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We propose a solvable model of Quantum Darwinism to encoding transitions—abrupt changes in
how quantum information spreads in a many-body system under unitary dynamics. We consider a
random Clifford circuit on an expanding tree, whose input qubit is entangled with a reference. The
model has a Quantum Darwinism phase, where one classical bit of information about the reference
can be retrieved from an arbitrarily small fraction of the output qubits, and an encoding phase where
such retrieval is impossible. The two phases are separated by a mixed phase and two continuous
transitions. We compare the exact result to a two-replica calculation. The latter yields a similar
“annealed” phase diagram, which applies also to a model with Haar random unitaries. We relate our
approach to measurement induced phase transitions (MIPTs), by solving a modified model where
an environment eavesdrops on an encoding system. It has a sharp MIPT only with full access to
the environment.

Introduction A pillar of modern quantum statistical
mechanics [1–3] is the idea that unitary dynamics in
a many-body system generically scrambles local quan-
tum information. Eventually, it becomes highly nonlocal
and impossible to retrieve, unless the observer has access
to more than half of the system: the information has
been encoded [4–7]. Information scrambling and encod-
ing have far-reaching consequences, for example on the
quantum physics of black holes [8–13].

Meanwhile, a basic premise of Quantum Darwinism
(QD) [14–19] is that a macroscopic environment, e.g., a
measurement apparatus, duplicates some classical infor-
mation. Hence, the latter becomes retrievable in multi-
ple small fractions of the environment. It is important
to view the environment itself as a many-body quantum
system. Indeed, the theory of QD aims to deduce the
properties of the classical world from the core principles
of quantum physics. According to QD, the duplication
of information underlies the emergence of classical objec-
tivity [20–23]: being objective is being known to many.

Quantum Darwinism and encoding are distinct ways
of many-body quantum information spreading. Both be-
haviors emerge from the microscopic laws of quantum
mechanics, just like both ferro- and para-magnetism can
emerge from the Ising model. Ferro- and para-magnetism
are distinct phases of matter, separated by a continuous
phase transition. Can we view QD and encoding as stable
phases of quantum information, and are they separated
by some transition [24, 25]? In this Letter, we propose
a solvable model of sharp phase transitions from QD to
encoding. Our model is a random Clifford unitary circuit
on an expanding tree, whose root forms a maximally en-
tangled pair with a reference qubit [Fig. 1-(a)]. It has
one parameter, analogue of the temperature in the Ising
model. We then ask whether it is possible to retrieve in-
formation about the reference bit from a small fraction
f < 1/2 of the tree’s leaves (output qubits). We deter-
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FIG. 1. (a) Model for Quantum Darwinism-encoding tran-
sitions on an expanding tree with t = 3 generations. (b)
Information on R is accessible to a small subsystem (squares)
in the Quantum Darwinism (QD) phase, and inaccessible in
the encoding phase. In the mixed phase, the information is
accessible in a fraction of random realizations. (c) A tree
model of an environment eavesdropping on an encoding dy-
namics. (d) A transition is only possible with full access to
the environment f = 1.

mine exactly the model’s phase diagram [Fig. 1-(b)]. It
has a stable QD (encoding, resp.) phase, where one may
(may not, resp.) extract a classical bit of information
about the reference bit. Unlike the Ising model, the en-
coding and QD phases are separated by an intermediate
mixed phase and two continuous transitions.

Another inspiration for this work is the measurement-
induced phase transitions (MIPT) [26–37], which are
also “quantum information transitions”. In the standard
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setup, a generic many-body unitary evolution is contin-
ually interrupted by local measurements. By tuning the
measurement rate, one obtains a transition between a
phase with volume-law entanglement entropy and one
with area law. The MIPTs concern entanglement prop-
erties of random states drawn from the Born rule, and
are delicate to study and observe [38–40]. Here, we con-
sider a “Darwinian” MIPT setup, see Fig. 1-(c,d). We
amend our model in the encoding phase with eavesdrop-
ping qubits [41], and ask whether they can extract a clas-
sical bit of information about the reference [34, 42–45].
We show that a sharp transition occurs at a critical rate
of eavesdropping, if and only if one has access to all the
eavesdropping bits.
Model for QD-encoding transition Consider a maxi-
mally entangled pair (|0⟩R|0⟩A+ |1⟩R|1⟩A)/

√
2 between a

reference qubit R that will be kept intact, and the qubit
A that will be the root of an expanding binary tree uni-
tary circuit, see Fig. 1. The edges of the tree represent
the world lines of the qubits constituting a growing sys-
tem [46, 47]. At each branching, we recruit a new qubit
with state |0⟩, and apply a CNOT gate to it and the input
qubit:

. (1)

Equivalently, the branching acts on the input qubit as
an isometry

∑
i=0,1 |ii⟩⟨i|. In addition, we apply a ran-

dom one-body Clifford unitary (drawn uniformly) to each
edge of the tree with probability p, which is the parame-
ter that interpolates between the QD (p = 0) and encod-
ing limits (p = 1). After t time steps, there are N = 2t

output qubits, from which we draw the subsystem F ran-
domly: each output qubit belongs to F with probability
f . We denote by U the resulting unitary from A and
N − 1 recruits to the N output qubits. By construction,
U is a Clifford unitary, which can be efficiently simu-
lated [48, 49]. Here, we can analyze the knowledge of F
on R analytically [50].
For this, we recall the defining property of a Clifford

unitary: it transforms any Pauli operator to a single
product of Pauli’s, known as a Pauli string. For example,
a one-body Clifford unitary permutes X,Y and Z, and
choosing a random one-body Clifford amounts to picking
one among the 6 permutations (here and below, a Pauli
string will be always considered modulo a phase ±1,±i).
Now, let us fix a realization of our model, and consider a
Pauli string P acting on the subsystem F . By definition,
our Clifford unitary U will pull it back to Q = U†PU , a
Pauli string acting on A and the N −1 recruits. We then
contract it with the recruit states (|0⟩⟨0|)⊗N−1 to obtain
a Pauli operator OA acting on A. There are two possibil-
ities: (1) if Q contains an X or Y acting on some recruit
bit, OA vanishes. (2) Otherwise, OA ∈ {I, Z,X, Y } is
identity or a Pauli.

