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Abstract
Semiclassical gravity couples classical gravity to the quantized matter in meanfield
approximation. Themeanfield coupling is problematic for two reasons. First, it ignores
the quantum fluctuation of matter distribution. Second, it violates the linearity of the
quantum dynamics. The first problem can be be mitigated by allowing stochastic fluc-
tuations of the geometry but the second problem lies deep in quantum foundations.
Restoration of quantum linearity requires a conceptual approach to hybrid classical-
quantum coupling. Studies of the measurement problem and the quantum-classical
transition point the way to a solution. It is based on a postulated mechanism of spon-
taneous quantum monitoring plus feedback. This approach eliminates Schrödinger
cat states, takes quantum fluctuations into the account, and restores the linearity of
quantum dynamics. Such conceptionally ’healthier’ semiclassical theory is captivat-
ing, exists in the Newtonian limit, but its relativistic covariance hits a wall. Here we
will briefly recapitulate the concept and its realization in the nonrelativistic limit. We
emphasize that the long-known obstacles to the relativistic extension lie in quantum
foundations.
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1 Introduction

Quantum theory was invented for the microscopic world, and proved accurate there.
Is it valid in the macroscopic world as well? Is quantum theory universal from par-
ticle physics to cosmology? We might like to think so. Except that the experimental
evidences are lacking, the relevant quantum gravity theories limp along, and there
are crippling conceptual problems. Maybe we cannot quantize gravity because it does
not need to be quantized: space-time is classical. Then Einstein classical metrics
would interact with the quantized fields of matter. This raises the problem of hybrid
classical-quantum coupling. The prototype of such hybrid dynamics is the standard
semiclassical gravity [1, 2], based on the semiclassical Einstein equation:

Gab(x) = 8πG〈�|T̂ab(x)|�〉. (1)

The curvature of the space-time is sourced by the quantum expectation value—the
meanfield—of the energy-momentum operator of the matter. The fluctuations of T̂ab
are ignored, donot back-react on the space-timegeometry but themeanvalues do. Stan-
dard semiclassical gravity is plagued by fundamental anomalies because themeanfield
coupling violates the obligate linearity of quantum dynamics (see in Sect. 2).

The stochastic semiclassical gravity [3, 4] takes lowest order quantum fluctuations
into the account. It mimics them by the zero-mean stochastic field δTab, defined by
the following quantum correlator

EδTab(x)δTcd(y) = Herm〈�|T̂ab(x)T̂cd(y)|�〉 − 〈�|T̂ab(x)|�〉〈�|T̂cd(y)|�〉. (2)

Then the modified semiclassical equation

Gab = 8πG
(
〈�|T̂ab|�〉 + δTab

)
(3)

implies stochastic fluctuations δgab of the metrics as well. Unfortunately, this
stochastic semiclassical gravity does not mitigate the fundamental anomalies of the
semiclassical Einstein equation.

Reviving the concept of spontaneous quantum monitoring plus feedback [5], we
proposed the ‘conceptionally healthier semiclassical’ gravity [6, 7] which is free of the
said anomalies. It ensures the obligate linearity of quantum dynamics since it is based
on standard measurement-plus-feedback mechanisms. Accordingly, one assumes that
the energy-momentum operator T̂ab is universally monitored, i.e.: measured every-
where and every time. The monitored (measured) value is a classical random tensor
field:

Tab = 〈�|T̂ab|�〉 + δTab (4)

with stochastic fluctuation δTab around the meanfield. This monitored value is then
used for feedback on the r.h.s. of the classical Einstein equation. This Tab coincides
formally with the expression in the phenomenological equation (3) of stochastic semi-
classical gravity but the difference is crucial. The stochastic term is defined differently.
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It is just the measurement noise and its correlation is determined by the chosen preci-
sion and correlations of the local measurements constituting the monitoring setup:

EδTab(x)δTcd(y) = Dab|cd(x, y). (5)

