geodesics locally maximize the proper time.

Actual particles are not test particles. First, the concept of test particle does
not take quantum theory into account. Second, all known particles are affected
by forces other than gravity. Third, any actual particle affects the geometry
of the spacetime it inhabits. Test particles are just a mathematical trick for
studying the geometry of spacetime. Still, a sufficiently light particle that is
affected very little by forces other than gravity should be well approximated by
a test particle, though rigorously proving this is difficult [25]. For example, an
artificial satellite moving through the Solar System behaves like a test particle
if we ignore the solar wind, the radiation pressure of the Sun, and so on.

If we start with a small round ball consisting of many test particles that are
initially all at rest relative to each other, to first order in time it will not change
shape or size. However, to second order in time it can expand or shrink, due to
the curvature of spacetime. It may also be stretched or squashed, becoming an
ellipsoid. This should not be too surprising, because any linear transformation
applied to a ball gives an ellipsoid.

Let V (t) be the volume of the ball after a time t has elapsed, where time is
measured by a clock attached to the particle at the center of the ball. Then in
units where c = G = 1, Einstein’s equation says:

V̈

V

∣∣∣∣∣
t=0

= −4π


flow of t−momentum in the t direction +

flow of x−momentum in the x direction +

flow of y−momentum in the y direction +

flow of z−momentum in the z direction

 .

These flows here are measured at the center of the ball at time zero, and the
coordinates used here take advantage of the fact that to first order, at any one
point, spacetime looks like Minkowski spacetime.

The flows in Einstein’s equation are the diagonal components of a 4×4 matrix
T called the ‘stress-energy tensor’. The components Tαβ of this matrix say how
much momentum in the α direction is flowing in the β direction through a given
point of spacetime. Here α and β range from 0 to 3, corresponding to the t, x, y
and z coordinates. For example, T00 is the flow of t-momentum in the t-direction.
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This is just the energy density, usually denoted ρ. The flow of x-momentum in
the x-direction is the pressure in the x direction, denoted Px, and similarly for y
and z. The reader may be more familiar with direction-independent pressures,
but it is easy to manufacture a situation where the pressure depends on the
direction: just squeeze a book between one’s hands.

Thus, Einstein’s equation says

V̈

V

∣∣∣
t=0

= −4π(ρ+ Px + Py + Pz).

It follows that positive energy density and positive pressure both curve space-
time in a way that makes a freely falling ball of point particles tend to shrink.
Since E = mc2 and we are working in units where c = 1, ordinary mass density
counts as a form of energy density. Thus a massive object will make a swarm of
freely falling particles at rest around it start to shrink. In short, gravity attracts.

Already from this, gravity seems dangerously inclined to create singularities.
Suppose that instead of test particles we start with a stationary cloud of ‘dust’:
a fluid of particles having nonzero energy density but no pressure, moving under
the influence of gravity alone. The dust particles will still follow geodesics, but
they will affect the geometry of spacetime. Their energy density will make the
ball start to shrink. As it does, the energy density ρ will increase, so the ball
will tend to shrink ever faster, approaching infinite density in a finite amount of
time. This in turn makes the curvature of spacetime become infinite in a finite
amount of time. The result is a ‘singularity’.

In reality, matter is affected by forces other than gravity. Repulsive forces
may prevent gravitational collapse. However, this repulsion creates pressure,
and Einstein’s equation says that pressure also creates gravitational attraction!
In some circumstances this can overwhelm whatever repulsive forces are present.
Then the matter collapses, leading to a singularity—at least according to general
relativity.

When a star more than 8 times the mass of our Sun runs out of fuel, its core
suddenly collapses. The surface is thrown off explosively in an event called a
supernova. Most of the energy—the equivalent of thousands of Earth masses—is
released in a ten-second burst of neutrinos, formed as a byproduct when protons
and electrons combine to form neutrons. If the star’s mass is below 20 times
that of our the Sun, its core crushes down to a large ball of neutrons with a
crust of iron and other elements: a neutron star.

However, this ball is unstable if its mass exceeds the Tolman–Oppenheimer–
Volkoff limit, somewhere between 1.5 and 3 times that of our Sun. Above this
limit, gravity overwhelms the repulsive forces that hold up the neutron star.
And indeed, no neutron stars heavier than 3 solar masses have been observed.
Thus, for very heavy stars, the endpoint of collapse is not a neutron star, but
something else: a black hole, an object that bends spacetime so much even light
cannot escape.

