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We study the emergence of decoherent histories in isolated systems based on exact numerical
integration of the Schrödinger equation for a Heisenberg chain. We reveal that the nature of the
system, which we switch from (i) chaotic to (ii) interacting integrable to (iii) non-interacting inte-
grable, strongly impacts decoherence. From a finite size scaling law we infer a strong exponential
suppression of coherences for (i), a weak exponential suppression for (ii) and no exponential sup-
pression for (iii) on a relevant short (nonequilibrium) time scale. Moreover, for longer times we find
stronger decoherence for (i) but the opposite for (ii), hinting even at a possible power-law decay
for (ii) at equilibrium time scales. This behaviour is encoded in the multi-time properties of the
quantum histories and it can not be explained by environmentally induced decoherence. Our results
suggest that chaoticity plays a crucial role in the emergence of classicality in finite size systems.

Introduction.—The decoherence functional (DF)—
quantifying the (de)coherence between different paths or
histories in an isolated quantum system (precisely defined
below)—plays a crucial role to explain the emergence of
classicality [1–4]. Fundamentally, it provides the condi-
tion for the existence of records of past events [5–10],
which may be used to identify branches in the univer-
sal wave function [1, 11], and it implies macrorealism
(Leggett-Garg inequalities) [12, 13]. Practically, the DF
determines whether a complex quantum process can be
simulated by a simpler classical stochastic process [14–
21].

Historically, since the DF is a complicated multi-time
correlation function, research has been restricted to eval-
uating it explicitly for the case of quantum Brownian
motion only [6, 7, 22–26]. This non-interacting integrable
model has been solved for a bath prepared in a canoni-
cal ensemble, a state that is highly mixed and contains
(in the conventionally considered continuum limit) an in-
finite amount of classical noise. This leaves it unclear
whether the microscopic origin of the observed decoher-
ence is an intrinsic feature of the dynamics or an artifact
of the classical initial state. Also other indirect argu-
ments for emergent decoherent histories were based on
linear oscillator chains [27]. In addition, the thermody-
namic limit makes the question how exactly decoherence
emerges as a function of system size inaccessible.

The main contribution of this letter is an
approximation-free evaluation of the DF for a real-
istic many-body system (a Heisenberg chain) based on
exact numerical integration of the Schrödinger equation
[28] without using classical ensembles. By leveraging
the power of modern computers we extract a finite size
scaling law and reveal that the nature of the system
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(chaotic, interacting integrable or free) strongly influ-
ences the emergence of decoherence (at least for finite
size systems). Our results support an old conjecture by
van Kampen [29] and significantly extend a few related
studies evaluating the DF for pure states and finite size
systems numerically [11, 19, 20, 30–35] or on a quantum
computer [36].

Our results also illuminate the debated relation to en-
vironmentally induced decoherence (EID) [37–39], which
is mathematically not equivalent to decoherent histories
(for detailed studies see Refs. [5, 9, 20, 40–42]). In our
model, the relevant reduced density matrix exactly com-
mutes with the relevant observable at all times, yet the
histories are not exactly decoherent as one might naively
expect. Since the block-diagonal form of the reduced den-
sity matrix is here caused by symmetry, this does not con-
tradict the idea of EID, but it illustrates how subtle the
relation is: it is a clear-cut example for emergent deco-
herent histories that are not caused by the entanglement
between subsystems. Moreover, while (single-particle)
chaos was found to be an obstacle for the quantum-to-
classical transition, which can be cured by EID [43–47],
this letter reveals that (many-body) chaos significantly
enhances the emergence of decoherent histories, high-
lighting an intriguing dual role of chaos.

More broadly seen, our letter contributes to a deeper
understanding of complex quantum dynamics beyond
single time expectation values and reduced density ma-
trices. While most current research debates the use of
Loschmidt echos [48], out-of-time-order correlators [49]
or process tensors [50] as a diagnostic tool of quantum
chaos (see, e.g., Refs. [51–59]), our results suggest quan-
tum histories as another sensitive tool. Our example il-
lustrates that histories contain crucial information about
the nature of the system that is not revealed in the dy-
namical behaviour of single-time expectation values.

