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Within the histories formalism the decoherence functional is a formal tool to investigate the emergence of
classicality in isolated quantum systems, yet an explicit evaluation of it from first principles has not been
reported.We provide such an evaluation for up to five-time histories based on exact numerical diagonalization
of the Schrödinger equation.We find a robust emergence of decoherence for slow and coarse observables of a
generic randommatrixmodel and extract a finite-size scaling law by varying theHilbert space dimension over
4 orders of magnitude. Specifically, we conjecture and observe an exponential suppression of coherent effects
as a function of the particle number of the system. This suggests a solution to the preferred basis problemof the
many-worlds interpretation (or the set selection problem of the histories formalism) within a minimal
theoretical framework without relying on environmentally induced decoherence, quantum Darwinism,
Markov approximations, low-entropy initial states, or ensemble averages.
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I. INTRODUCTION

Do we live in a quantum multiverse? Since the formu-
lation of the many-worlds interpretation (MWI) [1–3], this
idea enjoys increasing popularity among researchers [4–6],
popular science [7], and pop culture [8]. Although the basic
premise of the MWI is “simply” to assume unitary
evolution for the entire Universe (including its observers),
its seemingly absurd consequence that the Universe con-
sists of many universes existing in parallel (the multiverse)
is a source of strong controversies [9]. Using nonrelativistic
quantum mechanics, our contribution is to provide direct
evidence—within a minimal first principles setup—that the
MWI is compatible with our experienced “classical reality.”
It is useful to clarify from the start that the idea of the

quantum multiverse and the MWI should be distinguished
from other potential multiverses based on, e.g., an infinitely
large Universe, many inflationary bubbles, different fun-
damental constants, or various solutions in the string theory
landscape [4,10]. Those universes are thought of as being
separated in spacetime, and thus admit in principle a
classical understanding. In contrast, the multiverse of the
MWI consists of different universes at the same spacetime
location.

One essential technical problem associated with the
MWI is called the preferred basis problem: how to
reconcile the multiverse with our perceived classical
experience within one universe. If Schrödinger’s equation
is applied to the entire Universe, then by linearity, super-
positions proliferate and spread, splitting the wave function
into many universes, or histories, evolving in parallel (also
called branches, worlds, realities, narratives, etc.). How-
ever, the wave function can—without approximation—be
split with respect to many different bases (indeed, a
continuum of bases), and each basis provides a priori an
equally justified starting point (and as we will discuss, the
wave function can be also split backward in time). But as
Bohr, in endless discussions with Einstein about the
double-slit experiment (and others), has made clear, a state
describing a superposition of different properties makes
said property ontologically indeterminate: In the double-slit
experiment, the particle has no meaningful location without
measurement [11]. Thus, without identifying an additional
structure justifying a classical description, as we experience
it, the MWI describes infinitely many ontologically inde-
terminate splittings: A priori, none of them allows us to
speak about “histories,” “worlds,” or “realities” in any
conventional, meaningful sense.
This additional structure must be derived within the

MWI, and within nonrelativistic quantum mechanics a
satisfactory derivation must comply at least with two
minimal desiderata. (i) The system is isolated, evolves
unitarily, and is prepared in a pure state. This avoids the
introduction of any form of classical noise from the outside
(e.g., in the form of ensemble averages), which potentially
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implies the answer to the question already from the start.
We remark that the system might be (but does not need be)
split into subsystems. (ii) The condition of classicality must
be a meaningful, rigorous definition that is suitable to
account for multitime properties or temporal correlation
functions because the perception of classicality is a
repeated experience (adapting Einstein’s quote, the moon
was there yesterday, is there today, and will be there
tomorrow). This is important: Speaking of different worlds
or histories becomes meaningful if we can reason about
their past, present, and future in classical terms.
Here, we use the decoherence functional (DF) introduced

within the consistent or decoherent histories framework (or
simply, “histories framework” for short) [12–21] to rigor-
ously investigate the emergence of multitime classicality
(see Sec. II for the technical details). We numerically show
that bases defined by a slow and coarse observable of a
nonintegrable system are robustly decoherent according to
this criterion. More specifically, we show for up to five-
time histories and a Hilbert space dimension D varying
over 4 orders of magnitude that quantum effects (suitably
quantified below) are exponentially suppressed as a func-
tion of the particle number N of the system (with
N ∼ logD). This provides a firm starting point to discuss
the MWI and to address the set selection problem of the
histories framework [18,22–24]. Our results also explicitly
show that the emergence of classicality is ubiquitous, that
almost all initial wave functions can give rise to interesting
universes, and that the branching of the wave function is
a priori not related to any arrow of time.
Perhaps surprisingly, our results do not rely on environ-

mentally induced decoherence (EID) [25–27] (note the
unfortunate double meaning of decoherence in the liter-
ature: A priori, there is no connection between the DF in the
histories framework and the concept of EID) or its refine-
ment to quantum Darwinism [28–30]. This is surprising
because the widely proclaimed (sole) answer to the ques-
tion why the MWI gives rise to classically looking
universes is EID, and many researchers worked on con-
necting the MWI or the histories framework with EID and
quantum Darwinism [22,24,31–41], yet an explicit evalu-
ation of the DF following the desiderata (i) and (ii) is still
missing. Only if one invokes a rigorous notion of multitime
quantum Markovianity [42–44], clear connections between
the DF and EID have been established [22,33–35,37,41],
but this shifts only the problem of proving multitime
decoherence to proving multitime Markovianity, which
is a daunting task, too [45–49].
In contrast, the present approach does not rely on any

system-environment tensor product splitting, although it is
important to emphasize that it is not in conflict with EID or
quantum Darwinism when applied to it. Instead, we
consider only slow and coarse observables of isolated,
nonintegrable quantum systems, similar to the approach
taken by Van Kampen in 1954 [50]. While the importance

of slow and coarse (or quasiconserved) observables for the
emergence of decoherence has been anticipated in the
histories formalism [16,20,51–56], nonintegrability has
never been considered a key factor by proponents of the
histories, EID, or quantum Darwinism framework: Van
Kampen’s work remained ignored despite him emphasizing
its importance for the quantum-to-classical transition
[57,58]. More precisely, nonintegrability is taken here to
mean that random matrix theory captures well the relevant
dynamic behavior. While this is known to be true in many
situations [59–65], in the context of the quantum-to-
classical transition, rigorous evidence for Van Kampen’s
idea slowly accumulated only recently [41,49,66–68].
Moreover, it has not yet been considered in light of the
MWI and a first principles evaluation of the DF remains
missing.
To summarize, our objective is to subject the MWI and

the question whether it is compatible with our perceived
classical reality to a rigorous, quantitative test based on the
minimal desiderata (i) and (ii). To this end, we introduce the
general theoretical framework to address this question in
Sec. II. Then, we present extensive numerical results for a
heat-exchange model (an archetypical example of a non-
equilibrium process in thermodynamics) in Sec. III.
Section IV discusses the set selection problem in view
of our findings, and we conclude and provide perspectives
in Sec. V.

II. GENERAL FRAMEWORK

A. Mathematical definitions and problem

We consider an isolated quantum system with Hilbert
spaceH of dimensionD ¼ dimH and Hamiltonian H. The
time-evolution operator from tj to tk is denoted Uk;j ¼
e−iHðtk−tjÞ (ℏ≡ 1) and the initial state is jψðt0Þi.
Furthermore, fΠxgMx¼1 denotes a complete set ofM orthogo-
nal projectors satisfying

P
M
x¼1 Πx ¼ I (with I the identity)

and ΠxΠy ¼ δx;yΠx. They divide the Hilbert space into a
direct sum of subspaces: H ¼ ⨁M

x¼1Hx. The dimension of
the subspace Hx equals the rank of the projector Πx and is
denoted Vx ¼ trfΠxg ¼ dimHx. Note that D ¼ P

M
x¼1 Vx.