Repeating this for all Pauli strings acting on F , we
construct a set s ⊂ {I,X, Y, Z} of all the nonzero oper-
ators OA thus obtained. It is not hard to see that s is
a subgroup of {I,X, Y, Z} (modulo phase), i.e., s must
equal one of these:

n = {I}, z = {I, Z},x = {I,X},y = {I, Y },
a = {I, Z,X, Y }. (2)

Since RA is initially a maximally entangled pair, s tells
us exactly what information about R is accessible from
F . If s = n, F is uncorrelated with R. If s = z,x or y, F
contains one classical bit of information on R: some Pauli
string OF on F is perfectly correlated with OR = Z, X
or Y on R. More precisely, OFOR is a stabilizer of the
output state Ψt: OFOR|Ψt⟩ = ±|Ψt⟩. If s = a, one may
distill from F a qubit maximally entangled with R [50].
Phase diagram The “order parameter” of our model is
thus the probability distribution of s:

π := (πn, πz, πx, πy, πa) , (3)

where πn is the probability that s = n, and so on. We
can compute π of a tree with t generations from one with
(t− 1) using a “backward recursion” relation. The phase
diagram of the model is determined by iterating this rela-
tion and analyzing the t→ ∞ limit of π as a function of p
(and f) [50]. As a result, we find three phases, see Fig. 1-
(b) for a sketch and Fig. 2 for plots. When p < 3/5, we
have a Quantum Darwinism (QD) phase, where for any
f ∈ (0, 1), we have πa → 0, πn → 0, and

πz → 3− 6p+
√
24(p− 1)p+ 9

6− 6p
, πx,y → 1− πz

2
. (4)

(πz → 1 as p → 0.) When p > 3/4, we have a encoding
phase, where πn → 1 if f < 1/2 and πa → 1 if f > 1/2.
Finally, when 3/5 < p < 3/4, we have a mixed phase.
For any f < 1/2, we have πa → 0 while

(πn, πz, πx, πy)
f< 1

2→ (1− u,
u

2
,
u

4
,
u

4
), u =

6− 8p

3− 3p
. (5)

Here u is probability that we can retrieve one classical
bit from the subsystem F , and it decreases from 1 to 0
as p varies from 3/5 to 3/4. The solution for f > 1/2 is
obtained from (5) by swapping πn and πa.
The existence of the two transitions, at p = 3/5 and

p = 3/4 respectively, where π is non-analytical, can be
associated to the breaking/restoration of two symmetries
of the model. First, a Z2 symmetry acts by exchanging
πn ↔ πa, or swapping the subsystem F and its comple-
ment (without R) [51]. This symmetry is preserved by
the circuit dynamics, weakly broken by the “boundary
condition” (the choice of F ), and restored only in the
QD phase. Second, a S3 symmetry acts by permuting
x,y, z (while leaving n and a invariant). This symmetry
is preserved by the random one-body Clifford unitary,
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FIG. 2. (a,b) p-dependence of the order parameters 1 − πn

(identical to Fig. 1-b) and πz. (c,d) Averaged mutual infor-

mation I(R,F ) as a function of the size fraction f in the QD
and encoding phase (resp.). The average is over the random
Clifford unitary and the random subset F . The finite t data
are from numerical iteration of the backward recursion, and
the t = ∞ curves are the exact prediction [50].

broken by the branching (1), and restored only in the en-
coding phase. The mixed phase breaks both symmetries.
We numerically explored a few other Clifford variants of
our model, and found the above two-stage scenario to be
rather general [52].
Mutual information and discord It is useful to con-
sider the mutual information between F and R, defined
as I(R,F ) = H(R) + H(F ) − H(RF ), where H(X) =
−Tr[ρX log2 ρX ] is the von Neumann entropy. In our
model, it is not hard to see that I(R,F ) = log2 |s| is the
dimension of s as a vector space over Z2 [50]. So, in the
QD phase,

I(R,F ) → 1 (0 < f < 1) (QD) , (6)

with probability one [Fig. 2-(c)]. The independence of I
on the fraction size f , sometimes called the “objectivity
plateau”, is a hallmark of QD [16]. Meanwhile, in the
encoding phase,

I(R,F ) →
{
0 f < 1/2

2 f > 1/2
(encoding) (7)

with probability one [Fig. 2-(d)], as expected from the
Page curve [53]. In the mixed phase, we may wonder
how the I-f curve looks like in a single realization (with
large t), where we increase f by gradually adding random
qubits into F . To address this question, we computed
the joint distribution of (s, t) corresponding to two ran-
dom subsystems F ⊂ G, and a same unitary U [50].
As a result, we found that a single-realization I-f curve
is exactly the QD one (6) with probability u defined in
(5), and exactly the encoding curve (7) with probability
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FIG. 3. Comparing the annealed mutual information
I(2)(F,R) (9) with the genuine one I(F,R). They disagree in
the mixed phase (3/5 < p < 3/4) and in part of the encoding
phase where 3/4 < p < pc(f). pc(f) (solid curves) is deter-

mined numerically using the recursion relation for I(2) [50].

1 − u. In other words, the intermediate-phase ensem-
ble is a mixture of QD and encoding realizations, both
occurring with nonzero probability in the t→ ∞ limit.

In general, the mutual information between F and R
does not correspond exactly to the amount of informa-
tion that one can learn about R by observing F [54, 55].
The discrepancy is known as “quantum discord”. Here,
the discord vanishes whenever I(R,F ) = 1, given the
knowledge of the unitary circuit: we can construct the
observable on F which reveals the classical bit of infor-
mation on F . Moreover, we can show that in the QD
phase, one may still retrieve a bit of information from R
even with access to only the Z operators on F .

Two-replica analysis A valuable tool to compute quan-
tum information quantities is the “replica trick” [56–61].
Yet, results of replica calculations can be subtle to inter-
pret, especially if one is not able to take the appropriate
replica number limit. Here, we perform a two-replica
analysis of our model, and compare the result with the
exact phase diagram.

In the replica approach, the accessible quantity is the
“annealed” mutual information

I(2)(F,R) := log2 Tr
[
ρ2FR

]
− log2 Tr

[
ρ2F

]
+ 1 , (8)

where [. . . ] denotes an average over U and F . Note that
I(2) would equal to the average von Neumann mutual

information if Tr[ρ2X ] were equal to 2−H(X) (which is
wrong!). The annealed mutual information can be com-
puted by random unitary circuit techniques [37, 51, 62–
64]; indeed, since the Clifford group is a 2-design [65],
I(2)(F,R) will not change if we replace a random one-
body Clifford unitary with a Haar-random one in U(2).
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We find [50]:

I(2)(F,R) →


0 f < 1/2, p > pc(f)

2 f > 1/2, p > pc(f)

1 p < pc(f)

. (9)

Here pc(f) = pc(1 − f) is a threshold function that in-
creases from pc(0) = 3/4 to pc(1/2) = 3

7

(
2
√
2− 1

)
=

0.783 . . . , see Fig. 3.
The “annealed phase diagram” of I(2) is similar to the

exact one, with however differences: I(2)(F,R) = 1 in
both QD and mixed phases, as well as a small part of
the encoding phase. So, the annealed phase diagram is
biased towards QD, which we qualitatively explain as fol-
lows. Both purity averages in (8) are dominated by real-
izations with small entanglement entropy in F . Now, QD
states tend to have low entanglement; indeed, the “per-
fect” QD-state (produced at p = 0) is the GHZ state [66],

|GHZ⟩ = 1√
2
(|0R 0 . . . 0︸ ︷︷ ︸

F

0 . . . 0⟩+ |1R 1 . . . 1︸ ︷︷ ︸
F

1 . . . 1⟩) .