Preliminaries.—We consider an isolated quantum sys-
tem with Hamiltonian H, Hilbert space H with dimen-
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sion D = dimH and initial state |ψ0⟩. We divide
the Hilbert space H =

⊕
x Hx into orthogonal sub-

spaces Hx corresponding to a complete set of orthogo-
nal projectors {Πx}Mx=1 satisfying ΠxΠy = δx,yΠx and∑M

x=1 Πx = I (with I the identity). We call the set
{Πx} a coarse-graining because the emergence of de-
coherence requires Πx to belong to a coarse observable

A =
∑M

x=1 axΠx characterized by large subspace dimen-
sions Vx ≡ dimHx ≫ 1.
In spirit of a generalized Feynman path integral, we

now write the unitary evolution of the wave function as
a sum over histories

|ψn⟩ =
∑
xn

· · ·
∑
x1

∑
x0

|ψ(xn, . . . , x1, x0)⟩, (1)

where (xn, . . . , x1, x0) denotes a history corresponding to
a state passing through subspaces xk at times tk:

|ψ(xn, · · · , x1, x0)⟩ ≡ Πxn
Un,n−1 · · ·Πx1

U1,0Πx0
|ψ0⟩.

(2)
Here, Uk,i = e−iH(tk−ti) is the unitary time evolution
operator from time ti to tk (ℏ ≡ 1). For brevity, we
denote a history as x = (xn, . . . , x1, x0) such that Eq. (1)
becomes |ψn⟩ =

∑
x |ψ(x)⟩. Moreover, the length of a

history is L = n+ 1.
The central object of study in the following is the de-

coherence functional (DF) [1–4]

D(x;y) ≡ ⟨ψ(y)|ψ(x)⟩, (3)

which quantifies the overlap, or interference, between dif-
ferent histories x and y. Owing to ΠxΠy = δx,yΠx, it is
true that D(x;y) ∼ δxn,yn

, i.e, the DF is always “diag-
onal” with respect to the final points of the history, but
the DF is usually not diagonal with respect to earlier
times tn−1, · · · , t0 of the history. The special case where

D(x;y) = 0 for all x ̸= y (4)

is known as the decoherent histories condition (DHC).
Then, only the diagonal elements of the DF survive,
which equal the probability D(x;x) to get measurement
outcomes x according to Born’s rule.

In reality, for finite systems Eq. (4) only strictly holds
in trivial cases, e.g., when the projectors commute with
the time evolution operator. Usually, the off-diagonal
elements of the DF are non-zero complex numbers and
it becomes more appropriate to quantify the amount of
(de)coherence between histories via [23]

ϵ(x;y) ≡ D(x;y)√
D(x;x)D(y;y)

. (5)

We then have |ϵ(x;y)| ≤ 1 (by Cauchy-Schwarz) such
that an appropriate notion of decoherence arises for
|ϵ(x;y)| ≪ 1. The central objective of this letter is to
study the decay of ϵ(x;y) as a function of the particle
number N for different classes of systems discussed more
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FIG. 1. ⟨A⟩(t) as a function of rescaled time for initial states
|ψ+

0 ⟩ (solid line) and |ψ−
0 ⟩ (dashed line) for the chaotic (i),

interacting integrable (ii) and non-interacting integrable (iii)
cases. The dotted (dash-dotted) vertical line represents T =
Tneq (T = Teq), where Tneq indicates the time at which ⟨A⟩(t)
decays to e−1 of its initial value and Teq = 20Tneq.

precisely below: non-integrable (or chaotic), interacting
integrable and non-interacting integrable (or free).
Since it is cumbersome to study ϵ(x;y) for every pair

of histories (x;y), we consider two quantities. First, we
quantify the average amount of decoherence by

ϵ =
1

M2L−1 −ML

∑
x ̸=y

|ϵ(x;y)|, (6)

whereM2L−1−ML equals the number of non-trivial pairs
(x;y) (excluding those for which x = y and xn ̸= yn).
Second, statistical outliers and the worst case scenario
(the maximum coherence between histories) are captured
by

ϵmax = max
x̸=y

|ϵ(x;y)|. (7)

Model.—As a paradigmatic quantum many-body sys-
tem we consider a XXZ Heisenberg spin chain with
Hamiltonian