Next, we decompose the unitarily evolved state
jψðtnÞi ¼ Un;0jψðt0Þi by writing Un;0 ¼ Un;n−1 � � �U1;0

and inserting identities at times tn > … > t1 > t0:

jψðtnÞi ¼
X
xn

ΠxnUn;n−1 � � �
X
x1

Πx1U1;0

X
x0

Πx0 jψðt0Þi

≡X
x

jψðxÞi: ð1Þ

Here, we abbreviate x ¼ ðxn;…; x1; x0Þ, which we call a
history of length L ¼ nþ 1 in the following. Moreover,
jψðxÞi ¼ ΠxnUn;n−1 � � �Πx1U1;0Πx0 jψðt0Þi is the (non-
normalized) state conditional on “passing through”
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subspaces Hxj at times tj. Note that this construction
becomes identical to Feynman’s path integral if we let tjþ1 −
tj → 0 and consider projectors Πx in the position
representation.
Finally, we introduce the decoherence functional

Dðx; yÞ≡ hψðyÞjψðxÞi; ð2Þ

which is a Hermitian ML ×ML matrix. Moreover, the
important decoherent histories condition (DHC) is defined
by the condition

Dðx; yÞ ¼ 0 for all x ≠ y: ð3Þ

The central task of this work is to understand the
conditions when the DHC is generically satisfied. In
particular, we will see that it is hard to strictly satisfy
Eq. (3) for the situations we are interested in. Hence, we
will quantitatively study from first principles a suitable
smallness condition Dðx; yÞ ≈ 0 discussed in Sec. II C
below. We remark that this is a well-defined and nontrivial
mathematical problem—independent of the physical mean-
ing attached to the different objects to which we turn now.

B. Physical meaning and further terminology

We continue with physical clarifications, also related to
the previous literature.
First, we call fΠxgMx¼1 a coarse-graining and x a macro-

state, which is conventional terminology in statistical
mechanics. Indeed, we are interested in observables that
humans can perceive, and those are necessarily coarse.
Quantitatively, this means that the number of projectors is
much smaller than the Hilbert space dimension: M ≪ D.
Note that this is also satisfied in any quantum experiment
that relies on macroscopic detectors.
Next, we briefly clarify the meaning of the DHC, which

has been already discussed in the literature [12–21]. [There
has also been some controversy about the precise math-
ematical formulation of the DHC (see, e.g., Ref. [69]), but it
seems that Eq. (3) is nowadays universally accepted [21].]
To this end, recall that according to our classical
(Newtonian or prequantum) ontology, the world out there
is made up of entities with independent and well-defined
properties that can be revealed in principle to arbitrary
precision; i.e., any uncertainty about the state of the world
is entirely subjective or epistemic (for a broader discussion
see, e.g., Ref. [11]). This world view is challenged by
quantum physics. However, the DHC guarantees that, for
the process describing the macrostates xj at times tj, such a
classical ontology becomes quantitatively accurate because
Eq. (3) describes the absence of detectable quantum-
interference effects. This makes the dynamics of the coarse
properties xj isomorphic to a classical stochastic process
(see also Refs. [41,44,49,70–75]) and implies the validity
of Leggett-Garg inequalities [76].

Before turning to the connection with the MWI, it is
important to be clear about the fact that the DHC has
differing ontological statuses even among practitioners of
the histories formalism [14,18]. For instance, Griffiths
regards the DHC as primary; that is, quantum evolution
is fundamentally stochastic, and the deterministic
Schrödinger equation can be used to compute only the
DF if the DHC is satisfied [12,19,21]. In contrast, here we
take unitary evolution as primary (as in the MWI) and view
the DHC as an emergent property. This means we use the
histories formalism as a convenient mathematical tool to
address a well-defined problem.
We deliberately point out that this attitude shall neither

imply that the MWI is correct nor that the consistent
histories interpretation of Griffiths is incorrect. In contrast,
the question we ask here sheds light on both interpretations.
It is important to know for the MWI whether the quantum
multiverse supports decoherent histories, and likewise the
question with which histories Schrödinger’s equation is
compatible, and whether this compatibility is exact or
approximate, influences the scope of the consistent histor-
ies interpretation.
We continue by commenting on the connection between

the DHC and the MWI as we view it in this work. As
emphasized in the Introduction, the definition of a “world”
within the MWI is a priori complicated by the existence of
a continuum of mathematically conceivable different
worlds (preferred basis problem). Moreover, even among
the proponents of the MWI there is no universally agreed
on quantitative definition of a world (see, e.g., Ref. [77] for
a short overview). Here, we use this liberty and interpret the
DHC as a minimal criterion to define a world within
the MWI. This is motivated by what we said above: The
classical world that we perceive is compatible with quan-
tum mechanics precisely when the observables we look at
satisfy the DHC. We believe this view is in unison with
proponents of the MWI; for instance, Vaidman verbally
defines a world as “the totality of macroscopic objects… in
a definite classically described state” [3]. Moreover, only
past “events” giving rise to decoherent histories can leave
records about having “happened” in the present state of the
Universe, which highlights the importance of the DHC
[16,22,24,31,78–81].
In the following, it is also advisable to drop the word

“classical” in favor of “decoherent,” at least in a technical
context. Indeed, depending on the context, classicality can
have many different meanings since the boundary between
quantum and classical physics cannot be reduced to a single
condition. Thus, in short, our terminology is the following:
Histories that satisfy exactly or approximately (see Sec. II C)
the DHC are called decoherent (and only sometimes
classical), and in the context of the MWI we call those
histories also branches or worlds. We also repeat once more
that the DHC is not identical to but compatible with the
concept of EID.
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We conclude by specifying what we mean by a first
principles demonstration of the DHC. Essentially, we aim
for a general understanding of the DHC by using physical
assumptions that are not in conflict with the framework of
Sec. II A. This has two major implications. First, we do not
allow for any assumption that breaks unitarity and, instead,
we solve the Schrödinger equation exactly. In particular, we
do not use Markov approximations as done in Refs. [22,33–
35,37,41,70,71,73], which—even though insightful—shift
the problem from justifying classicality to justifying
Markovianity.
Second, we demand that the state of the isolated system is

pure. By avoiding classical ensemble averages, any remain-
ing uncertainty must stem from the quantum state or
dynamics. Indeed, the only explicit evaluation of the DHC
for a nontrivial many-particle system (and not relying on
Markov approximations) has been done using the influence
functional for a harmonic oscillator environment (Caldeira-
Leggettmodel), assuming that the environment is prepared in
a canonical Gibbs ensemble [15,16,79,82–84]. This is
problematic, as it remains unclear whether the observed
decoherence is a consequence of the dynamics itself (as one
would hope for) or a consequence of the classical ensemble
average.
What remains beyond Markov approximations and

ensemble averages, and beyond conserved quantities
that trivially satisfy the DHC, are indirect arguments
based on, e.g., the approximate behavior of projectors
in the Heisenberg picture [14,16,20,51–56,85]; see also
Ref. [86]. But an explicit evaluation of the DHC or even
an estimate of it has never been attempted therein. It is this
important gap that we fill with the present work, which is
backed up by the general idea of Van Kampen [50] (see
also Sec. II D) and supported only by a few preliminary
results so far [41,49,66–68].