It has one bit of entanglement entropy for any biparti-
tion. In comparison, an encoding state has a volume law
entropy. Hence, in both QD and mixed phases, QD re-
alizations will dominate I(2), which fails to distinguish
them. In the encoding phase, a QD realization occurs
with an exponentially small (in t) probability, yet its
Tr[ρ2F ] and Tr[ρ2FR] can be exponentially large compared
to the typical encoding states. Hence, rare QD states in
the encoding phase can dominate the annealed mutual
information.
Relating to MIPT The QD-encoding transitions
(QDETs) differ from the measurement induced ones
(MIPTs) in two ways. First, MIPTs result from the
competition between a scrambling system and its en-
vironment (the measurement apparatus). Meanwhile,
QDETs take place within a structured environment [67].
In the QD phase, the environment behaves as a macro-
scopic apparatus that “measures” the reference spin in
some direction (the direction is Z with probability πz,
and so on), and broadcast the outcome. As we tune
the apparatus into the encoding phase, it becomes dys-
functional and fails to broadcast any information on the
reference system.

Second, QDETs are about the information available in
small environment fractions, while MIPTs are observable
only with full access to the environment. To support this
claim, we consider a variant of our model that mimics
the MIPT setup. We take the above model at p = 1
(in the encoding phase), and let every qubit in the tree
be subject to an eavesdropping event with probability r.
The eavesdropping consists again as a branching (1), of
which one output bit is then emitted to the “environ-
ment”, see Fig. 1-(c). After t generations, we have a sys-
tem with N = 2t bits and an environment E of average
size |E| = (2N − 1)r.

Then we ask: can we retrieve information on R from a
fraction F of the environment, with |F |/|E| = f? More-
over, we only allow access to Z operators on F (allow-
ing access to all operators results in an entirely differ-
ent phase diagram [52]). Then, the order parameter (3)
obeys a modified recursion relation [50]. In particular,
πa = 0, and the probability of retrieving one classical
bit equals 1 − πn. We find that, when f = 1, there is a
transition:

πn
f=1→


4r2 − 8r + 1

1− r
r < rc

0 r > rc ,

(10)

where rc =
1
2

(
2−

√
3
)
≈ 0.134. This transition is equiv-

alent to the standard MIPT. Indeed, consider projec-
tively measuring Z on all the qubits of F . If s = n, the
measurements reveal nothing about R, which remains en-
tangled with unmeasured bits. Otherwise, if say s = x,
the measurements will project the qubit R to an eigen-
state of X, disentangling it. Therefore, r > rc is the
area-law (purified) phase and r < rc the volume-law (en-
coded) phase [34, 42, 44, 45]. Note that the transition
exists only at f = 1, where almost all the environment is
accessible. For any f < 1, πn(t→ ∞) depends smoothly
on r and never vanishes. This is after all reasonable from
the MIPT point of view: we need all the measurement
outcomes to construct the quantum trajectory state.

Outlook We introduced a solvable model for Quantum
Darwinism-encoding transitions (QDETs). They are a
new type of quantum information phase transitions under
unitary evolution, where the different phases are char-
acterized by whether information about the reference
qubit is retrievable from small fractions of the environ-
ment. It will be interesting to identify QDETs in finite-
dimensional (d <∞) systems and characterize their uni-
versality classes; our tree model is equivalent to an all-
to-all (d = ∞) circuit, and has simple mean-field critical
exponents [68]. In particular, it may be nontrivial to
establish a QD phase in a d < ∞ geometry, which hin-
ders the fast spread of information [69–71]; an expanding
(de Sitter) geometry could be necessary. Another im-
portant question concern QDETs in non-Clifford mod-
els [24, 41, 72], in particular, whether the mixed phase is
generic. Indeed, the knowledge of F onR is in general not
“quantized” as in a Clifford model. This will affect the
nature of the order parameter, and make even the mean-
field theory more involved [46, 47, 73]. Finally, encoding
is proper to the quantum realm, and Quantum Darwin-
ism is a theory of the emergence of the classical. Thus,
we hope to shed light on the quantum-classical transition
through the lens of dynamical critical phenomena.
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edges support from CNRS and ENS, and thanks LPTMS
for hospitality.
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ternostro, and B. Vacchini, Collisional unfolding of quan-
tum darwinism, Phys. Rev. A 99, 042103 (2019).

[26] B. Skinner, J. Ruhman, and A. Nahum, Measurement-
induced phase transitions in the dynamics of entangle-
ment, Phys. Rev. X 9, 031009 (2019).

[27] Y. Li, X. Chen, and M. P. A. Fisher, Quantum zeno effect
and the many-body entanglement transition, Phys. Rev.
B 98, 205136 (2018).

[28] A. Chan, R. M. Nandkishore, M. Pretko, and G. Smith,
Unitary-projective entanglement dynamics, Phys. Rev. B
99, 224307 (2019).

[29] C.-M. Jian, Y.-Z. You, R. Vasseur, and A. W.W. Ludwig,
Measurement-induced criticality in random quantum cir-
cuits, Phys. Rev. B 101, 104302 (2020).

[30] X. Cao, A. Tilloy, and A. De Luca, Entanglement in
a fermion chain under continuous monitoring, SciPost
Phys. 7, 024 (2019).

[31] M. Szyniszewski, A. Romito, and H. Schomerus, Entan-
glement transition from variable-strength weak measure-
ments, Phys. Rev. B 100, 064204 (2019).

[32] Y. Li, X. Chen, and M. P. A. Fisher, Measurement-
driven entanglement transition in hybrid quantum cir-
cuits, Phys. Rev. B 100, 134306 (2019).

[33] S. Choi, Y. Bao, X.-L. Qi, and E. Altman, Quantum er-
ror correction in scrambling dynamics and measurement-
induced phase transition, Phys. Rev. Lett. 125, 030505
(2020).

[34] Y. Bao, S. Choi, and E. Altman, Theory of the phase
transition in random unitary circuits with measurements,
Phys. Rev. B 101, 104301 (2020).

[35] M. J. Gullans and D. A. Huse, Dynamical purifica-
tion phase transition induced by quantum measurements,
Phys. Rev. X 10, 041020 (2020).