H =

N∑
ℓ=1

(
sℓxs

ℓ+1
x + sℓys

ℓ+1
y +∆1s

ℓ
zs

ℓ+1
z +∆2s

ℓ
zs

ℓ+2
z

)
,

(8)
where sℓx,y,z = σℓ

x,y,z/2 are spin operators at lattice sites
ℓ, N is the length of the chain, and we assume peri-
odic boundary conditions. Crucial for our purposes is
that Eq. (8) contains three classes of systems for dif-
ferent parameter regimes: (i) for ∆1 ̸= 0 ̸= ∆2 (we
choose ∆1 = 1.5, ∆2 = 0.5) the model is non-integrable
(or chaotic) meaning that nearest-level-spacing follows a
Wigner-Dyson distribution [60], and it satisfies the eigen-
state thermalization hypothesis [61, 62]; (ii) for ∆1 ̸= 0
but ∆2 = 0 (we choose ∆1 = 1.5) it is an interacting inte-
grable model, which is solvable by Bethe ansatz [63]; (iii)
for ∆1 = ∆2 = 0 the model is non-interacting integrable
(or free) and can be mapped to a quadratic Hamiltonian
(a set of free fermions) via Jordan-Wigner and Bogoli-
ubov transformation [64]. The fact that (ii) is integrable
but can not be mapped to free fermions like (iii) is cru-
cial: it qualitatively influences its transport behavior [65],
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FIG. 2. Average ϵ and maximum ϵmax amount of coherence
versus Hilbert space dimensionD for the (i) chaotic (dark blue
disks), (ii) interacting integrable (medium blue diamonds)
and (iii) free (light blue triangles) case for L ∈ {3, 4, 5}. The
dashed and dash-dotted line fit a scaling law of the form D−α

to (i) and (ii). The time step is T = Tneq and the system sizes
are N = 18, 20, . . . , 28. Note the double-logarithmic scale.

operator complexity [66] and, as we reveal below, its de-
coherence.

As an interesting observable we study the spin-
imbalance operator,

A0 = SL
z − SR

z =

N
2∑

ℓ=1

sℓz −
N∑

ℓ=N
2 +1

sℓz, (9)

which quantifies a “magnetization bias” between the left
and right half of the spin chain. Denoting its eigenvec-
tors and eigenvalues by A0|ak⟩ = ak|ak⟩, we construct a
coarse observable A = Π+ −Π− with projectors

Π+ =
∑
ak≥0

|ak⟩⟨ak| and Π− =
∑
ak<0

|ak⟩⟨ak|. (10)

As the total magnetization Sz =
∑N

ℓ=1 s
ℓ
z in z-direction

commutes withH, we restrict the dynamics to a subspace
with fixed Sz. We choose Sz = 0 for system size N =
4k+2 with resulting Hilbert space dimension D =

(
N

2k+1

)
and Sz = 1 for N = 4k withD =

(
N

2k+2

)
, where k ∈ N. In

this way, we ensure equal subspace dimensions V+ = V−
with V± = dimH±.
An interesting consequence of these choices is that the

spin imbalance A0 = SL
z − SR

z can be determined by
only measuring SL

z or SR
z , owing to the conservation of

Sz = SL
z + SR

z . Also owing to the conservation of Sz,
the reduced density matrix of the left (right) half of the
spin chain always commutes with SL

z (SR
z ), i.e., it is al-

ways block diagonal in the eigenbasis of SL
z (SR

z ). This
is a consequence of symmetry and not of EID. Neverthe-
less, as we will see below, the histories are not exactly
decoherent in that basis.

Numerical results.—To get an overall picture of the
average dynamics we plot the expectation value ⟨A⟩(t)
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FIG. 3. Identical to Fig. 2 except for time steps T = Teq.

of the coarse spin imbalance as a function of time in
Fig. 1. This is done for two different non-equilibrium
initial states |ψ±

0 ⟩, where |ψ±
0 ⟩ is a Haar random state

restricted to the subspace H±. Remarkably, the be-
haviour in case (i) and (ii) agrees quantitatively: the
system relaxes exponentially to its thermal equilibrium
value ⟨A⟩eq = 0 with an equilibration time scale ∝ N2.
In contrast, in case (iii) ⟨A⟩(t) decays on a time scale ∝ N
and fluctuates around ⟨A⟩eq without any clearly visible
equilibration (up to the time that we considered).

Decoherence is investigated in Figs. 2 and 3 for Haar
random initial states |ψ0⟩. We plot in double logarithmic
scale ϵ and ϵmax versus the Hilbert space dimension D
for histories of lengths L ∈ {3, 4, 5}; the case L = 2 has a
universal typical decay owing to the Haar random nature
of the initial state [19] as exemplified in the supplemental
material (SM). The plots are obtained for constant time
intervals tk − tk−1 = T for two different T : a nonequi-
librium time scale Tneq in Fig. 2 (identical to the dotted
line in Fig. 1) and an equilibrium time scale Teq in Fig. 3
(identical to the dash-dotted line in Fig. 1). More pre-
cisely, Tneq is defined as the time at which ⟨A⟩(t) decays
to e−1 of its initial value [67] and the equilibrium time
scale is defined as Teq = 20Tneq. While in the free model
(iii) there is no clearly visible equilibration in Fig. 1, we
use the same convention for Teq for better comparison.
Finally, each data point in Figs. 2 and 3 is obtained by
averaging ϵ and ϵmax over 230−N different realizations of
|ψ0⟩. In the SM we show that the variance of ϵ and ϵmax

decays as D−1 for all three cases (i), (ii) and (iii) (likely
as a consequence of dynamical typicality [68, 69]), which
justifies our focus on the average behaviour.