C. Approximate decoherence

For reasons that will become clear below, exact
decoherence, i.e., a strict satisfaction of Eq. (3), is not
the rule. All we can realistically hope for is to satisfy the
DHC approximately, even though our results will also
indicate that this approximation is typically so good that it
becomes indistinguishable from exact decoherence for all
practical purposes.
Approximate decoherence is typically quantified—after

realizing jDðx; yÞj ≤ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dðx;xÞDðy; yÞp

due to Cauchy-
Schwarz inequality—by introducing a “normalized DF”
and demanding that [15]

ϵðx; yÞ≡ jDðx; yÞjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dðx;xÞDðy; yÞp ≪ 1 for all x ≠ y: ð4Þ

While this is a reasonable, properly normalized condition
for smallness, in practice this condition can still be
cumbersome. There are M2L−1 −ML many ϵðx; yÞ for
histories of length L ¼ nþ 1 that are not trivially 1 because

of x ¼ y or trivially zero because of xn ≠ yn (owing to the
orthogonality of the projectors at the final time). Studying
all of them becomes unfeasible for largeM or L. Moreover,
the exact operational meaning of Eq. (4) is at least a priori
not apparent; i.e., what does it imply for an experimentalist
who tries to decide whether a process is decoherent or not?
We therefore choose a dual strategy to quantify

decoherence in this work. First, we consider the average
of the nontrivial values of ϵðx; yÞ defined as

ϵ≡ 1

M2L−1 −ML

X
x≠y

ϵðx; yÞ: ð5Þ

This is probably the simplest quantifier one can consider,
but we believe its simplicity makes it appealing to get a first
impression of what is going on.
However, to rigorously quantify theworst-case scenario in

an operationally meaningful way, we also consider a second
strategy. To this end, we select an arbitrary subset T ⊂
ft0; t1;…; tng of times on which the DF is defined, for
instance, T ¼ ft2; t7g in the sketch of Fig. 1. Furthermore,
we denote byZT all possible histories z that we can associate
with T with respect to the given coarse-graining; e.g., with
respect to Fig. 1 these are all two-time histories ZT ¼
fx17; x27;…; x67g × fx12; x22;…; x62g (with × the Cartesian
product).
Next, we construct two types of probabilities on ZT . The

first is the actual Born rule probability to measure z∈ZT ,
which we can get from the DF defined on T via

pðzÞ≡ X
xðzÞ;yðzÞ

Dðx; yÞ; ð6Þ

where
P

xðzÞ indicates a sum running over all x holding z
fixed. For instance, for the example in Fig. 1 (the pink bars)
we have

P
xðzÞ ¼

P
x δx7;x37δx2;x42 and thus,

FIG. 1. Example illustrating the DF for a coarse-graining with
six macrostates and eight time steps. Two possibly interfering
histories are indicated by dashed and dotted lines (the lines are
used for visualization only; within this DF only their macrostates
at times ti are defined).
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pðzÞ ¼ hψðt0ÞjU†
2;0Πx4U

†
7;2Πx3U7;2Πx4U2;0jψðt0Þi: ð7Þ

The second probability we can introduce is a decohered or
classical version of pðzÞ obtained under the assumption
that the DHC is obeyed. It is defined as a sum over the
diagonal elements only:

pclðzÞ≡
X
xðzÞ

Dðx;xÞ: ð8Þ

Now, to evaluate the difference between the true quan-
tum probability distribution pðzÞ and its decohered
counterpart pclðzÞ we use the L1 norm or trace distance

ΔTðpjpclÞ≡ 1

2

X
z∈ZT

jpðzÞ − pclðzÞj∈ ½0; 1�: ð9Þ

Inserting the definitions, we see that the trace distance is
determined by the off-diagonal elements of the DF:

ΔTðpjpclÞ ¼
1

2

X
z∈ZT

�����
X

xðzÞ≠yðzÞ
Dðx; yÞ

�����: ð10Þ

In addition, the trace distance has a clear operational
meaning in a hypothesis testing scenario [87]. Namely, it
determines in an optimized single-shot scenario the mini-
mum probability PminðfailÞ ¼ ½1 − ΔTðpjpclÞ�=2 for an
experimenter to fail to distinguish between the coherent
and decohered quantum process described by pðzÞ and
pclðzÞ, respectively. For a given measurement resolution,
this PminðfailÞ gives the desired criterion to decide when a
set of approximately decoherent histories is “decohered
enough.”However, the trace distance (9) still depends on T,
but we are interested only in the worst-case scenario.
Moreover, we notice the following fact: If tn ∉ T, then
the sum over xn and yn does not contribute to Eq. (9). This
follows from a containment property of the DF: The DF for
histories of length L0 < L can be obtained from the DF for
histories of length L by tracing out the final L − L0 time
steps. Thus, we will plot in Sec. III the maximum

Δmax
L ≡ max

T∩ftng≠∅
ΔTðpjpclÞ: ð11Þ

Note that this number still depends on L.

D. Physical origin of decoherence

The physical origin of decoherence has been discussed at
many places and shall not be repeated here in detail. We
therefore limit ourselves to listing the four assumptions
used by Van Kampen [50] followed by a perhaps over-
simplified yet hopefully intuitive analogy.
The four assumptions are the following. First, one needs

a large Hilbert space dimension D, which is certainly
satisfied for macroscopic systems. Typically, D ¼ Oð10NÞ

and N ¼ Oð1023Þ to give some numbers. Second, one must
consider a coarse coarse-graining satisfying M ≪ D. As
discussed above, this is satisfied for all that we humans can
perceive. Third, the considered projectors must evolve
slowly in a suitable sense such that the unobserved micro-
scopic degrees of freedom have time to self-average or
randomize. Common examples include hydrodynamic
modes, collective degrees of freedom, weakly coupled
subsystems, or more generally, projectors that almost
commute with the total Hamiltonian (for a more technical
discussion about the notion of slowness, see Ref. [49]).
Fourth, the isolated system should be nonintegrable.
This last point is certainly still subject to debate, not the

least because a universally agreed on definition of quantum
(non)integrability is lacking. For instance, Van Kampen
assumed that the energy-gap spectrum of the Hamiltonian
H is nondegenerate (apart from rare accidental degener-
acies) [50], the results of Refs. [49,66–68] were based on
the eigenstate thermalization hypothesis [64,65], and here
we use random matrix theory as also done in Refs. [41,68].
Since already classical systems tend to be chaotic (e.g., the
Newtonian three-body problem), we believe that nonintegr-
ability can hardly count as an assumption in our Universe,
even though it is an open question whether it is strictly
necessary.
Intuitively, we like to motivate the need for nonintegr-

ability by the following analogy. Since the DHC describes
the lack of interference between different macrostates x, we
like to picture the coherences of all microscopic degrees of
freedom as ripples caused by stones thrown into an initially
still pond. If one zooms in very much (corresponding to
very large M) or considers only a single stone thrown into
the pond (corresponding to very smallD), one can certainly
see a clear wave pattern and interference effects. But if one
zooms out a bit, or averages over a small area of the pond,
and throws in a lot of stones (at different places), it becomes
very hard to see any significant interference effects. One
reason for it is simply the law of large numbers: There are
many more combinations possible where ripples from
different stones destructively interfere than possible com-
binations of constructive interference. This is identical to
rolling 1023 dice: The vast majority of sequences has an
average face value around 3.5, and the number of sequences
deviating significantly from it is exponentially suppressed.
However, there is also another effect at work. In reality, all
stones have a slightly different size and weight, thus
causing ripples with, e.g., different amplitudes or velocities.
This implies that even if at a certain moment in time the
state of the stones is highly synchronized (for instance, they
could have been thrown symmetrically into the pond), this
synchronized state will very quickly dephase and look
generic. This effect is absent in integrable systems where
the extensive amount of conserved quantities causes many
regularities in the dynamics. It is thus reasonable to
conjecture that nonintegrable systems, here corresponding
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to stones of different sizes and weights, show a more robust
emergence of decoherence for a broader class of initial
states.