[36] X. Turkeshi, A. Biella, R. Fazio, M. Dalmonte, and
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MODEL OF QUANTUM DARWINISM-ENCODING TRANSITIONS: SOLUTION DETAILS

Clifford-Operator approach to Quantum Darwinism: generalities

In this section we explain in detail our general approach to Quantum Darwinism with Clifford unitary circuits. The
results of this section do not depend on the tree structure of the models studied in the main text, and apply to a
more general setup, depicted as follows:

(11)

where U is any Clifford unitary acting on N qubits. The N input qubits are A, which is maximally entangled to the
reference bit R, and the set C of (N−1) recruits that are initialized in a product state |0⟩⊗(N−1). For convenience, we
shall also denote by U the extended unitary IR ⊗U that acts trivially on the reference. We would like to understand
the correlation between a subset F of the set E of output bits with R.
We start by introducing some notations. Consider a set of qubits X whose size is |X|. We shall denote by PX

the group generated by the Pauli operators acting X; the elements in PX are referred to as Pauli strings on X. For
example, PF is the set of all the (Pauli string) observable to which we have access. The group structure of PX is
defined by operator multiplication modulo a phase. For example, we consider ZX = Y and ZXZ = X to be valid
identities, ignoring the factors i and −1, respectively. (In general, the ignored phases are always a power of i.) Then,

PX ≃ Z2|X|
2 is isomorphic to the 2|X|-dimensional vector space over the finite field with two elements Z2. Hence, we

should view PX as a vector space.
A state |Ψ⟩ on the qubit set X is a stabilizer state if there exists a subspace SΨ ⊂ PX of dimension |X|, such that

∀O ∈ SΨ , O|Ψ⟩ = ±|Ψ⟩ . (12)

The space SΨ is referred to as the stabilizer space. It follows that the initial state of the general setup,

Ψ0 =
1√
2
(|0R0A⟩+ |1R1A⟩)

∏
j∈C

|0j⟩ (13)

is a stabilizer state (defined on the qubit set RAC). The stabilizer space is spanned by the following basis:

SΨ0
= span(ZRZA, XRXA, Z1, Z2, . . . , ZN−1) (14)

where Zj acts on the j-th recruit. In particular, as R and A form a maximally entangled pair, ZR and ZA are perfectly
correlated : ZRZA|Ψ0⟩ = |Ψ0⟩. The same can be said of XR and XA.
By definition, a Clifford unitary U maps any Pauli operator to a Pauli string, and thus determines an isomorphism

between the group of Pauli strings on the input and output qubits:

U : PRE → PRAC , O 7→ U†OU . (15)

Note that the action of U is to “pull back” an operator on the output bits to one on the input ones. It follows that
the final state |Ψt⟩ := U |Ψ⟩ is also a stabilizer state, with the following stabilizer space:

SΨt
= U−1SΨ0

. (16)

Now, consider the sets of stabilizers supported on F and on RF , SΨt
∩ PF and SΨt

∩ PFR, respectively. Both
sets are Z2-vector spaces, and the former is contained in the latter. Their dimensions can differ by at most 2, since
dim(PFR)− dim(PF ) = 2:

dim(SΨt
∩ PFR)− dim(SΨt

∩ PF ) ∈ {0, 1, 2} . (17)
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We now come to the first main result: the above dimension difference equal the mutual information between F and R
in the unit of qubits. Indeed, a classic result on stabilizer states is that the dimension of the stabilizer space SX is
related to the entanglement entropy (in unit of qubits, with respect to the state Ψt) of the subsystem X as follows

H(X) = |X| − dim(SΨt ∩ PX) , (18)

where |X| is the size of X. As a consequence, recalling that H(R) = 1, we have:

I(F,R) = H(F ) +H(R)−H(FR) =|F | − dim(SΨt ∩ PF ) + 1− |FR|+ dim(SΨt ∩ PFR)

=dim(SΨt ∩ PFR)− dim(SΨt ∩ PF ) . (19)

Furthermore, the quotient space

Q :=
SΨt ∩ PFR

SΨt
∩ PF

, (20)

whose dimension equals I(F,R), characterizes more explicitly the correlation between F and R. Let us discuss case
by case:

• When dim(Q) = 0, there is no stabilizer supported on FR that acts non-trivially on R. Thus, we cannot find
any Pauli string on F that is perfectly correlated with some non-identity Pauli on R. This is expected from the
zero mutual information.

• When dim(Q) = 1, there is one stabilizer supported on FR acting non-trivially on R. So it takes the form
PROF , where P ∈ {X,Y, Z} and OF ∈ PF . Therefore, PRO|Ψt⟩ = ±|Ψt⟩ and thus OF and PR are perfectly
correlated 1. Also, since dim(Q) = 1, two nonzero representatives of the quotient must differ by a stabilizer in
F . Hence the Pauli PR is unique: there can be perfect correlation between some Pauli string in F and one and
only one Pauli on R.

• Finally dim(Q) = 1 means that we can two stabilizers ZROF and XRO
′
F . They must commute, so OF and O′

F

must anti-commute, and can be viewed as the Z and X operators of some logical qubit. We have thus distilled
a qubit from F that is maximally entangled with R, as expected from I(F,R) = 2.

So far we have been focusing on the output qubits. The discussion is conceptually straightforward, but computa-
tionally inconvenient, since SΨt

is cumbersome to describe directly. To overcome this, we shall use the isomorphism
U (15) to pull back the quotient Q to the input bits. Using (16) and the fact that U acts trivially on R, we have

U(Q) =
U(SΨt

∩ PFR)

U(SΨt ∩ PF )
=

SΨ0
∩ U(PFR)

SΨ0 ∩ U(PF )
=

SΨ0
∩ (U(PF ) + PR)

SΨ0 ∩ U(PF )
. (21)

Now, recall that SΨ0
is explicitly known (14):

O ∈ SΨ0 if and only if O = OROA

∏
j∈C

Z
ej
j (22)

for some O ∈ {I,X, Y, Z} and (ej) ∈ {0, 1}C . We now claim that the pull-backed quotient is isomorphic to the
“accessible subspace” s described in the main text, and of which a formal definition is the following:

s := {OA ∈ PA|OA = TrC [ρC U(OF )] for some OF ∈ PF } (23)

Here ρC =
∏

j∈C |0j⟩⟨0j | is the initial density matrix of the recruits set C and TrC is the partial trace on C. To show
that claim, consider the linear map

ι : SΨ0 ∩ (U(PF ) + PR) ∋ O = OROA

∏
j∈C

Z
ej
j 7→ OA ∈ PA . (24)

1 O cannot be identity; otherwise, we would have found a stabilizer supported on R, contradicting H(R) = 1.
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Now, O ∈ ker(ι) if and only if OR = I, which is equivalent to O ∈ SΨ0
∩ U(PF ). Hence, ι induces an isomorphism

fromU(Q) to its the image of ι. It remains to show that im(ι) = s. Indeed, OA ∈ imag(ι) if and only if there is some
OF ∈ PF such that U(OF ) = OA

∏
j∈C Z

ej
j . And the last formula is equivalent to TrC [ρCU(OF )] = OA. In summary,

we have established the isomorphism

ι : U(Q) ≃ s . (25)

In particular, s is indeed a Z2-vector space.
Combining (19) and the above isomorphism, we conclude that the mutual information between F and R is equal

to the dimension of s

I(F,R) = dim(s) . (26)

Similarly, combining the isomorphism ιU|Q and the discussion below (20) about the information-theoretical meaning
of Q, we may see that s describes indeed the information on R retrievable from F , as advocated in the main text. In
particular, a non-identity Pauli OA ∈ s if and only if there is some Pauli-string observable in F OF ∈ PF such that
PROF |Ψt⟩ = ±|Ψt⟩, that is, OF is perfectly correlated with the same Pauli OR acting on the reference qubit.

Before proceeding, we caution that, unlike Q, s does not tells us which operators OF are perfectly correlated with
R, but only their existence. Describing explicitly the possible OF ’s is in general a harder question. See however the
end of Section .