We then observe in Figs. 2 and 3 the following (an ex-
planation follows later). First, for the chaotic case (i) we
find a scaling law of the form D−α (note that D scales
exponentially with the number of spins N) with α ≈ 0.35
(α ≈ 0.25) for ϵ (ϵmax) at the nonequilibrium time scale
and with α ≈ 0.5 for both ϵ and ϵmax at the equilibrium
time scale. This indicates a robust exponential suppres-
sion (with respective to system size N) of coherences in
chaotic systems. For the interacting integrable case (ii)
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FIG. 4. Decoherence as a function of the time step T =
tn − tn−1 for history length L = 5. (a,b) ϵ, ϵmax for N = 24
on a double logarithmic scale. (c,d) Scaling exponent α for
ϵ, ϵmax obtained for system sizes N = 18, 20, . . . , 28 and as a
mean over 230−N realizations of a Haar random |ψ0⟩. Red
dashed line in (c,d) indicates α = 0.5.

we find three major differences compared to (i). First,
the exponent α is notably smaller in all cases. Second,
for Teq α is smaller than for Tneq, conversely to case (i).
Indeed, for Teq (Fig. 3) we even find α ≈ 0, indicating a
possible sub-exponential or power-law suppression (with
respect to N) of coherences. Third, the exponent α for
ϵmax is roughly half the magnitude than α for ϵ at Tneq,
indicating stronger fluctuations in the DF among differ-
ent pairs (x;y) of histories. Finally, the free case (iii) is
characterized for Tneq by much larger coherences and for
Teq by strong fluctuations among different N , making it
unjustified to even speak of any scaling law D−α.

A particularly intriguing observation is the distinctive
behaviour of decoherence as a function of T , which is fur-
ther studied in Fig. S2. We first observe that decoherence
is forbidden for T → 0 owing to the quantum Zeno effect.
Still, decoherence sets in on a short nonequilibrium time
scale for (i) and (ii) and later for (iii). However, what we
find surprising is that decoherence becomes weaker again
with increasing T for (ii) and (iii) but not for (i). More-
over, the scaling exponent α clearly shows a non-trivial
behaviour as a function of T .

Explanation.—We note that there is some consensus
about the qualitative origin of decoherence (whether in
the histories or EID framework), namely that coarse and
slow (or “quasi-conserved”) observables of many-body
systems decohere. However, other qualitative questions
(e.g., is non-integrability essential or not?) have not been
addressed in the past, and useful estimates of the DF are
hard to obtain [19, 20]. Nevertheless, at least some quan-
titative features of the DF for chaotic systems seem to
have a transparent explanantion.

To this end, recall that the overlap ⟨ϕ|χ⟩ between two

Haar random vectors |ϕ⟩ and |χ⟩ scales like 1/
√
D and

that the subspace dimensions Vx are proportional to D
for many relevant coarse-grainings. Thus, for equilibrium
time scales Teq the history states |ψ(x)⟩ in a chaotic sys-
tem behave like randomly drawn typical states because
they had time to explore the available Hilbert space in
an unbiased way owing to the absence of conserved quan-
tities (besides energy). Instead, for nonequilibrium time
scales Tneq the history states |ψ(x)⟩ will not look fully
randomized as they contain further information com-
pared to the equilibrium case. Therefore, one expects
the exponent α = α(T ) to obey α(T ) < 0.5 for T < Teq,
but Fig. S2 reveals exceptions for short time windows.
This indicates that the precise time dependence of α(T )
is determined by H, {Πx} and |ψ0⟩ in a complicated way.
Unfortunatey, it is even more complicated to explain

the behaviour for cases (ii) and (iii). Certainly, owing to
the extensive number of conserved quantities, the states
|ψ(x)⟩ can not explore the available Hilbert space in an
unbiased fashion, which causes deviations from the be-
haviour of typical states. Yet, why the exponent α(T )
becomes even smaller for larger T remains a mystery. A
speculative guess could be that at short time scales the
dynamics is governed by time-dependent perturbation
theory (Fermi’s golden rule), which is more determined
by the rough structure of the spectrum of the Hamilto-
nian. At long times, instead, the fine structure of the
Hamiltonian (its conserved quantities) become increas-
ingly important for the dynamical behaviour.
Conclusion.—We numerically extracted finite size scal-