III. NUMERICAL DEMONSTRATION

A. Setup

We will now explicitly validate the idea that coarse and
slow observables of a nonintegrable many-body system
satisfy the DHC with increasing accuracy for increasing
Hilbert space dimensionD. This is done by exact numerical
diagonalization for a setup consisting of two identical,
coupled systems exchanging energy. We choose this
archetypical setup of a nonequilibrium thermodynamic
process because it is intuitive and allows us to clearly
identify arrow(s) of time associated with the flow of heat
from hot to cold. In principle, this flow of heat could then
be harnessed to create work or free energy, an important
prerequisite for the formation of life and intelligent observ-
ers in the Universe, but (obviously) our code cannot
simulate any forms of life or observers.
We call our systems A and B (see Fig. 2 for a sketch), and

the total Hamiltonian is

H ¼ HA þHB þ λHI; ð12Þ

where HI is the interaction and λ a small parameter to
ensure weak coupling (see below). We coarse-grain the
local energies of A and B by projectors Πx;x0 ≡ ΠA

x ⊗ ΠB
x0

for a pair of integers ðx; x0Þ. In units of some energy
precision or width ΔE, Πx;x0 projects on the energy interval
½x; xþ 1Þ × ½x0; x0 þ 1Þ; i.e., ΠA

x is spanned by all energy
eigenstates jkiA ofHA whose energy eigenvalue Ek satisfies
x ≤ Ek=ΔE < xþ 1, and similarly for ΠB

x0.
In the following, we consider one microcanonical sub-

space with some fixed total energy Etot ¼ EA þ EB, where
EA (EB) is the coarse-grained energy of system A (B)
determined with precision ΔE. Thus, suppose we fix the

total energy to be Etot ¼ mΔE with m∈Z, then the
projector on this microcanonical subspace is given by

Pm ¼
X
x;x0

δm;xþx0Πx;x0 : ð13Þ

The Hamiltonian restricted to this subspace is consequently
given by

Hm ≡ PmHPm ¼
X
x;y

Πx;m−xHΠy;m−y: ð14Þ

Specifically, we set (without loss of generality) in the
following Etot ¼ 0. Moreover, as sketched in Fig. 2, we
consider for simplicity only three participating energy
macrostates in A and B, i.e., P0 ¼ Π−1;þ1 þ Π0;0þ
Πþ1;−1. Of course, for a realistic macroscopic system more
subspaces should be considered, but three subspaces are
sufficient for a proof-of-principle demonstration of our
main ideas.
Since the total energy is fixed, we write in the following

ðΠ−;Π0;ΠþÞ≡ ðΠ−1;þ1;Π0;0;Πþ1;−1Þwith associated sub-
space dimensions ðV−; V0; VþÞ. Note that these projectors
project on subspaces of systems A and B. The restricted
Hamiltonian (14) has consequently nine blocks:

H0 ¼

0
B@

H−− H−0 H−þ
H0− H00 H0þ
Hþ− Hþ0 Hþþ

1
CA: ð15Þ

Each of these blocks is in principle fully determined by the
microscopic Hamiltonian (12), but we want to capture only
four main features here. First, the systems A and B are
assumed to be identical from a thermodynamic point of
view. In particular, we assume that the relation between
energy and temperature is the same in A and B such that
their energy difference is proportional to their temperature
difference. Second, we consider normal thermodynamic
systems where the subspace corresponding to an equal
energy distribution (or the same temperature according to
the previous agreement) is the largest “equilibrium” sub-
space, i.e., V0 > V−; Vþ. Third, we assume a weak
interaction between A and B; i.e., the interaction energy
λHI is supposed to be negligible (otherwise it would not be
justified to restrict the discussion to a microcanonical
energy window defined by the sum EA þ EB of local
energies only). Fourth, we want to mimic the interaction
of two generic complex (and thus, nonintegrable) many-
body systems. According to common knowledge in stat-
istical mechanics, this can be efficiently done by using
random matrix theory [59–65].
In unison with these agreements, we consider below the

following specific Hamiltonian. The diagonal blocks
ðH−−; H00; HþþÞ are modeled by diagonal matrices with
(V−; V0; Vþ) many equally spaced energies in the interval

FIG. 2. Sketch of two identical, interacting systems A and B
with discrete energy levels. The energies of both A and B are
coarse-grained into windows x with an increasing number of
levels. Finally, the dynamics is restricted to a microcanonical
subspace of the total energy corresponding to windows
ðxA; xBÞ ¼ ðþ1;−1Þ ∪ ð0; 0Þ ∪ ð−1;þ1Þ.
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½0; 2ΔEÞ [88]. Moreover, we set H−− ¼ Hþþ, implying
V− ¼ Vþ such that the total Hilbert space dimension is
D ¼ 2V− þ V0. The coupling between different blocks is
realized by random matrices H−0 ¼ H†

0− and H0þ ¼ H†
þ0

with elements drawn from an orthogonal zero-mean-unit-
variance Gaussian ensemble (the unitary Gaussian ensem-
ble is not observed to give rise to different behavior)
multiplied by the small coupling constant λ. Note that H−0
and H0þ are not square matrices since V0 > V−; Vþ.
Moreover, in view of the weak interaction, we set H−þ ¼
H†

þ− to be a matrix of zeros; i.e., we forbid transitions
between energy levels that are too far away from each other.
To remain in the regime of weak coupling, but to ensure

that the different energy levels in A and B also sufficiently
interact to make energy transport efficient, we have to
choose λ, ΔE, and the volumes appropriately. Their values
can be estimated as follows. First, let us define weak
coupling by demanding that the energy of the diagonal part
H0 ¼ H−− þH00 þHþþ dominates the interaction energy
λHI ¼ H−0 þH0− þHþ0 þH0þ. To estimate their typical
value, we use an average over the microcanonical ensemble
h…imic. For the diagonal part, we find the value
hH0imic ≈ ΔE. Since hλHIimic ¼ 0, we look at the standard
deviation λhH2

I i1=2mic ≈ λ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V0V�=D

p
≈ λ

ffiffiffiffiffiffiffi
V�

p
. Thus, we

obtain the condition λ2V�=ΔE2 ≪ 1 (note that we take
λ to have the dimension of energy). To make A and B
sufficiently interact, we note that the interaction smears out
the local energy eigenstates of A and B proportional to λ
(“level broadening”). At the same time, the density of states
in the x ¼ �1 subspace is roughly ΔE=V�. To guarantee
that the smeared-out levels in A (B) overlap with suffi-
ciently many levels in B (A), we thus demand
ðλV�=ΔEÞ2 ≫ 1. Specifically, what we found to work
numerically well are the conditions

1

V�

�
πλV�
2ΔE

�
2

≪ 1; 32

�
πλV�
2ΔE

�
2

≫ 1; ð16Þ

compare also with Ref. [89] for an analytical study of a
similar model (two equal energy bands coupled via a
random matrix). Unless otherwise mentioned, we choose
λ below such that the left equation reduces to 0.01 (≪ 1),
which implies that the right equation is well satisfied for
V� ≳ 300. Moreover, the characteristic evolution timescale
has been found to be well approximated by

τ ¼ ΔE
4πλ2V�

: ð17Þ

In all that follows, we set ΔE ¼ 1 and V0 ¼ 3V−.
Finally, we write the initial state as

jψðt0Þi ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
p−ð0Þ

p
jψ−i þ

ffiffiffiffiffiffiffiffiffiffiffiffi
p0ð0Þ

p
jψ0i þ

ffiffiffiffiffiffiffiffiffiffiffiffi
pþð0Þ

p
jψþi:

ð18Þ

Here, pxð0Þ with x∈ f−; 0;þg is the (a priori arbitrary)
probability to find the system in macrostate x. Unless
otherwise mentioned, the states jψxi are normalized Haar
randomly chosen states in the subspace Hx on which Πx
projects. By choosing them Haar randomly, we guarantee
an unbiased choice, somewhat in the spirit of a maximum
entropy principle for pure states. In particular, given that
pxð0Þ is the only available information, this allows us to ask
about the typical behavior of the system.