Backward recursion on a tree

We showed above that the “accessible subspace” s [defined in (23)] captures what F knows about R. Now, we come
to consider how to compute it (more precisely, its probability distribution) on a tree. For this it is more convenient
to consider the isometry V from the Hilbert space of A to that of E defined by the action of adjoining the recruit bits
and applying U :

V |ψA⟩ := U

|ψA⟩ ⊗
∏
j∈C

|0j⟩

 . (27)

In terms of V , the accessible subspace is given by the following:

s = s(V, F ) = {OA ∈ {I,X, Y, Z}|OA = V †OFV for some OF ∈ PF }. (28)

In other words, s is the set of nonzero Pauli’s (including identity) that can be obtained from pulling back a Pauli
string on F using the isometry V .
Now, in our tree model, s can be computed recursively. The basic idea is best summarized in a picture:

. (29)

Indeed, the isometry V can be built recursively:

V = (Vl ⊗ Vr)Bu . (30)

Here, Vl and Vr are the isometries corresponding to the left and right subtrees, respectively. B is the isometry
corresponding to the branching node:

B :=
∑
i=0,1

|i⟩|i⟩⟨i| . (31)



10

Finally u is a one-qubit Clifford gate. It is equal to identity with probability 1 − p and randomly chosen from the
one-qubit Clifford group with probability p.
It follows that s can be obtained rather simply from sl = s(Vl, Fl) and sr = s(Vr, Fr), where Fl and Fr are the set

of accessible environment bits in the left and right subtree, respectively. More explicitly, we have

s = σu(B(sl, sr)). (32)

Here,

• σu in (32) implements the pull back action of the one-body Clifford gate:

σu(s
′) := {u†Ou : O ∈ s′} . (33)

If u is identity, σu(s
′) = s′ is the identity map. If u is a random one-body Clifford, σu acts as a random

permutation on {x,y, z} and leaves n and a intact.

• B implements the pull-back action of the branching isometry (31) on the accessible subsets:

B : (s1, s2) 7→ {B†(P1 ⊗ P2)B|P1 ∈ s1 , P2 ∈ s2} ∩ {I, Z,X, Y } . (34)

To compute it explicitly, we first calculate the map (P1, P2) 7→ B†(P1 ⊗ P2)B. The result is the following table:

I Z X Y

I I Z 0 0

Z Z I 0 0

X 0 0 X Y

Y 0 0 Y X

. (35)

It follows that the action of the map B on a pair of sets is given by another table:

B n z x y a

n n z n n z

z z z z z z

x n z x y a

y n z y x a

a z z a a a

. (36)

The recursion relation above applies whenever the tree has at least one branching (t > 0). The initial case (t = 0) is
simple: s = a if the only leaf of the tree is in F , and s = n otherwise.

For a given realization of U and F , we can compute s by iterating the above recursion relation throughout the
whole tree. We start by assigning a to the leaves in F and n to those not in F , and then calculate the s associated
with each subtree in a “trickle-down” manner, from the leaves to the root. This is why such a method is known as a
“backward recursion”. Here is an illustration, with an arbitrarily chosen realization:

(37)

Above, we omitted the n’s and also wrote the intermediate outputs of the map B. Also, recall that the absence of a
◦ means that the one-body unitary gate is identity, and its trivial action is not written. As a result, we obtain that
I(F,R) = 1; more precisely, some Pauli string in F is perfectly correlated with the X operator in R.
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Backward recursion of the order parameter

The above considerations apply to any fixed realization (F,U). Now, since the random choices involved in F and
U are all made locally (with respect to the tree geometry) and independently, we can perform the average over all
the realizations. As a result, we turn the above recursion relation into a recursion map that calculates the probability
distribution of s of a (t+ 1)-generation tree, π(t+ 1), in terms of π(t):

π(t+ 1) =M(π(t)) . (38)

Here, the recursion map M is composition of two maps

M(π) =Mu(MB(π)) (39)

that we define now. MB is a nonlinear map that implements the recursion relation between π’s at a branching, as
follows:

MB(π)s =
∑
s1,s2

T s
s1s2πs1πs2 , T

s
s1s2 =

{
1 B(s1, s2) = s

0 otherwise.
(40)

Explicitly, we have 
MB(π)n
MB(π)z
MB(π)x
MB(π)y
MB(π)a

 =


π2
n + 2πn(πx + πy)

π2
z + 2πz(πn + πx + πy + πa) + 2πnπa

π2
x + π2

y

2πxπy
π2
a + 2πa(πx + πy)

 .

Mu is a linear map that accounts for the action of the random one-body Clifford (which exists with probability 1−p):

Mu(y) = (pP3 + (1− p)I5)y , P3 =
1

3


3

1 1 1

1 1 1

1 1 1

3

 . (41)

The recursion relation above is supplemented by the initial condition:

π(t = 0) =Mu(1− f, 0, 0, 0, f)T = (1− f, 0, 0, 0, f)T . (42)

Indeed, a leaf belong to F with probability f , in which case one has access to all of its Pauli’s; otherwise, one has
access to none. The map Mu is applied since a random Clifford unitary can be applied to the output qubits; yet,
this turns out to have no effect on the initial condition of the backward recursion. The recursion map M defines a
dynamical system on a space of dimension 4 defined by the sum rule

πn + πz + πx + πy + πa = 1 , (43)

since π is a probability distribution. The phase diagram of the model is determined by the long-time limit of this
dynamical system. (It is tempting call the dynamics generated by M the “renormalization group flow” of the model.
However we shall refrain from doing that since π’s are not really coupling constants.)

Analysis of the recursion dynamics

In this section we detail the analysis of the recursion dynamics. The results can be summarized as the flow diagrams
shown in Figure 4. The method is a combination of analytics and numerics. We find all the fixed points of M (which
are the long time limits of π) analytically, as we detail below; we check the fixed points’ stability numerically, by
diagonalizing the linearization of M around them.
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Let us start by discussing the symmetries. First, M preserves the Z2 symmetry that swaps n and a:

M(τ(π)) = τ(M(π)) , where τ : (πn, πz, πx, πy, πa) 7→ (πa, πz, πx, πy, πn) . (44)

The initial condition (42) breaks this symmetry unless f = 1/2; indeed, τ sends f to 1−f . Another (broken) symmetry
of the model is that of S3, which permutes x,y and z and leaves n and a intact. This symmetry is preserved by Mu

and the initial condition but broken by MB.
Next, we consider invariant subspaces of the map M . First,

Ixy := {π : πx = πy} , (45)

is invariant under M and contains the initial conditions, so is where all the dynamics takes place (this can be seen as
a “relic” of the broken S3 symmetry). Therefore, we shall restrict to Ixy in what follows, and reduce the dimension
of the dynamical system to 3. It is also useful to note another pair of invariant subspaces,