The r.h.s. must be a covariant translation invariant non-negative kernel. Our proposal
differs from the phenomenological stochastic theory [3, 4] in a second way, too. The
dynamics of the state � must contain the non-Hamiltonian influence of the mon-
itoring. However promising this project was, refs. [5–7] could have only realized
the Newtonian non-relativistic limit,. with the clear identification of the obstacle to
the relativistic version. Interestingly, the formalism of the ‘healthier’ semiclassical
dynamics was recently applied relativistically, see [8, 9] and refs. therein. The so-
called postquantum gravity [8] would be a ‘healed’ semiclassical gravity, consistent
with quantum theory.

This work proposes a tour.We start from the standard semiclassical gravity and then
we ‘descend’ to its non-relativistic Newtonian limit. This is the best way to identify the
fundamental quantum anomalies of the meanfield coupling and their resolution by the
‘healthy’ stochastic modification postulating the mechanism of spontaneous quantum
monitoring and feedback. Then we try to ‘ascend’ to the relativistic realization but we
will find the old obstacle that we had known before.

2 Semiclassical gravity

Consider a given foliation of the space-time in spacelike hypersurfaces � and the
Schrödinger state vector |��〉 on it. The classical metric gab which will be the
solution of the semiclassical Einstein equation (6). The state vector of the quantized
matter evolves with the Tomonaga–Schwinger equation (7) where the Hamiltonian
density Ĥ depends on the solution gab which is the �-dependent solution of Eq. (6)
causing the non-linearity of Eq. (7):
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Gab(x) = 8πG〈�� |T̂ab(x)|��〉, (x ∈ �), (6)
δ|��〉
δ�(x)

= −iĤ(x)|��〉. (7)

The semiclassical gravity [1, 2] is a powerful hybrid dynamics of classical gravity and
quantized matter. In the Newtonian limit the semiclassical eqs. (6,7) become much
simpler:

�(r , t) = �mf(r , t) = −G
∫

〈�t |μ̂(r ′)|�t 〉 d3r ′

|r − r ′| , (8)

d|�t 〉
dt

= −i

(
Ĥ +

∫
μ̂(r)�mf(r , t)d

3r

)
|�t 〉

= −i

(
Ĥ − G

∫ ∫
μ̂(r)〈�t |μ̂(r ′)|�t 〉d

3rd3r ′

|r − r ′|
)

|�t 〉 (9)

where �mf is the mean-field Newton potential, μ is the distribution of non-relativistic
mass density and Ĥ is the self-Hamiltonian. Observe that the semiclassical equation
(9) of non-relativistic quantizedmatter, called the Schrödinger–Newton equation, does
not contain the trivial Newton pair-potential

V̂G = −G
∫ ∫

μ̂(r)μ̂(r ′)d
3rd3r ′

|r − r ′| . (10)

Instead, it contains a non-linear meanfield term V̂mf
G to represent gravity’s back-

reaction:

V̂mf
G = −G

∫ ∫
μ̂(r)〈μ̂(r ′)〉d

3rd3r ′

|r − r ′| . (11)

Note incidentally, that the Eq. (9) had already been used for quantized stellar masses
[10]. For long time, impressed by relativistic field theories, its relevance at low ener-
gies has remained overlooked. It was revealed finally [11, 12] that both gravity and
quantumness might become relevant together non-relativistically for massive degrees
of freedoms, e.g., in center-of-mass motion of of objects with masses of the order of
nanograms.

The Newtonian limit (8,9) not only perpetuates the fundamental anomalies of
semiclassical gravity (6,7) but also understands the causes [13]. Core problems are
fake-action-at-a-distance (aka causality violation relativistically) and the breakdown
of Born’s statistical interpretation of the wavefunction �. They are caused by the
�-dependent meanfield potential �mf in the Schrödinger–Newton equation (9). The
meanfield coupling 〈�|μ̂|�〉 should be blamed.