B. Results

First, to get a feeling for the average dynamics, we
consider the time evolution of the macrostate distribution
pxðtÞ ¼ hψðtÞjΠxjψðtÞi in Fig. 3 for two different Hilbert
space dimensions. In Fig. 3(a), we start from the non-
equilibrium initial condition ½p−ð0Þ; p0ð0Þ; pþð0Þ� ¼
ð1; 0; 0Þ. For D ¼ 104 (solid lines), we see an exponential
(Markovian) decay of the probabilities to their equilibrium
value ðV−; V0; VþÞ=D ¼ ð0.2; 0.6; 0.2Þ (thin horizontal
black lines) as predicted by statistical mechanics. The
characteristic evolution timescale is set by τ, and equilibra-
tion happens roughly for t≳ 7τ. For the smallerHilbert space
dimension ofD ¼ 102 (circles), a similar tendency but much
larger fluctuations are observed, as expected.
To continue with the many-worlds simulation, we now

choose an equilibrium initial state with pxð0Þ ¼ Vx=D, for
reasons that will also become clear later. Naively, one
would expect nothing interesting in such a universe as
indicated in Fig. 3(b): Aside from fluctuations, which are
exponentially suppressed as a function of the Hilbert space
dimension, nothing seems to happen. But interestingly, a
completely different picture is possible: Even from an
equilibrium state, many different interesting nonequili-
brium universes can emerge. However, to warrant such a
conclusion, we first of all need to ensure that the histories
defined by the present coarse-graining are decoherent; i.e.,
they obey the DHC condition as discussed in the previous
section. In the following, the evaluation of the DF is done

(a) (b)

FIG. 3. Time evolution of p−ðtÞ (dark blue), p0ðtÞ (magenta),
and pþðtÞ (cyan) over dimensionless time t=τ for an initial
nonequilibrium state (a) or equilibrium state (b) for D ¼ 104

(solid lines) and D ¼ 102 (circles). The horizontal black lines
indicate the equilibrium value ¼ ðV−; V0; VþÞ=D.
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for constant time intervals tkþ1 − tk equal to the non-
equilibrium relaxation timescale τ defined in Eq. (17).
The emergence of decoherence is shown in Figs. 4 and 5.

First, Fig. 4 plots the average off-diagonal elements of the
normalized DF as defined in Eq. (5) for histories of lengths
L∈ f2; 3; 4; 5g as a function of the Hilbert space dimension
D. Each marker in Fig. 4 corresponds to one particular
random matrix Hamiltonian with one particular Haar
random initial equilibrium state defined in Eq. (18). In

total, we consider three different realizations of the random
matrix Hamiltonian and, for each, three different realiza-
tions of the initial state, amounting to 3 × 3 ¼ 9 different
realizations. To extract the overall trend, we average the
markers and fit a scaling law of the form D−α (solid
red line).
Two important observations are contained in Fig. 4.

First, the different data points corresponding to different
realizations lie very close to each other; i.e., each realiza-
tion gives rise to a similar value of ϵ. This indicates
typicality: Most random matrix interactions and most initial
states give rise to the same behavior. Therefore, it makes
sense to fit a scaling law D−α to the averaged data points.
Interestingly, this scaling law, which we extract by varying
D over 4 orders of magnitude from D ¼ 5 to D ¼ 50 000,
is very close to 1=

ffiffiffiffi
D

p
. This scaling suggests that the

conditional states jψðxÞi, after normalization, can be
expressed as

P
i ciðxÞjii=

ffiffiffiffi
D

p
for some fixed basis jii.

Here, the ciðxÞ are random zero-mean-unit-variance coef-
ficients assumed independent of ciðyÞ for x ≠ y because
then a random-walk argument suggests

hψðyÞjψðxÞi ∼ 1

D

X
i

c�i ðyÞciðxÞ ∼
1ffiffiffiffi
D

p : ð19Þ

While it seems plausible, it remains an open question
whether this inverse square-root dependence holds for all
weakly perturbed random matrix theory models and Haar
random initial equilibrium states. In any case, the scaling
law suggests that quantum effects are exponentially sup-
pressed as a function of the particle number N. Moreover,
these conclusions are robust under changing the length
L∈ f2; 3; 4; 5g of the histories. Partial results for very long
histories have been also recently obtained by two of the
authors [90].
The same conclusions are also reached in Fig. 5, where

we plot the maximum value of the trace distance defined in
Eq. (11). Also, for this more rigorous quantifier of
decoherence, we observe typicality and an exponential
suppression of quantum effects as a function of the particle
number N. However, since Δmax

L is determined by the
worst-case scenario, stronger fluctuations are visible com-
pared to ϵ, where the average tames fluctuations. Moreover,
the exponent α ≈ 0.4 is slightly smaller than the exponent
extracted in Fig. 4. Nevertheless, Fig. 5 shows that also
statistical outliers, which could be potentially detected by a
clever and patient experimentalist, do not corrupt our
conclusions. We conclude that the emergence of
decoherence seems to be a stable and robust phenomenon.
It is intriguing to ask whether histories or branches that

look more distinct from a macroscopic point of view are
characterized by stronger decoherence. Specifically, let us
define the Hamming distance dðx; yÞ between two histories
x and y as the number of labels where they differ. For
instance, for x ¼ ð0;þ; 0;−; 0Þ and y ¼ ð0;−;þ; 0; 0Þ

(a) (b)

(c) (d)

FIG. 4. Plot of ϵ, the average violation of decoherence defined
in Eq. (5), in the weak-coupling regime as a function of the
Hilbert space dimension for histories of length L ¼ 2 (a), L ¼ 3
(b), L ¼ 4 (c), and L ¼ 5 (d). Blue crosses mark results for a
single realization of the random matrix interaction and the
random initial equilibrium state. Red solid lines fit a scaling
law of the form D−α to their averages, and the value of α is
indicated in the legend inset. Note the double logarithmic scale.