ing laws for the DF of a realistic quantum many-body
system in an approximation-free way and we revealed
decisive differences depending on the nature of the sys-
tem. The chaotic case (i) showed a strong and robust
emergence of decoherence in contrast to the interacting
integrable case (ii) with a quantitatively much weaker
form of decoherence. Note that this difference could not
have been guessed from the quantitatively almost identi-
cal single-time behaviour shown in Fig. 1. A qualitative
even weaker form of decoherence was observed for free
models (iii), making it even hard to speak of any definite
signature of decoherence. Clearly, our finite size calcula-
tions do not directly invalidate conclusions obtained from
free models in the thermodynamic limit [6, 7, 22, 23, 25–
27]. In particular, for another model (energy exchanges
in an Ising chain, studied in the SM) we found a clear
signature of decoherence also for the free case (while still
being much weaker compared to the chaotic case).
Our findings motivate the conjecture that the normal-

ized DF in Eq. (5) can be written in the chaotic case for
slow and coarse observables as

ϵ(x;y) =
rx,y
Dα

for x ̸= y. (11)

Here, D−α describes the overall scaling with an exponent
α that depends on many details (initial state, considered
time interval, etc.) but is often not much smaller than
0.5. Moreover, the coefficients rx,y are of order one and
do not depend on D. While they are in principle deter-
mined by H, {Πx} and |ψ0⟩, they depend on so many ex-
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perimentally uncontrollable microscopic parameters such
that they appear erratic and unpredictable (similar to the
off-diagonal elements in the eigenstate thermalization hy-
pothesis [61, 62]), a point that we further support in the
SM. The conjecture (11) is in unison with previous an-
alytical estimates [19, 20] and scaling laws [11], and it
breaks down when the number of histories ML becomes
of the order of the Hilbert space dimension D [35].

The notable difference in the value α at equilibrium
time scales (and its time dependence) between chaotic
and integrable systems suggests that α can be used as an
indicator of quantum chaos. A main advantage of it is
the applicability to system sizes beyond the reach of ex-
act diagonalization, e.g., through real-time propagation
methods such as the Chebyshev polynomial algorithm
used here.

Outlook.—Our results motivate further research in var-
ious directions. On a quantitative level, for instance,
it remains open to understand the precise behaviour of
α(T ) (and in particular the peculiarities of integrable
models) as well as the effect of long histories with L≫ 1,
which was numerically inaccessible to us. On a quali-

tative level, it would be intriguing to find out whether
other classes of systems (e.g., disordered or localized sys-
tems) and phases of matter (e.g., close to criticality or
topological phases) also have such a strong influence on
the behaviour of decoherence as seen here.
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[21] P. Szańkowski and L. Cywiński, Objectivity of classical
quantum stochastic processes, Quantum 8, 1390 (2024).

[22] A. Schmid, Repeated measurements on dissipative linear
quantum systems, Ann. Phys. 173, 103 (1987).

[23] H. F. Dowker and J. J. Halliwell, Quantum mechanics
of history: The decoherence functional in quantum me-
chanics, Phys. Rev. D 46, 1580 (1992).

[24] T. A. Brun and J. B. Hartle, Classical dynamics of
the quantum harmonic chain, Phys. Rev. D 60, 123503

https://doi.org/10.1103/RevModPhys.64.339
https://doi.org/https://doi.org/10.1111/j.1749-6632.1995.tb39014.x
https://doi.org/https://doi.org/10.1111/j.1749-6632.1995.tb39014.x
https://doi.org/10.1007/BF02183396
https://doi.org/10.1103/PhysRevD.46.5504
https://doi.org/10.1103/PhysRevD.47.3345
https://doi.org/10.1103/PhysRevD.60.105031
https://doi.org/10.1103/PhysRevD.60.105031
https://doi.org/10.1103/PhysRevD.67.105018
https://doi.org/10.1103/PhysRevD.67.105018
https://doi.org/10.1103/PhysRevA.93.032126
https://arxiv.org/abs/1608.04145
https://arxiv.org/abs/1608.04145
https://arxiv.org/abs/2304.10258
https://doi.org/10.1103/PhysRevLett.54.857
https://doi.org/10.1088/0034-4885/77/1/016001
https://doi.org/10.1007/BF01015734
https://doi.org/10.1088/2058-9565/aaebd5
https://doi.org/10.1088/2058-9565/aaebd5
https://doi.org/10.1103/PhysRevA.100.022120
https://doi.org/10.22331/q-2020-04-20-255
https://doi.org/10.22331/q-2020-04-20-255
https://doi.org/10.1103/PhysRevX.10.041049
https://doi.org/10.1103/PhysRevX.10.041049
https://doi.org/10.1103/PhysRevA.108.012225
https://doi.org/10.21468/SciPostPhys.15.1.024
https://doi.org/10.22331/q-2024-06-27-1390
https://doi.org/10.1016/0003-4916(87)90095-9
https://doi.org/10.1103/PhysRevD.46.1580
https://doi.org/10.1103/PhysRevD.60.123503