What else should we use? It is necessary that we consider the possible hybrid
classical-quantum (CQ) couplings in the light of quantum foundations. Action of C
on Q is parametric and makes no problem. Back-reaction of Q on C is the major issue.
Still, the answer is there in the fundaments of quantum theory. About an individual
quantum system, quantummeasurement is the onlyway to consistently define classical
variables. Classical numbers like 〈�|μ̂|�〉 are not classical variables, their coupling
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to classical systems is illegitimate. Only the randommeasurement outcomes are legit-
imate classical variables suitable to couple to other classical variables. A lesson is
important here. Reversibility of hybrid systems is lost for two reasons. First, mea-
surement imposes decoherence on Q. Second, coupling to the random measurement
outcome imposes stochasticity of C.

So, back-reaction of quantized matter on classical gravity is only possible via the
randommeasurement outcomesμ of μ̂-monitoring, instead of themeanfield 〈�|μ̂|�〉.
The measured outcomes μ(r , t) contain the mean values plus the measurement noise:

μ(r , t) = 〈�t |μ̂(r)|�t 〉 + δμ(r , t), (12)

where δμ is awhite noisewith possible spatial correlations.Accordingly, the calculated
Newton potential, too, contains an additional white noise:

δ�(r , t) = −G
∫

δμ(r ′, t) d3r ′

|r − r ′| . (13)

In the Schrödinger–Newton Eq. (9), we shall replace the meanfield �mf by �mf + δ�

for reconciliation of the stochastically modified Schrödinger–Newton semiclassical
equation with standard quantum theory. But first we need to answer two questions.
Who ismeasuring (monitoring) themass density μ̂? That’s the truly sensitive question.
The other one is more technical: how to parametrize the μ̂-monitoring, i.e., how to
choose the spatial correlations of δμ. Towards answering both questions, Sect. 3 recalls
the postulate of single spontaneous collapse and its gravity-related parametrization.
This single spontaneous collapse is then upgraded into the postulate of spontaneous
monitoring of the mass density μ. Monitoring means time-continuous measurement.
Spontaneity means that no instruments (no observers) are present while the dynamics
is undergoing the same standard stochastic modifications as if they were there.

3 Spontaneous collapse of Schrödinger cats

If we extend the validity of quantum theory for large masses, and this is what we do
if we believe in quantum cosmology, then we are faced with some counterintuitive
situations. The paradigmatic one is the Schrödinger cat state. Consider the quantized
center-of-mass motion of a macroscopic mass M prepared in a balanced superposition
on the ‘left’ and ‘rigth’ respectively, with macroscopic distance from each other. The
existence of such a state is trivial in the nontrivial manyworld interpretation of the
quantum theory, at least paradoxical in conservative quantum theory, and viewed
nonsense by some. Without taking side, one can speculate about a quantum theory
that is free of such massive macroscopic superpositions. We postulate the collapse of
the macroscopic superposition as if it would happen under a measurement, to happen
spontaneously this time:
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|CAT 〉 = |LEFT〉 + |RIGHT〉√
2

→
⎧⎨
⎩

|LEFT〉
or

|RIGHT〉
. (14)

We should propose a collapse time. Let us follow the proposal of Penrose and the
present author. At this point gravitation and Schrödinger cats encounter. Quantized
massive objects in spacetime lead to controversies with sharply defined Newtonian
potential non-relativistically [14] and with sharply defined time-flow relativistically
[12]. Therefore we allow a certain unsharpness δ� of the Newton potential (of the
time-flow, relativistically). If this unsharpness is represented stochastically by a white
noise then, despite their different explanations, the proposals in refs. [14] and [12],
resp., correspond to the same measure of unsharpness:

Eδ�(r , t)δ�(r ′, t ′) = �G/2

|r − r ′|δ(t − t ′), (15)

Both authors derive that this unsharpness leads to the following characteristic rate of
the collapse:

1

τ
= V i

G − V f
G

�
, (16)

where V i
G and V f

G are formally identified as the classical Newtonian pair-potential
between two copies of the mass M in the separate and the coincident positions,
respectively. Now we see that the postulated spontaneous collapse is ignorable in the
microscopic degrees of freedom but it becomes dominant gradually for large masses.
The collapse rate, still negligible (∼ 10−6/s) for a femtogram, is overwhelming fast
(∼ 106/s) for a milligram mass already.