If general relativity is correct, a black hole contains a singularity. Many
physicists expect that general relativity breaks down inside a black hole, per-
haps because of quantum effects that become important at strong gravitational

30



fields. The singularity is considered a strong hint that this breakdown occurs.
If so, the singularity may be a purely theoretical entity, not a real-world phe-
nomenon. Nonetheless, everything we have observed about black holes matches
what general relativity predicts. Thus, unlike all the other theories we have
discussed, general relativity predicts infinities that are connected to striking
phenomena that are actually observed.

The Tolman–Oppenheimer–Volkoff limit is not precisely known, because it
depends on properties of nuclear matter that are not well understood [9]. How-
ever, there are theorems that say singularities must occur in general relativity
under certain conditions.

One of the first was proved by Raychauduri [68] and Komar [54] in the
mid-1950’s. It applies only to ‘dust’, and indeed it is a precise version of our
verbal argument above. It introduced the ‘Raychauduri equation’, which is the
geometrical way of thinking about spacetime curvature as affecting the motion
of a small ball of test particles. It shows that under suitable conditions, the
energy density must approach infinity in a finite amount of time along the path
traced out out by a dust particle.

The first required condition is that the flow of dust be initally converging,
not expanding. The second condition, not mentioned in our verbal argument, is
that the dust be ‘irrotational’, not swirling around. The third condition is that
the dust particles be affected only by gravity, so that they move along geodesics.
Due to the last two conditions, the Raychauduri–Komar theorem does not apply
to collapsing stars.

The more modern singularity theorems eliminate these conditions. But they
do so at a price: they require a more subtle concept of singularity. There are
various possible ways to define this concept. They are all a bit tricky, because
a singularity is not a point or region in spacetime.

For our present purposes, we shall define a singularity to be an ‘incomplete
timelike or null geodesic’. As already explained, a timelike geodesic is the kind
of path traced out by a test particle moving slower than light. Similarly, a null
geodesic is the kind of path traced out by a test particle moving at the speed
of light. We say a geodesic is ‘incomplete’ if it ceases to be well-defined after
a finite amount of time. For example, general relativity says a test particle
falling into a black hole follows an incomplete geodesic. In a rough-and-ready
way, people say the particle ‘hits the singularity’. But the singularity is not a
place in spacetime. What we really mean is that the particle’s path becomes
undefined after a finite amount of time.

We need to be a bit careful about the role of ‘time’ here. For test parti-
cles moving slower than light this is easy, since we can parametrize a timelike
geodesic by proper time. However, the tangent vector v = γ′(s) of a null geodesic
has g(v, v) = 0, so a particle moving along a null geodesic does not experience
any passage of proper time. Still, any geodesic, even a null one, has a family of
preferred parametrizations. These differ only by reparametrizations of the form
s 7→ as + b. By ‘time’ we really mean the variable s in any of these preferred
parametrizations. Thus, if our spacetime is some Lorentzian manifold M , we
say a geodesic γ : [s0, s1] → M is incomplete if, parametrized in one of these
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preferred ways, it cannot be extended to a strictly longer interval.
The first modern singularity theorem was proved by Penrose [63] in 1965.

It says that if space is infinite in extent, and light becomes trapped inside
some bounded region, and no exotic matter is present to save the day, either a
singularity or something even more bizarre must occur. This theorem applies
to collapsing stars. When a star of sufficient mass collapses, general relativity
says that its gravity becomes so strong that light becomes trapped inside some
bounded region. We can then use Penrose’s theorem to analyze the possibilities.

Shortly thereafter Hawking proved a second singularity theorem, which ap-
plies to the Big Bang [40]. It says that if space is finite in extent, and no
exotic matter is present, generically either a singularity or something even more
bizarre must occur. The singularity here could be either a Big Bang in the past,
a Big Crunch in the future, both—or possibly something else. Hawking also
proved a version of his theorem that applies to certain Lorentzian manifolds
where space is infinite in extent, as seems to be the case in our Universe. This
version requires extra conditions.

There are some undefined phrases in this summary of the Penrose–Hawking
singularity theorems, most notably these:

• ‘exotic matter’

• ‘singularity’

• ‘something even more bizarre’.