I+ := {π : πa = 0} , I− := {π : πn = 0} , (46)

which are related to each other by the Z2 symmetry.
The dynamics π 7→ M(π) is structured by the fixed points of M . Indeed, numerically, we do not find any cycle

with period > 1 or other nontrivial asymptotic behaviors, and we do not expect these to occur on physical grounds.
The fixed points π∗ satisfy the following independent equations [we used π∗

y = π∗
x):

3(1− 2π∗
x)π

∗
x = p

(
2π∗

n(π
∗
z + π∗

a) + π∗
z
2 + 4π∗

zπ
∗
x + 2π∗

zπ
∗
a − 2π∗

x
2
)

(47)

π∗
a(π

∗
a + 4π∗

x) = π∗
a , π

∗
n(π

∗
n + 4π∗

x) = π∗
n . (48)

The last two equations are simple, and allow us to classify the fixed points according their membership with respect
to I+ and I−.
Outside I+∪ I−, there is at most one fixed point. Indeed, such a fixed point must satisfy π∗

a+4π∗
x = π∗

n+4∗πx = 1,
which, combined with the sum rule, gives π∗

a = π∗
n = 1 − 4π∗

x , π
∗
z = 6π∗

x − 1 . (So this fixed point preserves the Z2

symmetry.) Plugging these into (47), we obtain a quadratic equation for π∗
x

(6p− 6)π∗
x
2 + (3− 8p)π∗

x + p = 0 . (49)

whose positive solution is

π∗
x =

−
√

40p2 − 24p+ 9 + 8p− 3

12(p− 1)
. (50)

This solution is physical (i.e. all components π are positive) if and only if p > 3/5. When this is the case, the fixed
point (50) is always unstable with respect to a Z2-odd perturbation. Indeed, for ϵ small, we have

M : (π∗
a − ϵ, . . . , π∗

n + ϵ) 7→ (π∗
a − λϵ, . . . , π∗

a + λϵ) +O(ϵ2) ,

with λ = 1 + π∗
a > 1. Therefore, this fixed point does not characterize a stable phase. Instead, it is the long-time

solution for f = 1/2 when p > 3/5, i.e., along the first-order transition line corresponding to the spontaneous breaking
of the Z2 symmetry.
We now consider the fixed points in I+ \I−, i.e., π∗

a = 0 but π∗
n ̸= 0 (the fixed points in I− \I+ can be then obtained

by applying the Z2 symmetry). Then (48) implies π∗
n = 1− 4π∗

x, and π
∗
z = 2π∗

x. Plugging these into (47), we find

π∗
x

(
π∗
x − 3− 4p

6(1− p)

)
= 0 . (51)

This gives two fixed points:

π∗ = (1− u, u/2, u/4, u/4, 0) , u =
6− 8p

3− 3p
or π∗ = (1, 0, 0, 0, 0) . (52)

When p > 3/4, only the second one is physical. We checked that it is also stable, and is the long-time limit for any
initial condition with f < 1/2: this is the encoding phase. When p ∈ (3/5, 3/4), the fixed point (1, 0, 0, 0, 0) becomes



13

(QD) (mixed) (encoding)

FIG. 4. Flow diagram of the recursion map M in QD, mixed and encoding phases (from left to right), projected onto
{(πa, πn) : πa ≥ 0, πn ≥ 0, πa + πn ≤ 1}. The invariant subspaces I+ and I− are projected on the axes. The Z2 symmetry acts
by a left-right reflection. The initial conditions are at the bottom boundary. The purple fixed point is (50). The yellow fixed
point (only existing in the mixed phase) satisfies (51), and the cyan one is related by the Z2 symmetry. The yellow and cyan
arrows indicate how the these fix points move as p increases.

unstable, and (1− u, u/2, u/4, u/4, 0) becomes physical, stable and the long-time limit for any initial condition with
f < 1/2: this is the mixed phase. [When p < 3/5, 1− u < 0 so (1− u, u/2, u/4, u/4, 0) is no longer physical.]

Finally, we look at the fixed points in I+ ∩ I−, i.e., with π∗
a = π∗

n = 0. This means that π∗
x = (1− π∗

z)/2. Plugging
into (47), we obtain

(3p− 3)π∗
z
2 + (3− 6p)π∗

z + p = 0 , (53)

whose positive solution is given by (4) in the main text:

π∗
z =

√
24p2 − 24p+ 9 + 3− 6p

6(1− p)
. (54)

This fixed point is always physical, but only stable when p > 3/5, and is the long-time limit for any initial condition
with f ∈ (0, 1): this is the QD phase.

We have thus found all the fixed points, and mapped out the phase diagram. In Figure 4 we display the “flow
diagrams” of the iteration dynamics in different phases. We remark that each phase is characterized by a unique
stable fixed point, modulo the Z2 symmetry. Therefore, the long time limit of the recursion dynamics is essentially
independent of the initial condition, except when we cross the first-order Z2-breaking transition {f = 1/2, p > 3/5}.
In particular, the initial condition (1 − f, f, 0, 0, 0) results in the same long time limit as (1 − f, 0, 0, 0, f) as long as
f < 1/2. Physically, this means that in the QD phase, we can retrieve a classical bit of the reference from a small
fraction of the system F , even if we can only access the Z operators on F . In the mixed phase, the same can be
achieved in a nonzero fraction of the realizations.

Joint distribution

The analysis so far is about the ensemble of (U,F ), i.e., of one random circuit and one random subsystem. To
understand the nature of the mixed phase, it is useful to consider the joint ensemble of one random circuit and two
random subsystems, (U,F,G), such that F ⊂ G. They are constructed as follows: for any site i, we determine its
membership with respect to F and G independently, with the following probabilities:

P(i ∈ F ) = f , P(i ∈ G \ F ) = g − f , P(i /∈ G) = 1− g , (55)

where 0 < f < g < 1 are the relative size of F and G, respectively. Note that if we forget about F or G from the
joint ensemble, the remaining ensemble is the single subsystem ensemble we studied previously.

For each realization (U,F,G), we may construct two subgroups s and t (of accessible Pauli operators) with respect
to F and G, respectively. Then, the order parameter becomes the joint distribution Π of s and t, which is a 5 × 5
matrix (rank 2 tensor). It is straightforward to derive the map M2 that governs the backward recursion of Π, i.e., the
analogue of M (38). Like M , M2 is a composition of two maps:

M2(Π) =M2u(M2y(Π)) . (56)
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FIG. 5. Examples of the joint distribution Πst(t → ∞) in the mixed phase (p = 0.32), with different values of f and g, obtained
by solving numerically (56)-(58) (one halts the iteration when a fixed point is reached up to numerical precision). One observes
that s and t are always perfectly correlated, in the way described in text.