Thenon-relativistic theory [14, 15] and [12], basedon the abovepostulate of gravity-
related spontaneous collapse rates, is a possible explanation of the classical-quantum
transition, a world without Schrödinger cats and a theory without the measurement
problem.Thenext sectionupgrades it into the consistent non-relativistic hybrid dynam-
ics of quantized matter and classical gravity.

4 On the healthier semiclassical gravity

As Sect. 2 anticipated, the meanfield Newton potential (8) is completed by a noise
term:

�(r , t) = −G
∫ (〈�t |μ̂(r ′)|�t 〉 + δμ(r ′, t)

) d3r ′

|r − r ′|
= �mf(r , t) + δ�(r , t). (17)

This corresponds to the Newton field sourced by the spontaneously monitored value
〈�t |μ̂(r)|�t 〉 + δμ(r , t) of the mass density. Sec. 3 proposed the expression (15) for
the statistics of the noise and we repeat it here for completness:
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Eδ�(r , t)δ�(r ′, t ′) = �G/2

|r − r ′|δ(t − t ′). (18)

If in the Schrödinger–Newton Eq. (9) we replace the meanfield �mf by the expression
(17) then we obtain the following:

d|�t 〉
dt

= − i

�

(
Ĥ0 + V̂mf

G +
∫

μ̂(r)δ�(r , t))d3r

)
|�t 〉

− G

2�

∫ ∫ (
μ̂(r) − 〈μ̂(r)〉t

) (
μ̂(r ′) − 〈μ̂(r ′)〉t

)

|r − r ′| d3rd3r ′|�〉

+1

�

∫ (
μ̂(r) − 〈μ̂(r)〉t

)
δ�(r , t)d3r |�t 〉. (19)

The Schrödinger–Newton equation (9) has become modified in three ways. The first
line results from the back-reaction engineered by �mf + δ�. The second line contains
the decoherence term because the μ̂-monitoring causes dynamic suppression of μ̂’s
quantum fluctuations. The third line contains a further term with δ� and represents
the random effect of monitoring. We emphasize that whence the correlation (18) is
fixed, the postulated spontaneous monitoring leads uniquely to this result (19) via the
standard calculus of quantum monitoring and feedback [6, 7].

Although the ‘healthier’ semiclassical equations (17–19) are consistent by con-
struction with quantum theory, there is an equivalent formalism where the linearity is
restored explicitly. If by the relatioship �(r , t) = dχt (r)/dt we introduce the field χ ,
we can see that χt and �t undergo correlated diffusions respectively in the functional
and Hilbert space. Namely, dχ/dt is driven by the white noise δ� according to Eq.
(17), meaning its diffusion in the functional space, and d|�t 〉/dt is also driven by δ�

according to Eq. (19), meaning its diffusion in the Hilbert space. Therefore the couple
(χ,�) can be described by the hybrid of the Fokker–Planck and Lindblad equations.
Using the hybrid ρ̂[χ ] of the probability density ρ[χ ] = trρ̂[χ ] and of the density
operator ρ̂ = ∫

ρ̂[χ ]d[χ ], ref. [16] derives the following hybrid master equation from
the stochastic equations (17–19):

dρ̂[χ ]
dt

= − i

�
[Ĥ0 + V̂G , ρ̂[χ ]]

+G
∫∫ (

− 1

2�
[μ̂(r), [μ̂(s), ρ̂[χ ]]] + Herm(1+i)μ̂(r)

δρ̂[χ ]
δχ(s)

+ �

4

δ2ρ̂[χ ]
δχ(r)δχ(s)

)

d3rd3s

|r − s| . (20)

The non-unitary mechanisms are represented by the second line. The first term cor-
responds to the suppression of μ̂’s ‘macroscopic’ quantum fluctuations, the middle
term is responsible for the back-reaction of μ̂ on the classical Newton potential, and
the third term stands for the diffusion of the classical Newton potential. The most
important new feature of the above hybrid master equation is the appearance of the
Newton pair-potential (10) in place of the non-linear meanfield term V̂mf

G (11) in the
Schrödinger–Newton Eq. (9).