So, let me say a bit about each.
These theorems precisely specify what is meant by ‘exotic matter’. All known

forms of matter obey the ‘dominant energy condition’, which says that

|Px|, |Py|, |Pz| ≤ ρ

at all points and in all locally Minkowskian coordinates. Exotic matter is any-
thing that violates this condition. For a detailed discussion of this and other
energy conditions, see the survey by Curiel [19].

The Penrose–Hawking singularity theorems also say what counts as ‘some-
thing even more bizarre’. An example would be a closed timelike curve. A
particle following such a path would move slower than light yet eventually reach
the same point where it started: and not just the same point in space, but
the same point in spacetime. If you could do this perhaps you could wait, see
if it rains tomorrow, and then go back in time and decide whether to buy an
umbrella today. There are certainly solutions of Einstein’s equation with closed
timelike curves. The first interesting one was found by Einstein’s friend Gödel
in 1949, as part of an attempt to probe the nature of time [35]. However, closed
timelike curves are generally considered less plausible than singularities.

In the Penrose–Hawking singularity theorems, ‘something even more bizarre’
means that spacetime is not ‘globally hyperbolic’. To understand this, we need
to think about when we can predict the future or past given initial data. When
studying field equations like Maxwell’s theory of electromagnetism or Einstein’s
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theory of gravity, physicists like to specify initial data on space at a given mo-
ment of time. However, in general relativity there is considerable freedom in
how we choose a slice of spacetime and call it ‘space’. What should we require?
For starters, we want a 3-dimensional submanifold S of spacetime that is ‘space-
like’: every vector v tangent to S should have g(v, v) > 0. However, we also
want any timelike or null curve to hit S exactly once. A spacelike surface with
this property is called a ‘Cauchy surface’, and a Lorentzian manifold contain-
ing a Cauchy surface is said to be ‘globally hyperbolic’. Globally hyperbolicity
excludes closed timelike curves, but also other bizarre behavior. In a globally
hyperbolic spacetime, we can predict the future or past given initial data on
any Cauchy surface.

By now the original singularity theorems have been greatly generalized and
clarified. Hawking and Penrose [43] gave a unified treatment of both theorems
in 1970. The textbook by Hawking and Ellis [42] gave the first really systematic
introduction to this subject, and Wald’s text gives a shorter, more modern
treatment [91]. Hawking’s 1994 lectures [41] give a beautiful overview of the
key ideas, and a paper by Garfinkle and Senovilla [41] reviews the subject and
its history up to 2015.

If we accept that general relativity really predicts the existence of singular-
ities in physically realistic situations, the next step is to ask whether they rob
general relativity of its predictive power. The ‘cosmic censorship hypothesis’,
proposed by Penrose in 1969, claims they do not [64].

To formulate such a conjecture, we must first think about what behaviors
we consider acceptable. Consider first a black hole formed by the collapse of a
star. According to general relativity, matter can fall into this black hole and ‘hit
the singularity’ in a finite amount of proper time, but nothing can come out of
the singularity. The time-reversed version of a black hole, called a ‘white hole’,
is often considered more disturbing. White holes have never been seen, but
they are mathematically valid solutions of Einstein’s equation. In a white hole,
matter can come out of the singularity, but nothing can fall in. Naively, this
seems to imply that the future is unpredictable given knowledge of the past. Of
course, the same logic applied to black holes would say the past is unpredictable
given knowledge of the future.

If white holes are disturbing, perhaps the Big Bang should be more so. In the
usual solutions of general relativity describing Big Bang cosmologies, all matter
in the universe comes out of a singularity! More precisely, if one follows any
timelike geodesic back into the past, it becomes undefined after a finite amount
of proper time. Naively, this may seem a massive violation of predictability: in
this scenario, the whole universe ‘sprang out of nothing’ about 14 billion years
ago.

However, in all three examples so far—astrophysical black holes, their time-
reversed versions and the Big Bang—spacetime is globally hyperbolic. Thus, we
can specify data on a Cauchy surface and solve Einstein’s equation to predict the
future (and past) development of the metric throughout all of spacetime. How
is this compatible with the naive intuition that a singularity causes a failure of
predictability?