Here, M2B is the tensor square of MB (40):

[M2B(Π)]st =
∑

s1s2t1t2

T s
s1s2T

t
t1t2Πs1t1Πs2t2 . (57)

M2u is a linear map R5 ⊗ R5 → R5 ⊗ R5 defined as follows:

M2u = (1− p) I5 ⊗ I5 +
p

6

∑
σ∈S3

diag(1, σ, 1)⊗ diag(1, σ, 1) ,

where σ is summed over all permutation matrices of size 3, and diag(1, σ, 1) denotes a block diagonal matrix with
two blocks of size one (acting on n and a) and a block of size 3 (acting on z,x,y). Note that M2u is not the tensor
square of Mu, since the same random permutation acts on the two “replicas” with subsystems F and G. The initial
condition for Π satisfies

Π(t = 0)nn = 1− g , Π(t = 0)na = g − f , Π(t = 0)aa = f , (58)

and all the other components are zero.
We studied numerically the recursion relation defined above in the mixed phase (1/4 < p < 2/5). For all parameters

(p, f, g) tested, we found that Πst has a nonzero limit only in one of the following situations (see Fig. 5 for an example):

• s = t ∈ {x,y, z},

• s = t = n, and f < g < 1/2;

• s = t = a, and 1/2 < f < g;

• s = n, t = a, and f < 1/2 < g.

The nonzero values of Πst are completely determined by the fact that the marginal distributions must be equal to
the one-point distribution π studied above. Therefore, if we take a single mixed-phase realization in the t→ ∞ limit,
and gradually increase the subsystem size fraction f , one and only one of the following scenario will take place:

• We have a “encoding-like” realization in which s = n as long as f < 1/2, and changes abruptly to s = a for
f > 1/2.

• We have a “QD-Z” realization in which s = z for all 0 < f < 1.

• We have a “QD-X” or “QD-Y” realization, similarly defined.

In short, the mixed-phase ensemble is a macroscopic mixture of encoding-like realizations and QD-like ones. “In-
termediate realizations” cannot occur at the t → ∞ limit, as the two-replica analysis would have suggested (see
below).
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Model with eavesdropping

The above approach can be used to analyze the model with eavesdropping environment, upon making two modifi-
cations. First, the initial condition should be modified to

[πn, πz, πx, πy, πa] (t = 0) = [1, 0, 0, 0, 0] , (59)

since we have no access to the “system” output bits. Second, the recursion map M is replaced by M̃ , defined as

M̃(π) := (1− r)Mp=1(π) + rMe(Mp=1(π)) , (60)

where

Me(π)s =
∑
s1,s2

T s
s1s2πs1ηs2 , η = [1− f, f, 0, 0, 0] , (61)

implements the eavesdropping [T is defined in (40)]. Explicitly,

Me(π) = f [0, 1, 0, 0, 0]T + (1− f) [πn + πx + πy, πz + πa, 0, 0, 0]
T . (62)

To analyze the asymptotic behavior M̃ , we first realize that the recursion dynamics is confined in the two-dimensional
subspace

Ixy ∩ I+ = {πa = 0, πx = πy , πz = 1− πn − 2πx} . (63)

The fixed points are determined by two independent equations:

π∗
x =

1

3
(1− r)(1− π∗

n(π
∗
n + 4π∗

x)) , π
∗
n =

r

3
(1− f)(π∗

n(π
∗
n + 4π∗

x) + 2) + π∗
n(1− r)(π∗

n + 4π∗
x) . (64)

One may solve the first equation for π∗
x and plug the result into the second, which becomes a quadratic equation:

(fr − 2r + 1)π∗
n
2 + (4r − 1 + 4fr − 4fr2)π∗

n + 2(f − 1)r = 0 . (65)

We see immediately that π∗
n = 0 can be a solution if and only if f = 1.

When f = 1, the other solution of (65)

π∗
n =

4r2 − 8r + 1

1− r
(66)

is negative when r > rc =
1
2

(
2−

√
3
)
. In this case, π∗

n = 0 is the only physical fixed point, and πn → 0 in the t→ ∞
limit: this is the purified phase. When r < rc, (66) becomes a positive fixed point. It is also the only stable one, so
πn → (4r2 − 8r + 1)/(1− r) > 0: we are in the “volume law” (or encoded) phase where there is nonzero probability
that the environment fails to disentangle the reference from the system.

When f < 1, (65) always has one and only one positive root, and thus the t→ ∞ limit of πn depends smoothly on
f and r. This means that there is no sharp MIPT-like transition if one can only access a fraction of the environment.
When f is close to 1 and r close to rc, the singular part of π∗

n has the following single-parameter scaling behavior:

π∗
n + 4(r − rc) ∼ 4|r − rc|F

(
(1− f)

1
2 /|r − rc|

)
, F(y) =

√
y2/(4

√
3) + 1 . (67)

DETAILS OF THE TWO-REPLICA ANALYSIS

We recall that, in general, the purity of a density matrix ρ is equal to the expectation value of the partial swap
operator that exchanges the two replicas,

Tr[ρ2] = Tr[(ρ⊗ ρ)SWAP] , SWAP|a⟩|b⟩ := |b⟩|a⟩ . (68)

To compute the annealed mutual information I(2), we should take ρ to be the reduced density matrix of the subsystem
F or FR. Therefore, our strategy would be to consider the partial swap operator on F , evolve it backward with the
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circuit unitary U , and contract with the recruit bits. As a result, we obtain an operator O acting on two copies of
the qubit A, i.e., on the Hilbert space (C2)⊗2. Since A and R formed a maximally entangled pair, we have

Tr[ρ2F ] =
1

4
(σ|O) , Tr[ρ2RF ] =

1

4
(τ |O) . (69)

Here we introduced the operator inner product

(A|B) = Tr(C2)⊗2 [AB] , (70)

and denoted by σ and τ the identity and swap operator on (C2)⊗2, respectively:

⟨j2j1|σ|i1i2⟩ = δi1j1δi2j2 , |σ) = , (σ| = , (71)

⟨j2j1|τ |i1i2⟩ = δi1j2δi2j1 , |τ) = , , (τ | = . (72)

The inner product between these operator-states can be calculated by contracting the diagrams and associate a factor
q = 2 to each loop. Thus, the states σ and τ are not orthonormal:

(σ|τ) = q = 2 , (σ|σ) = (τ |τ) = q2 = 4 . (73)

Eq. (69) holds for any realization. Thus, to obtain the averaged purity, it suffices to calculate the average of O
over the subsystem F and the random unitary U . On a tree, this can be done by a backward recursion. That is, we
compute the average O(t+ 1) on a tree of (t+ 1) generations, as a function of O(t). It is not hard to show that the
recursion map is the following

|O(t+ 1)) = ((1− p) + pLu)LB |O(t))⊗2 . (74)

Here, the super-operator LB evolves (backwards in time) an operator O acting on 4 qubits (2 replicas per sub-tree)
to an operator acting on 2 qubits via the isometry B:

LBO := B⊗2O(B†)⊗2 = (75)

The super-operator Lu implements the backward evolution by the random one-body Clifford unitary, replicated and
averaged over the Clifford group (or equivalently over U(2), since the Clifford group is a 2-design):

LuO :=
〈
(u⊗ u)O(u† ⊗ u†)

〉
u
=

〈 〉
u

(76)

Equations (74) through (76) define the backward recursion, which is supplemented by the initial condition:

|O(t = 0)) = (1− f)|σ) + f |τ) . (77)

