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Quantum many-body systems are typically endowed with a tensor product structure.
A structure they inherited from probability theory, where the probability of two
independent events is the product of the probabilities. The tensor product structure
of a Hamiltonian thus gives a natural decomposition of the system into independent
smaller subsystems. It is interesting to understand whether a given Hamiltonian is
compatible with some particular tensor product structure. In particular, we ask, is
there a basis in which an arbitrary Hamiltonian has a 2-local form, i.e., it contains only
pairwise interactions? Here we show, using analytical and numerical calculations, that
a generic Hamiltonian (e.g., a large random matrix) can be approximately written
as a linear combination of two-body interaction terms with high precision; that
is, the Hamiltonian is 2-local in a carefully chosen basis. Moreover, we show that
these Hamiltonians are not fine-tuned, meaning that the spectrum is robust against
perturbations of the coupling constants. Finally, by analyzing the adjacency structure
of the couplings Jij, we suggest a possible mechanism for the emergence of geometric
locality from quantum chaos.

random matrices | quantum chaos | locality | entanglement

Typically, to obtain a quantum description of the dynamics of a system we go through
a procedure of canonical quantization, or as Dirac described it (1), we work by classical
analogy. While this procedure has proven extremely powerful, it is also profoundly
unsatisfying. How can it be that, in order to describe the microscopic fundamental
quantum laws, we first need to know the corresponding classical Hamiltonian that
governs the behavior of the system? Aren’t classical mechanics supposed to emerge out of
quantum mechanics? More concretely, since most classical Hamiltonians have a rather
simple form, it raises the question of how much we have constrained quantum mechanics
by this.

To set the stage of our discussion, we start by elucidating some very basic concepts
(2–4). Quantum mechanics, in and of itself, is independent of one’s choice of basis,
i.e., it is invariant under unitary transformations. In particular, it is invariant under
time evolution, which is a unitary transformation of the state of the system. This puts
a constraint on the set of observables that can actually be measured. The absence of
such constraint would immediately render time an irrelevant concept, e.g., instead of
measuring observable O one can just measure exp(−iHt)O exp(iHt) to travel backward
for time t. Therefore, any discussion should be restricted to a specific set of observables.

In practice, the set of observables we have access to in our universe is very limited,
and dictated by experimental constraints. Empirically, there is close connection between
the Hamiltonian and the observables that are accessible; for example, in quantum field
theory, both have simple algebraic expressions in terms of creation and annihilation
operators (5). Simply put, we write down the Hamiltonian having already in mind the
observables we are going to measure (6). It is this tacit assumption of a simple relation
between the kinematics of the system and the accessible observables that we wish to
investigate in this work.

To put it slightly differently, in one of his seminal papers on quantum mechanics
Schrödinger called entanglement the characteristic trait of quantum mechanics that
enforces one to depart from classical thinking (7). Entanglement, however, is a basis
dependent concept. It requires one to specify the objects that naturally appear as
independent, i.e., disentangled. A priori it is not clear what such independent classical
objects should be (8–10): Why should one basis be more natural than the other?

Given a Hamiltonian, the only piece of intrinsic, basis invariant, information is its
spectrum. Hence, all systems with the same energy spectrum are equivalent. The only
difference thus hides in how we gain access to local physical quantities in those systems.
This leads to the following question: Given a Hamiltonian, is it possible to find a basis
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in which it has a simple tensor product form, such as a linear
combination of only two-body interaction terms? And if so, can
it be made geometrically local? The problem has recently been
considered by Cotler et al. (11), who used a simple counting
argument to show that it is not possible in general. However,
the question of to what precision it can be done remains
open and is the subject of this work. We numerically explore
a view in which local preferred basis emerges from quantum
chaos (12, 13) by looking for bases in which random matrices
can be approximately written as 2-local Hamiltonians. A related,
although quite different, idea has recently been put forward by
Freedman and Zini (14, 15) who argue for a novel mechanism
of spontaneous symmetry breaking acting on the level of the
probability distribution of Hamiltonians rather than on the level
of quantum states.