33



For any globally hyperbolic spacetime M , one can find a smoothly varying
family of Cauchy surfaces St (t ∈ R) such that each point of M lies on exactly
one of these surfaces. This amounts to a way of chopping spacetime into ‘slices
of space’ for various choices of the ‘time’ parameter t. For an astrophysical black
hole, the singularity is in the future of all these surfaces. That is, a timelike
or null geodesic that hits the singularity must go through all the surfaces St
before it becomes undefined. Similarly, for a white hole or the Big Bang, the
singularity is in the past of all these surfaces. In either case, the singularity
cannot interfere with our predictions of what occurs in spacetime. For more
on this topic, try Earman’s delightful book Bangs, Crunches, Whimpers and
Shrieks: Singularities and Acausalities in Relativistic Spacetimes [23].

A more challenging example is posed by the Kerr–Newman solution of Ein-
stein’s equation coupled to the vacuum Maxwell equations [91]. When

e2 + (J/m)2 < m2,

this solution describes a rotating charged black hole with mass m, charge e and
angular momentum J in units where c = G = 1. In 1968, Carter [15] noted that
the Kerr–Newman solution acts like a particle with gyromagnetic ratio g = 2,
surprisingly close to that of an electron. However, an electron has

e2 + (J/m)2 � m2.

The Kerr–Newman solution still has g = 2 in this case, but also some disturbing
pathological features. It has closed timelike curves accessible from the outside
world! It also has a ‘naked singularity’. Roughly speaking, this is a singularity
that can be seen by arbitrarily faraway observers in a spacetime whose geometry
asymptotically approaches that of Minkowski spacetime. A spacetime with a
naked singularity cannot be globally hyperbolic [42].

The cosmic censorship hypothesis comes in a number of forms. The original
version due to Penrose is now called ‘weak cosmic censorship’ [92]. It asserts that
in a spacetime whose geometry asymptotically approaches that of Minkowski
spacetime, gravitational collapse cannot produce a naked singularity.

In 1991, Preskill and Thorne made a bet against Hawking in which they
claimed that weak cosmic censorship was false. Hawking conceded this bet in
1997 when a counterexample was found. This features finely-tuned infalling
matter poised right on the brink of forming a black hole. It almost creates
a region from which light cannot escape—but not quite. Instead, it creates a
naked singularity!

Given the delicate nature of this construction, Hawking did not give up. In-
stead he made a second bet, which says that weak cosmic censorship holds
‘generically’—that is, for an open dense set of initial conditions. In 1999,
Christodoulou proved that for spherically symmetric solutions of Einstein’s
equation coupled to a massless scalar field, weak cosmic censorship holds gener-
ically [13]. While spherical symmetry is a very restrictive assumption, this
result is a good example of how, with plenty of work, we can make progress in
rigorously settling the questions raised by general relativity.
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Indeed, Christodoulou has been a leader in this area. For example, the vac-
uum Einstein equations have solutions describing gravitational waves, much as
the vacuum Maxwell equations have solutions describing electromagnetic waves.
However, gravitational waves can actually form black holes when they collide.
This raises the question of the stability of Minkowski spacetime. Must suffi-
ciently small perturbations of the Minkowski metric go away in the form of
gravitational radiation, or can tiny wrinkles in the fabric of spacetime somehow
amplify themselves and cause trouble—perhaps even a singularity? In 1993,
together with Klainerman, Christodoulou proved that Minkowski spacetime is
indeed stable [16]. Their proof fills a 514-page book.

In 2008, Christodoulou completed an even longer rigorous study of the for-
mation of black holes [14]. This can be seen as a vastly more detailed look at
questions which Penrose’s original singularity theorem addressed in a general,
preliminary way. Nonetheless, there is much left to be done to understand the
behavior of singularities in general relativity [71].

6 Conclusions

We have seen that in every major theory of physics, challenging mathematical
questions arise from the assumption that spacetime is a continuum. The con-
tinuum threatens us with infinities. Do these infinities threaten our ability to
extract predictions from these theories—or even our ability to formulate these
theories in a precise way? We can answer these questions, but only with hard
work. Is this a sign that we are somehow on the wrong track? Is the continuum
as we understand it only an approximation to some deeper model of spacetime?
Only time will tell. Nature is providing us with plenty of clues, but it will take
patience to read them correctly.
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