(a) (b)

(c) (d)

FIG. 5. Plot of Δmax
L , the worst-case violation of decoherence

defined in Eq. (11), with otherwise the same characteristics as
in Fig. 4.
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we have dðx; yÞ ¼ 3. Even though, to the best of our
knowledge, this question has never been asked before, it
seems intuitive to expect that more distinct histories show
stronger decoherence. This intuition is indeed confirmed in
Fig. 6, even though the dependence on the distance dðx; yÞ is
rather mild: an approximate twofold increase in decoherence
when going from dðx; yÞ ¼ 1 to dðx; yÞ ¼ 4. However, in
more realistic scenarios one would need to take into account
much longer histories.Moreover, it seems that thedifferences
are more pronounced for larger Hilbert space dimensionsD.
Unfortunately, current numerical limitations do not allow us
to draw strong conclusions from our data.
The overall picture that emerges from our model is

depicted in Fig. 7. Figure 7(a) shows a branching tree
structure with respect to histories defined by energetic
macrostates labeled by x∈ f−; 0;þg for L ¼ 3 time steps.
Importantly, we can now reason about these histories using
a classical ontological model for sufficiently large D. To
facilitate talking about it, we use Boltzmann’s entropy
concept SBðxÞ ¼ kB lnVx. We label transitions of the
system from a lower to a higher Boltzmann entropy state
(i.e., from þ or − to 0) as “forward” transitions (blue
dashed lines) to indicate that they comply with the conven-
tional second lawlike arrow of time when t0 denotes the
initial time. However, “backward” transitions (pink dash-
dotted lines) from a higher- to a lower-entropy state (i.e.,
from 0 to þ or −) are also possible. Finally, transitions
involving no change in Boltzmann entropy are labeled by
“no arrow” (black lines). The multiverse thus consists of
different histories or branches that do not interfere and that
describe universes with different entropic arrows of time
(including the possibility of universes with no arrow of
time and both arrows of time) determined by the question
whether heat flows from hot to cold or vice versa. Note that

these entropic arrows of time should be distinguished
from the “branching arrow of time” (i.e., the direction in
which the number of branches increases). The branching
arrow is pure convention and unrelated to the perceived
entropic arrow of time within the universes.
For one realization of the Hamiltonian and one realiza-

tion of the initial state, we depict the probability for each
history, which can be now interpreted classically, by the
histogram below the treelike branching structure in Fig. 7(b).
As a consistency check, we immediately see that the history
x ¼ ð0; 0; 0Þ, in which the Universe resides in the dominant
equilibriummacrostate x ¼ 0, is themost probable one.Note
that the probability for this history is different from the
probability ðV0=DÞ3 ¼ 0.63 ¼ 0.216 that one would expect
by sampling the histories at time intervals comparable to the
equilibration time. The time steps τ we use are clearly in the
nonequilibrium regime.
An important consistency check is to ask about the

probability of forward or backward arrows of time. Since
the Schrödinger equation obeys time-reversal symmetry
and since the initial equilibrium state that we chose also
does not introduce any time asymmetry, we should expect
to get a time-symmetric answer in this case. The answer is
shown in Figs. 7(c)–7(e) where we plot the probability for a
forward arrow of time (blue), no arrow of time (black), and

FIG. 6. Average decoherence hϵi as a function of the history
distance dðx; yÞ. Here, hϵi ¼ P

d0¼dðx;yÞ ϵðx; yÞ=#ðd0Þ sums the
normalized DF in Eq. (4) over all pairs of histories with a fixed
distance d0 ¼ dðx; yÞ divided by the number #ðd0Þ of such pairs.
We display results for D ¼ 500 (magenta circles), D ¼ 5000
(yellow triangles), and D ¼ 50 000 (blue crosses) for L ¼ 5 and
for the same nine realizations as in Figs. 4 and 5.

(a)

(b)

(c) (d) (e)

FIG. 7. (a) Depiction of the branching structure of the multi-
verse with respect to the initial time t0 and with respect to our
chosen coarse-graining. (b) Histogram for the probabilities of
different histories. For L ¼ 3 (c), L ¼ 4 (d), and L ¼ 5 (e),
respectively, we plot the probability of universes with different
(net) arrows of time as explained in the main text. All proba-
bilities are obtained for a single realization of the interaction
Hamiltonian (at weak coupling and for D ¼ 10000) and initial
equilibrium state.
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a backward arrow of time (pink) for histories of length
L ¼ 3, L ¼ 4, and L ¼ 5, respectively. Here, histories with
multiple arrows of time contribute according to their “net”
arrow of time; i.e., the history x ¼ ð0;þ; 0Þ has no overall
arrow of time. Owing to the fact that we have only three
macrostates, there can be no histories with two or more net
forward or backward arrows of time. Thus, our model
exhibits only “mini” entropic arrows of time, unable to
account for our arrow of time in reality. Clearly, by
including more than three energy windows in the coarse-
graining, we could observe longer arrows of time in this
model, but their probability (when starting from an equi-
librium state) would be very small, albeit nonzero. This is
the (in)famous Boltzmann brain paradox [91–93]. In any
case, we see that the arrows are indeed symmetrically
distributed in our model as they should be. Some nonvisible
small random fluctuations (in the third significant digit) are
due to the fact that a random initial state can still have a
small preference to evolve into a higher- or lower-entropy
region; i.e., it is not perfectly symmetric under time
reversal. The histograms in Fig. 7 are based on a single
realization of the Hamiltonian and initial state, but we again
found this behavior to be typical.
We continue by challenging our model. This is first done

by considering an atypical initial state in the form of a
randomly selected energy eigenstate jki of the full
Hamiltonian. From the eigenstate thermalization hypoth-
esis [64,65,94–97], it is known that these states give rise to
probabilities px ¼ hkjΠxjki very close to the thermal
(microcanonical) prediction Vx=D, i.e., a picture similar
to Fig. 3(b). However, it is currently not known whether
multitime correlation functions such as the DF display the
same behavior for energy eigenstates and Haar randomly
sampled equilibrium states.
The results for the emergence of decoherence with initial

energy eigenstates are shown in Figs. 8 and 9. We again
observe a rather typical behavior in Fig. 8 and a scaling law
suggesting the exponential suppression of quantum effects
as a function of the particle number. However, compared
with Figs. 4 and 5, the variance in the data points is
appreciably larger; i.e., there is less typicality. Moreover,
the exponents are different. For ϵwe find α ≈ 0.44, which is
close to the previous value of α ≈ 0.5. Instead, for Δmax

L we
find α ≈ 0.2, which is half the value we found for Haar
random initial equilibrium states. Moreover, Δmax

L fluctu-
ates strongly for different realizations such that the fitted
scaling law (red solid line) provides only a rough orienta-
tion. Thus, the preliminary conclusions that we can draw
from these data is that correlation functions of energy
eigenstates behave differently from Haar random equilib-
rium states (which will typically overlap with many energy
eigenstates), which is an interesting result in its own right.
In particular, Albrecht et al. recently introduced an “eigen-
state einselection hypothesis” (Appendix B in Ref. [39]),
where they claim that the “general features of the consistent

histories quantities are unchanged” for energy eigenstates.
On a quantitative level, we see here clear evidence for the
opposite, but from a qualitative point of view we observe
the same: The difference between D−0.4 and D−0.2 might
not matter in practice, say, for D ≥ 10100. Thus, the
emergence of decoherence as studied here seems to be a
rather robust phenomenon if we restrict the attention to
slow and coarse observables of a nonintegrable quantum
many-body system.
We remark that we have also studied the case of

perturbed projectors of the form VδΠxV
†
δ, where the unitary

Vδ ¼ eiAδ rotates the projectors using a Hermitian matrix
A ¼ A†. However, for various A’s we found quantitatively

(a) (b)

(c) (d)

FIG. 8. Plot of ϵ for a random initial energy eigenstate. Blue
crosses refer to three different randomly chosen eigenstates
repeated for three different realizations of the random matrix
coupling, i.e., nine realizations in total. Other details are
as in Fig. 4.