1. 2-localization

Consider a generic Hamiltonian H that acts on a Hilbert space
H. For simplicity let us restrict ourselves to H = CM , where
M is taken to be a power of two. To be concrete, think of H
as a random matrix drawn from the GOE ensemble (16–18). In
addition, consider the set of Pauli strings PN = {�}, composed
out of tensor products of Pauli operators ��i acting on N spins,
or qubits, e.g., � = �x1 ⊗ �z2 ⊗ · · · ⊗ 1N . The set of Pauli
strings PN forms a complete basis, hence any Hamiltonian (on
H = C2N ) can be written as a linear combination of Pauli strings
H =

∑
�∈PN

h��. While generic operators are supported on all
strings, there is a natural ordering in the set of Pauli strings given
by their length, i.e., the number of nonidentity operators in the
tensor product. Let us denote the set of all strings up to length
k as Pk

N . In this work, we are particularly interested in operators
that are localized on the set P2

N of strings of at most length
two. We call a Hamiltonian 2-localizable if, after some carefully
chosen unitary transformation U , it is entirely supported on P2

N
(Fig. 1A), i.e., there exists a set of couplings {h�} such that:

UHU † =
∑
�∈P2

N

h�� ≡
∑
ij,��

J��ij ��i ⊗ ��j +
∑
i,�

h�i �
�
i , [1]

where ��i is the �-Pauli matrix acting on the i’th qubit.
For example, let us consider a three-qubit problem with a

Hamiltonian H = XXX , where X stands for �x and the tensor
product symbol is dropped for clarity. This Hamiltonian is 3-
local and its spectrum contains an equal number of +1 and −1
eigenvalues. But so does the spectrum of H ′ = X1Z , which
is, instead, a 2-local Hamiltonian. Therefore there must exist a
unitaryU that bringsH intoH ′ and thus 2-localizes the problem.
In fact, it easy to show that U =

√
2

2 (111 + i1XY ) does the
job, i.e.,

UXXXU † = X1Z . [2]

We can say even more: the Hamiltonian H ′′ = X11 is 1-local
and isospectral to H ; hence, in this simple example, H can be
1-localized. In general, the solution is not unique, as one can
permute all the spins and apply arbitrary single-spin rotations.

A necessary condition for exact 2-localization of an arbitrary
matrix H is that there are enough degrees of freedom in the
local subspace to encode the eigenvalues of H (11) (Fig. 1B).
There are 3N + 9

2N (N − 1) allowed strings if H is complex
(i.e., drawn from GUE) and 2N + 5

2N (N − 1) if H is real (i.e.,

A

B

Fig. 1. (A) A generic Hamiltonian H comprises many body interactions. After
2-localization via a unitary U, the Hamiltonian UHU† is represented in a new
basis such that it only contains 2-body interactions. (B) A N qubit quantum
Hamiltonian is a 2N × 2N Hermitian matrix and has 2N intrinsic degrees of
freedom (its eigenvalues). After 2-localization, these 2N degrees of freedom
are compressed into O(N2) couplings Jij and O(N) fields hi which specify the
2-local Hamiltonian.

drawn from GOE); therefore, the above condition is satisfied for
N ≤ 8 in the complex case and N ≤ 6 in the real case, which
is consistent with GOE matrices being numerically localizable
for N ≤ 6 as we show in the next section. Before moving on to
the main point of the paper, let us note the previous argument
has two caveats: first, it does not say anything about how close
one can approximate an operator by a two-local one; second, it
does not imply that all operators N ≤ 6 can be 2-localized (it
only implies that not all Hamiltonians can be 2-localized when
N > 6). To illustrate the latter, we argue that low-rank projectors
cannot be localized, even in small systems, as we prove next. If
a rank-K projector is 2-localizable, then there exists a rank-K
projector that is 2-local. So let us derive a bound on the rank
of a 2-local projector P. P is 2-local iff P =