Now, the above recursion relation is significantly simplified by following fact: |O(t)) is always a linear combination
of three operator-states:

|O(t)) = wσ(t)|σ) + wν(t)|ν) + wτ (t)|τ) , (78)

where the new operator-state ν is defined as follows:

⟨j2j1|ν|i1i2⟩ = δi1i2j1j2 , |ν) = . (79)

Note that this expression is only valid in the spin-Z basis. To see why (78) must hold, and derive the recursion
relation obeyed by the weights w, we shall calculate the action of LB and Lu on these states (and products thereof).
Below, we report the results and briefly sketch their derivation.
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The results for LB can be summarized in a table

LB |σ) |ν) |τ)
|σ) |σ) |ν) |ν)
|ν) |ν) |ν) |ν)
|τ) |ν) |ν) |τ)

(80)

That is, LB maps all products between the three states to |ν) except |σ)|σ) 7→ |σ), |τ)|τ) 7→ |τ). The latter cases
follow from the fact that B is an isometry. The other cases can be seen diagrammatically as follows:

= = = . (81)

Here, the first three diagrams represent LB applied to |σ)|τ), |σ)|ν) and |τ)|ν), respectively. In each case, the diagram
has a single connected component. This forces all the output indices to be equal, which is exactly what |ν) does.

For Lu, we have

Lu|σ) = |σ) , Lu|τ) = |τ) , Lu|ν) =
1

3
[|σ) + |τ)] . (82)

[If u is averaged over the unitary group U(q), 1/3 is replaced by 1/(q + 1).] The first two equations of (82) follow
from unitary, whereas the last one can be derived using the Haar average formula (here q = 2)〈 〉

U(q)

=
1

q2 − 1
+

1

q2 − 1

− 1

q(q2 − 1)
− 1

q(q2 − 1)
,

combined with (σ|ν) = (τ |ν) = q (which can be checked diagrammatically).
Equations (80) and (82) imply that |O(t)) is indeed a linear combination as in (78), and that the weights satisfy

the recursion relation generated by the map:

Mw :

wσ

wν

wτ

 7→

1 1−p
3 0

0 p 0

0 1−p
3 1


 w2

σ

w2
ν + 2(wσwν + wσwτ + wνwτ )

w2
τ

 . (83)

By (77), the initial condition is

(wσ(t = 0), wν(t = 0), wτ (t = 0)) = (1− f, 0, f) . (84)

It remains to analyze the asymptotic behavior of the dynamical system generated byMw. We observe that similarly
to the recursion map M above, Mw preserves a Z2 symmetry, which acts by exchanging σ and τ ; the new state ν
is Z2 even. However, there is a crucial difference: unlike M , Mw does not preserve the sum wσ + wν + wτ . Indeed,
(wσ, wν , wτ ) is not a probability distribution, but rather “partition functions” with different boundary conditions at
the root of the tree. Yet, wσ, wν , wτ are still non-negative. So we shall look for fixed points of Mw up to a global
factor. As a result of an elementary analysis, we find the following physically relevant fixed points:

• The “encoding” fixed points (w∗
σ, w

∗
ν , w

∗
τ ) ∝ (1, 0, 0) and (0, 0, 1).

• The “QD” fixed point (w∗
σ, w

∗
ν , w

∗
τ ) ∝ (u, 1− 2u, u) where u = u(p) is defined implicitly by inverting

p =
3(1− u)u

(u+ 1) (1− 2u2)
, (85)

and choosing the branch that increases from u(p = 0) = 0 to u(p = 1) = 1/2.
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FIG. 6. Flow diagram of the recursion map Mw for p < 3/4, 3/4 < p < pl and p > pl =
3
7

(
2
√
2− 1

)
(from left to right). We

consider (wσ, wν , wτ ) up to a global factor, and choose to normalize them so that they sum to 1. The grey fixed point is (85).
The yellow and cyan fixed points satisfy (86). When they exist, there are two threshold values of f at which the asymptotic
limit depends discontinuously on the initial condition. This gives rise to a f -dependent threshold pc(f), such that pc(1/2) = pl
and pc(0) = pc(1) = 1/4. The yellow and cyan arrows indicate how the intermediate fix points move as p increases.

• A pair of intermediate Z2 breaking fixed points (w∗
σ, w

∗
ν , w

∗
τ ) ∝ (u+, 1−u+−u−, u−) where u± are the two roots

of the equation

pu2 − (3− 3p)u+ 4p− 3 = 0 . (86)

These fixed points are physical only when 3/4 ≤ p ≤ pl, where

pl =
3

7

(
2
√
2− 1

)
≈ 0.783 . . . . (87)

Both fixed points merge with the QD fixed point as p ↗ pl and become complex as p > pl. They tend to the
encoding fixed points as p↘ 3/4, and become non-positive as p < 3/4. (See Figure 6.)

Next we discuss the stability of the fixed points and the phase diagram, see Figure 6 for the flow diagram. The
intermediate fixed points are always unstable. The encoding fixed points are stable when p > 3/4 and unstable when
p < 3/4, and the QD fixed point is stable when p < pl and unstable when p > pl. Therefore,

• When p > pl, w can only tend to the encoding fixed points, ∝ (1, 0, 0) if f < 1/2 and ∝ (0, 0, 1) if f > 1/2. This
means that O ∝ σ or τ , and I(2) = 0 or 2 in the two cases.

• When p < 3/4, w can only tend to the QD fixed point, ∝ (u, 1− 2u, u). In this case O ∝ u(σ + τ) + (1− 2u)ν,
and I(2) = 1.

• Finally, when 3/4 < p < pl, w may tend to either an encoding or the QD fixed point, depending on the location
of initial condition with respect to the stable manifold of the intermediate fixed points. Thus, there is a f -
dependent threshold pc(f) ∈ (3/4, pl), such that I(2) → 0 or 2 if p > pc(f) and I(2) → 1 if p < pc(f). We
have not found a closed-form expression of pc(f), and evaluated it numerically (see Figure 3 of main text). It
increases from 3/4 to pl as f increase from 0 to 1/2, and satisfies pc(f) = pc(1− f).

A notable consequence of our two-replica analysis is that the “annealed I-f curve” when p ∈ (3/4, pl) is as follows:

I(2)(R,F ) →


0 f < 1/2, p > pc(f)

1 p < pc(f)

2 f > 1/2, p > pc(f)

. (88)

It differs from both the QD and encoding I-f curves. Now, if one assumed that I(2)(R,F ) equals I(R,F ), the average
of the true mutual information (which is a wrong assumption), then (88) would imply the existence (with nonzero
probability as t→ ∞) of realizations whose I-f curves differ from both QD and encoding curves. We have seen from
the exact solution above that this is not the case! From the point of view of the flow diagram, the “intermediate”
I(2)-f curve (88) occurs because of the existence of the unstable Z2-breaking fixed points. We have not found such
fixed points from the replica-free analysis of any (Clifford) variants of our model that we studied (to be reported
separately).
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