123



   62 Page 8 of 10 L. Diósi

The formal relativistic counterpart of either the stochastic eqs. (17–19) or the equiv-
alent master equation (20) can obviously be constructed. The stochastic ones would
look like this:

Gab(x) = 8πG
(
〈�� |T̂ab(x)|��〉 + δTab(x)

)
, (x ∈ �), (21)

EδT̂ab(x)T̂cd(y) = Dab|cdδ(x − y), (22)

δ|��〉
δ�(x)

= −iĤ(x)|��〉 +
{
nonlinear
stochastic

}
terms of monitoring. (23)

Such might be the structure of full relativistic equations of the ‘healed’ stochastic
semiclassical gravity, The equivalent hybrid master equation of classical metrics and
the quantized relativistic matter would contain the three terms: decoherence term to
suppress T̂ab’s large quantumfluctuations, back-reaction of T̂ab on themetrics gab, and
the term for the diffusion of gab. The formal construction of the related ‘postquantum’
gravity faces multiple issues (e.g.: ensuring diffeomorfism invariance, renormaliz-
ability of divergences) recognized immediately [8, 9]. As we mentioned, the theory
follows uniquely if the correlation (22) has been chosen. The issues culminate right
here. The covariant correlationmust contain the four-dimensional δ(x− y) and it leads
to divergences. No covariant regularization and renormalizationmethods are available.

The obstacles are not simply technical ones, they aremultiply rooted in foundations.
Wavefuntion collapse depends on the reference frame hence the covariant formalism
of selective quantum measurements and quantum monitoring is problematic. On the
classical end, diffusion cannot be made relativistic, nor even special relativistic [16].

5 Closing remarks

Unified theory of space-time with quantized matter and the physics of quantum mea-
surement were considered unrelated for long time, studied by two separate research
communities. Quantum cosmologists used heavy artillery of mathematics. Quantum
measurement problem ‘solvers’-, with the present author among them, used light
weapons and sometimes whimsical identification of their problems, e.g. in terms of
the Schrödinger cat paradox. The bottle-neck of quantum gravity may be this paradox,
not the math difficulties to find a good framework of quantization. An improved but
still semiclassical theory might be based on the non-relativistic theory of spontaneous
quantum monitoring and feedback, eliminating Schrödinger cat states. Such health-
ier theory exists non-relativistically but its relativistic - even Lorentzian - extension
remains a problem.

It seems that the consistent hybrid theory of quantized matter and classical gravity
based on relativistic calculus of monitoring plus feedback was first discussed longtime
ago [5], with the warning that the relativistic calculus may pose serious problems.
Much later, the authors of refs. [6, 7] have repeatedly argued that the ‘healthier’
relativistic semiclassical gravity is blocked by the continued lack of a relativisticmodel
for quantummonitoring. The recent proposal of ‘postquantum’ gravity ([8, 9] and refs.
therein) is optimistic about the future resolution of its difficulties but it is not conscious
of where the difficulties stem from. Refs. [16, 17] point out in strict accordance with
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the previous warnings [5–7] that the ultimate difficulties of the ‘healthier’ relativistic
hybrid dynamics are difficulties of relativistic quantum monitoring. It seems that as
long as this latter is missing, the ‘postquantum’ gravity cannot be complete. Until we
discover the theory of relativistic quantum monitoring, if it exists, the foundational
application of the ‘healthier’ semiclassical dynamics in its present form remains an
unfulfilled promise though by no means finally discarded.
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