∑
�∈P2

N
h��. The

rank of P is K = Tr(P) = Tr(P2) =
∑

�∈P2
N
h� Tr(�P). Note

that Tr(�P) = 2N h� , so K = 1
2N
∑

�∈P2
N

Tr(�P)2. Moreover,
P =

∑
q |q〉〈q|, so we have

K =
1

2N
∑
�∈P2

N

∑
q
〈q| � |q〉

2

≤
1

2N
N2K 2

→ K ≥
2N

N2
,

[3]

where N2 = O(N 2) is the number of Pauli strings of length 2.
So any 2-localizable projector on C2N has rank greater than
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O(2N /N 2), or, equivalently, low-rank projectors cannot be
2-local. This simply expresses the intuition that one needs
nonlocal information to express a low entropy state �.

2. Method

There exists a unitary U that localizes a Hamiltonian H if and
only if there exists a local Hamiltonian H ′ that has the same
spectrum as H . One can localize H by looking for a local
Hamiltonian with the same spectrum. Let us define the cost
function

C =
1

2N+1

2N∑
i=1

(Ei − Ei)2, [4]

where Ei are the eigenvalues of H and Ei ≡ Ei(h) are the
eigenvalues of a local Hamiltonian H ′ =

∑
�∈P2

N
h��. The cost

function C measures the mean squared localization error, that is
how close the spectrum of the 2-local Hamiltonian H ′ is to the
spectrum of the original Hamiltonian H .

Localizing H is equivalent to finding coefficients h� that
minimize C . Note that the gradient of C is

∂C
∂h�

= h� −
1

2N
∑
n

En 〈n| � |n〉 , [5]

where |n〉 ≡ |n(h)〉 is the eigenvector of H ′ with eigenvalue
En, as we show explicitly in SI Appendix, section 3. In practice,
we minimize C using the Broyden–Fletcher–Goldfarb–Shanno
(BFGS) gradient descent method (19–23). In the general case,
where the � includes X , Y , and Z , we can 2-localize random
matrices H from the GOE ensemble up to N = 14 (i.e.,
matrices of maximum size 214

× 214). The main bottleneck is
the time required to perform the diagonalization of H ′ at every
step. However, in the case where the � are products of Z ’s only
(diagonal case) we can 2-localize GOE matrices up to N = 20.
When N > 16 we use a tridiagonal Hermite matrix ensemble to
generate the initial GOE spectrum (24).

3. Results

We generate sets of 200 N -qubits random Hamiltonians from
the Gaussian orthogonal ensemble (GOE); then attempt to 2-
localize them. For N ≤ 6 every particular Hamiltonian H was
localizable up to machine precision. For N > 6, the larger the
system, the better they can be localized and the error decreases
exponentially with N as shown in Fig. 2, i.e., in the accessible
regime the error goes down faster than the inverse dimension of
Hilbert space 2−N.

Since we retrieve the spectrum with exponential precision it
seems likely we do not just retrieve coarse-grained information
about the density of states of H , but reproduce all essential
features. To verify this, we compare the spectral form factor (SFF)
of the retrieved ensemble of 2-local H ′ with that of the GOE
ensemble. The SFF can be thought of as the Fourier transform
of the two-point correlation function of the spectrum, i.e., it
measures how fluctuations in the density of states are correlated

SFF(t) =
〈
|Z(H, it)|2

〉
, [6]

where Z(H, it) denotes the generating function

Z(H, it) = Tr eitH , [7]

Fig. 2. Localization error C defined in Eq. 4 versus system size N. Red data
points—labeled “2 local”—are errors on the localization of a GOE spectrum
with a 2-local Hamiltonian of the general form given by Eq. 1. For N ≤ 6 the
error is below machine precision, indicating exact 2-localization, in agreement
with the simple counting argument given in the main text. For N ≥ 10 the
localization error vanishes as 2−�N , faster than the inverse of the Hilbert
space dimension. The best fit to the cost gives � = 1.4. Blue symbols (“1 local”)
are localization errors obtained by using a 1-local Hamiltonian H′ =

∑
i hi�zi .