6

(1999).
[25] J. J. Halliwell, Approximate decoherence of histories and

’t Hooft’s deterministic quantum theory, Phys. Rev. D
63, 085013 (2001).
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SUPPLEMENTAL MATERIAL

S1. Additional numerical results in XXZ model

We begin in Fig. S1 by displaying ϵ and ϵmax for the
shortest possible non-trivial history with length L = 2.
As claimed in the main mansuscript, we observe consis-
tently a D−0.5 scaling in all three cases (i), (ii) and (iii).
This effect is due to the Haar random choice of the initial
state and the fact that the Haar measure is invariant un-
der unitary transformations. Thus, the first unitary time
evolution U1,0 is barely able to change the decoherence
properties of the system.

In addition to Fig. 4 in the main text, we further
study the distinctive behaviour of decoherence as a func-
tion of T in Fig. S2. Whereas in case (i) ϵ and ϵmax

consistently decrease and the exponent grows to α ≈ 0.5
for increasing T , the opposite happens for case (ii): de-
coherence becomes consistently weaker for larger T and
no exponential scaling is visible anymore for ϵmax at Teq.
Finally, for case (iii) no clear pattern is visible and the
large fluctuations make it difficult to speak of any scaling
at all.

Next, we consider the variance of ϵ and ϵmax for Tneq
in Fig. S3 and Teq in Fig. S4. This is extracted from a
histogram of the 230−N different realizations of |ψ0⟩. As
we can see in all three cases (i), (ii) and (iii), the variance
is orders of magnitude smaller than the mean and scales
roughly like 1/D, likely as a consequence of dynamical
typicality. This is the reason why we can focus on the
averaged values in the main text.

Furthermore, we directly compare in Fig. S5 how the
average ϵ and maximum ϵmax coherence changes as a
function of L for the chaotic case. We observe an al-
most constant behaviour for ϵ if T = Teq and only some
mild changes for Tneq, which could be a result of the finite
amount of samples. For ϵmax instead we consistenly ob-
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FIG. S1. ϵ and ϵmax versus Hilbert space dimension D for
L = 2, for chaotic (a,d), interacting integrable (b,e) and
non-interacting integrable (c,f) cases for time steps T =
Tneq, 2Tneq, 3Tneq, Teq (from light to dark). The dashed line
indicates the scaling D−0.5 as a guidance to the eyes.
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FIG. S2. Average ϵ and maximum ϵmax amount of coherence
versus Hilbert space dimension D for history length L = 5 for
chaotic (a,d), interacting integrable (b,e) and non-interacting
integrable (c,f) cases for time steps T = Tneq, 2Tneq, 3Tneq, Teq

(from light to dark blue). The dashed line indicate the scaling

D−1/2. The system size is N = 18, 20, . . . , 28.
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FIG. S3. Variance of ϵ and ϵmax versus Hilbert space di-
mension D for cases (i) (dark blue disks), (ii) (medium blue
diamonds) and (iii) (light blue triangles) for L = 3, 4, 5. The
dashed line indicates the scaling ∝ D−1. The time step is
T = Tneq and the system sizes are N = 18, 20, . . . , 28.

serve (slightly) larger values for larger L for both Teq and
Tneq. This is most likely caused by the fact that the DF
has more entries for larger L (the number of non-trivial
entries grows like M2L−1 −ML). Since ϵmax was defined
to measure statistical outliers, it is clear that there are
bigger chances for stronger deviations if there are more
elements to sample from.
In addition to the averaged and maximum value of

ϵx,y, we also study its distribution. As an example, in
Fig. S6, we show the distribution of the real and imagi-
nary part of ϵx,y for N = 20, L = 5, T = Teq, where we
exclude pairs of x,y for which xn ̸= yn or x0 ̸= y0. Data
from 210 different initial random states are taken into
account. In the chaotic case (i), a similar shape of distri-
bution is found for the real (fR(ϵ)) and imaginary part
(fI(ϵ)). However, slight deviations are clearly observed,
especially in the variance (second moments), indicating
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that ϵx,y can not be random numbers in a strict sense.
This is due to the fact that in a real system, starting from
the same initial state, different histories are nevertheless
correlated. However, in comparison with the integrable
cases (ii) and (iii), where we observe large deviations be-
tween fR(ϵ) and fI(ϵ), the correlations in the chaotic case
are almost negligible.