(a) (b)

(c) (d)

FIG. 9. Plot of Δmax
L with otherwise the same characteristics as

in Fig. 8.
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similar results (apart from fluctuations). [We checked three
cases: Aij ¼ δi�1;j and Aij ¼ δiþj;Dþ1 (with respect to the
eigenbasis of the unperturbed Hamiltonian) and A ran-
domly drawn according to the same distribution as HI.]
Therefore, and also to keep the manuscript concise, we do
not display these results here, but we believe a systematic
study is an interesting task for the future.
Instead, we find it important to illustrate that the

emergence of decoherence is not a universal phenomenon
valid for all observables. To demonstrate this, we consider
the case of two strongly coupled systems exchanging
energy. To this end, we increase λ to 10λ such that the
right-hand side of the first equation in Eq. (16) equals 1.
Because of the strong interaction, local energy exchanges
will now happen quickly. In some sense, it is no longer
meaningful to talk about the local energies of A and B since
the local energy levels of systems A and B will strongly
hybridize to form new levels.
While the considered observable has the same coarse-

ness, we now observe a quite different behavior of
decoherence in Figs. 10 and 11. While typicality still holds
well, a much milder exponential suppression of quantum
effects is observed for ϵ and histories of length L ≥ 3, with
a scaling exponent around α ¼ 0.15 (Fig. 10). Even more
drastic changes appear for Δmax

L (Fig. 11) with an exponent
α ≈ 0 for L ¼ 5 (indicating perhaps a power-law suppres-
sion or no suppression at all). Recalling that we have to
base our conclusions on a finite (and rather small) amount
of samples, a clear-cut conclusion does not seem possible:
Exponential suppression of quantum effects, which
requires α > 0, seems possible but is not warranted, and
it is certainly much weaker than in the weak-coupling (slow
observable) regime.
Notably, exponential suppression of quantum effects

(with a large exponent α ≈ 0.5) still holds for the shortest

length of histories with L ¼ 2. This seems counterintuitive,
but it can be explained by recalling that we have chosen a
Haar random initial equilibrium state of the form (18) with
pxð0Þ ¼ Vx=D in Figs. 10 and 11. The two-time DF then
probes only quantum features of a two-time equilibrium
correlation function. They are decoherent because, first,
E½Πx0 jψðt0Þihψðt0ÞjΠy0 � ∼ δx0;y0 where E½…� denotes a
Haar random average, and second, typicality implies that
most pure states jψðt0Þi behave similarly. Indeed, for this
situation an analytical proof of decoherence has been given
in Ref. [49].
We end this central part of the manuscript by pointing out

that we have tested the robustness of our conclusions in
various further situations for an initial Haar random equi-
librium state. For instance, we considered random time
spacings tkþ1 − tk chosen uniformly either from ½0; τ� or
½τ; 2τ� (instead of the constant time spacing of tkþ1 − tk ¼ τ
considered here), we considered random instead of equally
spaced energies in the diagonal Hamiltonian blocks of
Eq. (15), we used the Gaussian unitary ensemble instead
of the Gaussian orthogonal ensemble for the off-diagonal
blocks of Eq. (15), and we also plotted other quantifiers that
one could derive from the DHC (3). In all these cases, we
observed the samequalitative behavior, i.e., the typicality of a
decay law of the formD−α.We do not show these results here
to keep the manuscript at a reasonable length.

IV. SET SELECTION PROBLEM

The set selection problem has been used to criticize the
histories formalism by pointing out that the DHC is
incomplete [18,22–25,27,30,98]. The basic reasoning
behind the criticism is the following. Consider for fixed
L and M the manifold H of all possible projectors that can
be used to define histories x (of very different physical
meaning). The dimension of this manifold scales like D2L,

(a) (b)

(c) (d)

FIG. 10. Plot of ϵ at strong coupling with otherwise the same
characteristics as in Fig. 4.

(a) (b)

(c) (d)

FIG. 11. Plot of Δmax
L at strong coupling with otherwise the

same characteristics as in Fig. 5.
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whereas the number of constraints imposed by the DHC in
Eq. (3) scales like M2L. Thus, the submanifold DH of
decoherent histories has a dimension that scales like
D2L −M2L, which (even though of measure zero with
respect to H) is enormous for D ≫ M. Hence, which of the
many physically very distinct histories should one use?
Note the close similarity to the preferred basis problem.
Here we discuss the set selection problem based on the

robust numerical findings from above (for further discus-
sion, see also Ref. [21]). In particular, and contrary to
previous claims, we suggest that there simply is no set
selection problem if one focuses on slow and coarse
observables of many-body systems—that is, situations
relevant to human perception—and the remaining freedom
in the choice of observable is actually important for the
ability of different observers to agree.
The key to our argument is to demand a certain stability

or robustness of decoherence with respect to the initial state
jψðt0Þi and times tk and to focus on approximate instead of
exact decoherence, which is sufficient for all practical
purposes. To recall our results above: We found approxi-
mate decoherence without exception for slow and coarse
observables for a large set of initial states, times, and
Hamiltonians. In contrast, it seems likely that the vast
majority of decoherent histories in DH is not robust in this
sense. Instead, it likely depends sensitively on, e.g., jψðt0Þi,
as sketched in Fig. 12.
For instance, one example is a coarse-graining fΠxðtkÞg

at time tk with one projector, say, the first for x ¼ 1, equal
to Π1ðtkÞ ¼ jψðtkÞihψðtkÞj. Here, jψðtkÞi ¼ Uk;0jψðt0Þi is
the unitarily evolved initial state. This coarse-graining
satisfies by construction the DHC, but it is very sensitive
to ψðt0Þ and tk: Changing them while leaving the projectors
fixed will quickly destroy decoherence.
One might object that those examples are nevertheless

legitimate, but there are fundamental practical obstacles.
First, it is unclear how humans should get access to a
projector of the form jψðtkÞihψðtkÞj using earthly instru-
ments. Second, if the MWI is correct, then knowledge of
the global jψðtkÞi is impossible since observers are limited
to their own branch jψðxÞi. Finally, proper relativistic
considerations teach us that at any given time t we
can access only part of the universal wave function
ρaccessibleðtÞ ¼ trinaccesiblefjψðtÞihψðtÞjg. Thus, even if we
assume we find (by some magic instrument) a strange
decoherent history depending on ρaccessibleðtÞ, decoherence
would likely be destroyed in the next second once a new
photon from a hitherto unobserved star reaches us.
Admittedly, this is not a rigorous argument showing that

most of the histories in DH are of this fragile nature, but one
should also admit in defense of this argument that an
interesting example of stable and robust decoherent histor-
ies (beyond what we discussed here) has never been
presented. Thus, we conjecture that the set selection
problem is solvable by focusing on locally and practically

accessible, approximately decoherent histories that are
stable and robust.
We further strengthen the argument by pointing out the

similarity with debates dating back to Boltzmann,
Loschmidt, and Zermelo. For a given initial state, it is
possible to find a continuum of observables that does not
thermalize or entropies that violate the second law, a fact
well known in pure state statistical mechanics. But all these
artificially constructed counterexamples are of little rel-
evance because the smallest perturbation of the initial state
or Hamiltonian causes them to behave in agreement with
thermodynamics again.
In addition, we believe that approximate (instead of

exact) decoherence is key to resolve this problem because
approximate decoherence can be very robust; see the
“stability island” in Fig. 12. (In addition, our scaling law
indicates for realistic many-body systems that approximate
decoherence becomes practically indistinguishable from
exact decoherence.) Indeed, two different observers never
perceive exactly the same observable (for instance, by
reading of a display at slightly different angles), but both
should still have compatible perceptions (this point is also
central to quantum Darwinism [28–30]). Thus, instead of
trying to find a single spot in thehistory spaceH that is exactly
decoherent, it is more important to find the extended region
that guarantees robust approximate decoherence. In this
respect, we are sceptical about the idea that approximately
decoherent histories can be always slightly distorted to
become exactly decoherent [18,23,83,99]: Not only is it
unclear how to define a slight distortion, but it also seems
unlikely that this distortionwill be robust (independent of ψ0

and tk).
Thus, the picture that emerges is that of a robust stability

island that describes accessible and almost exactly deco-
herent histories for large systems. This stability island is
itself a huge region but for good reasons. First, it guarantees
that different observers can have similar perceptions of