The latter can be chosen diagonal, since local rotations do not change the
k-locality. In this case, the localization error saturates at N = 10 and stays
constant for larger system size, implying the impossibility to 1-localize a GOE
spectrum. Orange points (“2 local Z only”) corresponds to the case of a 2-local
Hamiltonian H′ =

∑
ij Jij�zi �

z
j +

∑
i hi�zi , describing a classical Ising model.

In this case, the localization error decreases exponentially with system size
(C ∼ 2−1.21N ), and thus 2-localization is possible in this case. Each data point
is averaged over 200 GOE matrices. Similar figures using the 1-norm and the
spectral norm are shown in SI Appendix, Fig. S8.

and the 〈·〉 refers to the ensemble average over H . The spectral
form factor has a universal ramp structure at late times which is a
hallmark of quantum chaos (13, 25) and Fig. 3. In typical chaotic
systems, there is some nonuniversal initial behavior ending in
the so-called correlation hole, the time duration of which is
sometimes called the Thouless time. After the Thouless time
follows a universal ramp which stops at the Heisenberg time. The
study of this universal behavior has yielded important insights
into ergodicity breaking, in particular in the context of disordered
many-body systems (26, 27) and SYK models (28, 29). As shown

Fig. 3. Spectral form factor SFF(t) of the localized Hamiltonians (color)
defined by Eq. 6. The SFF of the initial GOE spectrum is plotted in gray for
reference. Results are averaged over 200 realizations of GOE initial spectra.
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in Fig. 3, we recover all essential features of the SFF in the 2-
localized ensemble at all timescales. We only observe a small
deviation in the ramp which can be interpreted as a small delay
in the Thouless time. As expected from these SFF results, the
behavior of simple observables such as 2-spin correlators is also
left unchanged (SI Appendix, Fig. S7).

A. Stability. Having established that there are 2-local Hamiltoni-
ans that approximate a GOE matrix with exponential precision,
it becomes important to understand the stability of these
solutions. If small changes in the coupling constants h� result
in a completely different spectrum this would make the 2-local
Hamiltonians rather fine-tuned. Consider the Hessian of the
cost function C(h) in the minimum h = h0 (see SI Appendix,
section 3 for details):

g��(h0) =
∂2C

∂h�∂h�

∣∣∣
h=h0

=
1

2N
∑
n
〈n| � |n〉 〈n| � |n〉 , [8]

where |n〉 ≡ |n(h)〉 is the eigenvector of H ′. Note that the
Hessian only depends on the diagonal expectation values of
2-local operators, which are expected to behave completely
differently in integrable and chaotic systems (30). In that regard,
consider a 2-local H ′ in which the Pauli strings are restricted
to commute, e.g., strings composed of only Z ’s, which are all
diagonal. All eigenvectors of H ′ are eigenvectors of �, such that
the sum in expression Eq. 8 becomes a trace. Since all strings
are trace orthogonal, one finds g�� = ��� . As a consequence,
for commutative 2-local Hamiltonians, a small change in the
coupling constants Δh results in a change of the cost function
ΔC ≈ ‖Δh‖2. Since the coupling constants themselves are
O(1/N ) this requires exponential precision in the specification
of the coupling constants h to maintain the exponential decrease
in the cost function seen in Fig. 2. Also, since the metric g��
becomes diagonal, there are no particular directions of stability:
The system is equally susceptible to small perturbations in all
directions.

The situation should be different for generic H ′ in which
the diagonal expectation values in expression Eq. 8 are expected
to obey the eigenstate thermalization hypothesis (ETH) (30).
According to ETH, expectation values of (local) observables
become smooth functions of energy which drastically alters the
behavior of the metric g�� . To verify this hypothesis, we need
first to note that the eigenvectors of g�� , denote them by vk, are
dual to operators Ok, defined as

Ok =
∑
�∈P2

N

vk��. [9]

Numerical diagonalization of the metric indeed confirms that
operators Ok have smooth expectation values in the energy
eigenbasis of H ′. For example, Fig. 4 depicts the behavior
of the expectation values E2 = 〈n|O2|n〉 of the operator O2
corresponding to second eigenvector v2, as a function of energy
E , showing that E2(E) becomes a smooth function of E with
increasing system size N .