S2. Numerical results in Ising model

To analyze the generality of our main results, we also
consider an Ising chain with Hamiltonian

H =

N∑
ℓ=1

(
hxσ

ℓ
x + hzσ

ℓ
z + Jσℓ

zσ
ℓ
z

)
. (S1)

We assume periodic boundary condition and set J =
hx = 1.0. Two different values of hz are considered: (i)
for hz = 0.5 (titled field) the system is chaotic; (ii) for
hz = 0.0 (transverse field) the system is integrable and
can be mapped to free fermions. A natural operator of
interest here is an energy imbalance operator,

B0 = HL −HR, (S2)

where

HL =

N
2∑

ℓ=1

(hxσ
ℓ
x + hzσ

ℓ
z) +

N
2 −1∑
ℓ=1

Jσℓ
zσ

ℓ+1
z ,

HR =

N∑
ℓ=N

2 +1

(hxσ
ℓ
x + hzσ

ℓ
z) +

N−1∑
ℓ=N

2 −1

Jσℓ
zσ

ℓ+1
z . (S3)

It quantifies an “energy bias” between the left and right
half of the spin chain. Denoting its eigenvectors and
eigenvalues by B0|bk⟩ = bk|bk⟩, we construct a coarse
observable B = ΠB

+ −ΠB
− with projectors

ΠB
+ =

∑
bk≥0

|bk⟩⟨bk| and ΠB
− =

∑
bk<0

|bk⟩⟨bk|. (S4)
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FIG. S4. Similar to Fig. S3 but for the time scale T = Teq.
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FIG. S5. ϵ and ϵmax versus Hilbert space dimension D for the
chaotic case (i) for L ∈ {3, 4, 5}. The time step is T = Teq in
(a,c) and T = Tneq in (b,d). The dashed-dotted (dashed) line
indicates the ∼ D−0.5 (∼ D−0.3) scaling as a guidance to the
eyes.

The subspaces are denoted by HB
±, with Hilbert space

dimension V B
± = dimHB

± = Tr[ΠB
±]. In this model, V B

+ ≈
V B
− .
As a start, we plot the expectation value ⟨B⟩(t) of

the coarse energy imbalance as a function of time in
Fig. S7. This is done for two different non-equilibrium
initial states |ψ±

0 ⟩, where |ψ±
0 ⟩ is a Haar random state re-

stricted to the subspace HB
±. In the chaotic case (i) the

system relaxes to its thermal equilibrium value ⟨B⟩eq = 0
with an equilibration time scale ∝ N2. In contrast, in the
free case (ii) ⟨B⟩(t) decays on a time scale ∝ N and fluc-
tuations around ⟨B⟩eq remain visible for all times that we
considered. Note, however, that—compared to the free
case of the Heisenberg chain considered in the main text
[cf. Fig. 1]—equilibration seems to work much better for
the free case of the Ising model.
The emergence of decoherence is investigated in

Figs. S8 and S9 for Haar random initial states |ψ0⟩.
We plot in double logarithmic scale ϵ and ϵmax versus
the Hilbert space dimension D for histories of lengths
L ∈ {3, 4, 5} for two different T : a nonequilibrium time
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FIG. S6. Distribution of real (fR(ϵ)) and imaginary (fI(ϵ))
part of ϵx,y in the XXZ model for N = 20, L = 5 and T = Teq

for (i) chaotic; (ii) interacting integrable and (iii) free cases.
σR,I indicates the standard variance of fR,I(ϵ).
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FIG. S7. The expectation value ⟨B⟩(t) of the coarse energy
imbalance in the Ising model as a function of rescaled time
for initial states |ψ+

0 ⟩ (solid line) and |ψ−
0 ⟩ (dashed line) for

chaotic (i) and free (ii) cases. The dotted (dash-dotted) ver-
tical line represents T = Tneq (T = Teq), where Tneq indicates
the time at which ⟨B⟩(t) decays to e−1 of its initial value and
Teq = 20Tneq.
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FIG. S8. Average ϵ and maximum ϵmax amount of coher-
ence versus Hilbert space dimension D in Ising model for the
(i) chaotic (dark blue disks) and (ii) interacting integrable
(medium blue diamonds) case. The dashed and dash-dotted
line fit a scaling law of the form D−α to (i) and (ii). The time
step is T = Tneq and the system sizes are N = 18, 20, . . . , 26.

scale Tneq in Fig. S8 (identical to the dotted line in
Fig. S7) and an equilibrium time scale Teq in Fig. S9
(identical to the dash-dotted line in Fig. S7). Finally,
each data point in Figs. S8 and S9 is obtained by av-
eraging ϵ and ϵmax over 228−N different realizations of
|ψ0⟩.
For the chaotic case (i) we find a scaling law of the form

D−α (note that D ∝ 2N ) with α ≈ 0.25 at the nonequi-
librium time scale and with α ≈ 0.5 at the equilibrium
time scale (with the same α for both ϵ and ϵmax). This
again indicates a robust exponential suppression (with
respective to system size N) of coherences in chaotic sys-
tems. For the non-interacting integrable case (ii) we find
smaller exponents α ≈ 0.1 at the nonequilibrium time
scale, and α ≈ 0 at the equilibrium time scale.