(a) (b)

FIG. 12. The square depicts the manifold H of all histories, and
the shade indicates the amount of decoherence (white regions
correspond to no decoherence). The dark black line depicts the
submanifold DH of exactly decoherent histories, which is very
sensitive to different initial states ψðt0Þ (a) and ψ 0ðt0Þ (b). All
DHðψ0Þ intersect for histories of conserved quantities (blue dot,
exaggerated in size). Most important to our argument is the
stability island (pink shaded region) of approximately decoherent
histories, which remains (almost) unchanged for (a) and (b).
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classical reality. Second, the set of slow observables in this
stability island will approximately commute for large
systems, thus allowing one to define joint decoherent
histories describing, e.g., the position, momentum, and
energy of a flying stone. (However, the technical details of
how to precisely handle approximately commuting observ-
ables are still subject to research [100–102].)
We finish with two remarks. First, there is also an

unappreciated set selection problem in EID. Gauge sym-
metries imply that there is a continuum of physically
equivalent system-environment tensor product splittings
of the same physical system [103,104]. Each splitting gives
rise to a different system-environment Hamiltonian and,
consequently, a different pointer basis. Of course, what
matters in practice is that the pointer basis is compatible
with the experimental measurement procedure, but this
resolution of the “pointer basis selection problem” is
identical in spirit to the resolution proposed here in the
histories context.
Second, we repeat that the proposed solution is restricted

to slow and coarse observables of many-body systems that
approximately decohere. It does not solve the set selection
problem if one demands exact decoherence. Also, other
fundamental problems within the histories formalism such
as the one debated in Refs. [105–107] are not directly
influenced by our argument.

V. CONCLUDING PERSPECTIVES

A. Summary

We presented a direct evaluation of the DF for multiple
(up to five) time steps from first principles for a nontrivial
example. We rigorously defined quantum-interference
effects and extracted a scaling law of the form D−α by
varying the Hilbert space dimension D over 4 orders of
magnitude. This was checked for a wide variety of
situations, and it provided a firm starting point to quanti-
tatively discuss the DHC.
The resulting picture is that coarse and slow observables

of nonintegrable many-body systems give rise to a robust
and stable form of approximate decoherence. While our
calculations were restricted to a particular model, the
success and versatility of random matrix theory suggests
that our results are more widely applicable; see also
Refs. [39,41,49,50,66–68] for supporting evidence.
Based on this evidence, we suggested that the preferred

basis problem of the MWI or the set selection problem of
the histories formalism, respectively, is solvable if one is
interested in observables relevant to us humans (which are
slow and coarse and give rise to a robust and stable form of
decoherence) and if one focuses on approximate instead of
exact decoherence. Indeed, our results indicated that for
such observables the emergence of decoherence is universal
and happens for almost all pure states: No product state

assumption, no low-entropy initial state, and no ensemble
average were necessary in our approach. Moreover, it
seems reasonable to expect (but difficult to prove) that
possible ambiguities in the choice of branches and histories
become irrelevant as different slow and coarse obervables
approximately commute for large quantum systems.
Importantly, this picture does not contradict previous

works, but it complements and extends them by providing
new perspectives, tools, and insights. For instance, our
results do not rely on the widely used concepts of EID and
quantum Darwinsim, but they are not in conflict with them.
Indeed, a 1=

ffiffiffiffi
D

p
scaling law has been also extracted for a

random matrix model in the context of EID [108].
Moreover, we believe nonintegrability is a key factor,
but it is usually not regarded as such in other works on
the quantum-to-classical transition.
Finally, we also explicitly saw that an equilibrated

multiverse gives rise to branches with locally well-defined
entropic arrows of time, while overall, the multiverse
remains statistically time symmetric. While our model
could be claimed to be unrealistic because of the
Boltzmann brain paradox [91–93], it nevertheless explicitly
illustrates two crucial features. First, the branching struc-
ture of the multiverse is pure convention and does not
explain our arrow of time or meaningful thermodynamic
entropy, contrary to suggestions made in Refs. [109,110].
Instead, from a fundamental point of view it would be
preferable to start from a time-symmetric description of the
MWI or histories formalism [19,111–114]. Second, oppo-
site arrows of time can peacefully coexist within the same
quantum multiverse, in contrast to opposite arrows of time
in spacelike separated regions of a classical multiverse
[115], which are unstable with respect to the slightest
perturbation [116]. For further details about the emergence
of classicality in time-symmetric situations, see Ref. [39].
Moreover, that arrows of time can be an emergent concept
in a time-reversal symmetric universe was also noted in
different contexts, e.g., in Refs. [115,117–119].

B. Outlook

Our work could stimulate various research directions, as
it combines tools and concepts related to the quantum-to-
classical transition, quantum cosmology, quantum statis-
tical mechanics, and quantum stochastic processes.
For instance, while we argued that nonintegrability could

be a key factor, chaos has been also realized as detrimental
for the emergence of classicality within the Wheeler-
DeWitt equation due to the breakdown of the WKB
approximation, and EID was invoked to remedy for that
[120–122]. Within our nonrelativistic quantum-mechanical
model, we cannot make any direct contribution to this
question, but one view suggested by this work is that
emergence of classicality is best viewed as a synergy of
different mechanisms instead of a single all-ruling idea.
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Indeed, it has been recently pointed out that the emergence
of classicality in the early Universe is still an unsolved
puzzle [123], and the present perspective might be able to
add a piece to it.
Moreover, it would be desirable to get a better analytical

understanding of the DHC. The results reported in
Refs. [41,49] were restricted to three-time correlation
functions and generalizing them to higher orders likely
requires novel techniques (however, some progress for
arbitrary L-time correlation functions in a different context
was reported in Refs. [47,48,124,125]). Further insights
into the timescales at which decoherence arises are also
desirable, and it is in particular also worth asking about
“recoherence times”: Because of Poincaré recurrences, the
emergence of decoherence in a finite-dimensional quantum
system cannot be a persistent, eternal phenomenon. In
particular, it would be intriguing to find out how the
recoherence time scales with the number of time steps L
or, more generally, with the net information acquired along
a history. In addition, it seems that more research is
necessary to understand the general consequences of
approximate instead of exact decoherence given that the
latter is not the rule.
We further remark that we used the conventional

framework of nonrelativistic quantum mechanics and
assumed the validity of the Born rule. A significant fraction
of research is devoted to interpreting or understanding the
origin of the Born rule within the MWI (see, e.g.,
Refs. [5,6,30,36,126,127] and references therein). The
present approach could also add insights into this debate
when considering very long histories for L ≫ 1, as recently
studied by two of the authors [90].
Finally, our model calculations presently suggest that for

any coarse and slow observable of a nonintegrable system,
every possible classical history is realized. While this
suggests the realization of a wide array of histories, it is
not necessarily true that “everything that can happen will
happen” (as sometimes portrayed in both scientific and
popular accounts of the MWI). For instance, extremely
unlikely (sequences of) outcomes might be restricted to
very small subspaces because they are highly atypical, but
our results indicated that large subspaces are needed for the
emergence of classicality; see also Ref. [90]. We also
collected some evidence in Fig. 6 that there is structure in
the multiverse among different branches, but much more
work in that direction needs to be done. Finally, whether all
the perceived randomness in our world stems from quan-
tum effects [128] or not [129] remains a fascinating
question, too.

Note added. Recently, evidence appeared that confirms our
results for realistic quantum-chaotic many-body systems
and suggests that integrable finite-size systems show a
much weaker form of decoherence [130].
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