The behaviour of decoherence as a function of T is
further studied in Fig. S10. For chaotic case (i) ϵ and ϵmax

consistently decrease and the exponent grows to α ≈ 0.5

for increasing T . In contrast, for integrable case (ii),
decoherence becomes (approximately) weaker for larger
T , but it is again not as clear as for the example of the
main text.

Furthermore, similar to Fig. 4 in the main text, we
plot ϵ and ϵmax versus T for system size N = 22 and
history length L = 5 in the Ising model in Fig. S11.
Similar trends are observed: in chaotic case, both ϵ and
ϵmax decrease with increasing T . In contrast, in the non-
interacting integrable case, they increase on average (af-
ter a sudden drop at small T ), accompanied by significant
fluctuations.

To summarize, in the Ising model we find again a
strong difference between the chaotic and integrable case
in terms of the finite size scaling of ϵ and ϵmax and their
behavior as a function of T . This is qualitatively in uni-
son with what we found in the main text. However, we
also found that the free case in the Ising model displays a
much stronger form of decoherence compared to the free
case in the Heisenberg model, showing that much care
is required when one wants to generalize conclusions ob-
tained for one specific integrable model.

S3. Level statistics

To study the chaoticity (integrability) of the consid-
ered models, we analyze the distribution of the nearest-
level spacing of the unfolded spectrum. After unfold-
ing, the averaged level density becomes constant (usu-
ally set to 1, as is done here). The ordered eigenvalues

of the unfolded spectrum are denoted by Ẽi. As an in-
dicator of quantum chaos, we study the distribution of
si = Ẽi+1 − Ẽi, denoted by P (s). P (s) differentiates be-
tween chaotic and integrable systems: i) For chaotic sys-
tems, P (s) follows a Wigner-Dyson distribution, where
for systems with time-reversal symmetry,

P (s) = PGOE(s) =
π

2
se−

π
4 s2 , (S5)
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FIG. S9. Identical to Fig. S8 except for time steps T = Teq.
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FIG. S10. Average ϵ and maximum ϵmax amount of
coherence versus Hilbert space dimension D for history
length L = 5 in the Ising model for chaotic (a,c) and
non-interacting integrable (b,d) cases for time steps T =
0.5Tneq, Tneq, 2Tneq, 3Tneq, Teq (from light to dark blue). The

dashed line indicate the scaling ∼ D−1/2. The system size
N = 18, 20, . . . , 26.

which is the prediction of Gaussian Orthogonal Ensemble
(GOE); ii) For integrable systems, P (s) follows a Poisson
distribution

P (s) = PPoisson(s) = e−s . (S6)

In practise, we consider the cumulative distribution of
P (s)

I(s) =

∫ s

0

P (r)dr, (S7)

and compare it to

IGOE(s) = 1− exp (−π
4
s2), IPoisson(s) = 1− exp (−s).

(S8)
In both models, due to the existence of additional global
symmetries (translational invariance, reflection invari-
ance, etc.) alongside with total energy conservation, our
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FIG. S11. Average ϵ and maximum ϵmax amount of coher-
ence versus relative time step T/Tneq for history length L = 5
for the (i) chaotic (dark blue) and the (ii) non-interacting
integrable (light blue) cases in the Ising model in double log-
arithmic scale. The system size is N = 22
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FIG. S12. Level statistics: cumulative distribution of the
nearest-level spacing I(s) versus s, for (a) XXZ model (N =
24) and (b) Ising model (N = 20). The solid and dashed line
indicates IGOE(s) and IPoisson(s), respectively (Eq. (S8)).

analysis is confined to a specific subspace. We com-
pute the P (s) by considering 1/2 of the total eigen-
values located in the middle of the spectrum, and re-
sults are shown in Fig. S12. Good agreement with the
Wigner-Dyson distribution is observed in the XXZ model
(∆1 = 1.5, ∆2 = 0.5) and in the Ising model (hz = 0.5),
indicating the systems are chaotic with respect to the
corresponding parameter. In contrast, in XXZ model
(∆1 = 1.5, ∆2 = 0.0), a Possion distribution is found,
which suggests that the system is integrable. The results
are in line with our findings in the main text. The re-
sults for trivial cases, where the model is equivalent to
free fermions, e.g., XXZ model (∆1 = ∆2 = 0) and Ising
model (hz = 0.0), are not shown here.
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