The functional behavior of eigenoperator is also rather simple,
which begs the question of whether we can understand the
spectrum of g�� in more detail. First of all, it is easy to check
that h0 is an eigenvector of g�� corresponding to the largest
eigenvalue �1 = 1:

Fig. 4. Expectation value of the second eigenoperator of g�� defined by
expression Eq. 9 in the eigenstates of the 2-local Hamiltonian H′. The figure
shows

〈
n|O2|n

〉
as a function of the eigenenergy En. The line is the mean

over the 200 realizations. The shaded region is the SD. The subplot shows
the residual from a sixth-order polynomial fit to the data, which is used to
subtract the smooth part of the result. One clearly observes an exponential
suppression of the fluctuations with system size.

∑
�

g��h0
� =

1
2N

∑
n
〈n| � |n〉 〈n|

∑
�∈P2

N

h0
�� |n〉

=
1

2N
∑
n
〈n| � |n〉 〈n|H |n〉

=
1

2N
∑
n

En 〈n| � |n〉 = h0
� , [10]

where, in the last step, we used the fact the gradient in Eq. 5 is
zero when evaluated in h0. This means that a perturbation in the
direction of h0 increases the cost function significantly. However,
the associated operator O1 is just the Hamiltonian H ′ itself. Such
perturbations thus only result in a rescaling of the Hamiltonian.
It is obvious why this increases the cost C . Nevertheless, since
this can just be absorbed in a redefinition of time it leaves all
the physics invariant. It is more interesting to understand the
behavior of the subleading eigenvalues.

In general, the full set of eigenvalues of g�� is given by (SI
Appendix, section 4)

�k =
1

2N

∑
�∈P2

N
Tr (Fk(H ′)�)2

Tr (Fk(H ′)2)
, [11]

where Fk(H ′) is a function of 2-local H ′. The eigenfunctions
Fk need not be well behaved, like in the diagonal case described
earlier. However, assuming the eigenstates of H ′ obey ETH,
these functions should be smooth. We have already established
that F1(x) = x and we know all operators need to be
traceless. Furthermore, the eigenvalues, given by Eq. 11 have
a simple interpretation. They are the square Frobenius norm of
(normalized) projection of Fk(H ′) on the two local subspace
P2
N . Powers of H ′ generate more and more nonlocal strings,

which suggests that the eigenoperators are close to projected
orthogonal polynomials of H ′. We indeed find that the Fk can
be very well approximated by Gram–Schmidt orthogonalization
of polynomial function ofH ′ of degree k, starting withF0(x) = 1

4 of 6 https://doi.org/10.1073/pnas.2308006120 pnas.org
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(to ensure tracelessness) and F1(x) = x. Thus, for example, F2(x)
is the traceless part of x2, i.e.,

F2(x) = x2
−

Tr(x2)
2N

. [12]

The results for the first few eigenvalues of g�� are shown in
Fig. 5, together with the exact eigenvalues. The largest eigenvalue
is indeed 1, and all the other eigenvalues decay rapidly with N for
small systems. Some of the large eigenvalues appear to recover or
slow down for larger systems. Note that we find excellent agree-
ment between the approximate eigenvalues constructed from Fk
and the exact results at larger N . In addition, these eigenvalues
are variational so they form a lower bound to the true eigenvalues.

In principle, closed-form expression for the eigenvalues can be
extracted exactly from expression Eq. 11 in terms of the coupling
constants h; the problem is entirely algebraic. Nonetheless, the
general problem is rather cumbersome to say the least. To make
further progress, we restrict ourselves to compute�2 from Eqs. 11
and 12 under the assumption that the model is diagonal, i.e.,H ′ is
an Ising model with coupling J (we verify in SI Appendix, sections
5 and 6 and Fig. S2 that this approximation does not affect
the qualitative behavior). A detailed diagrammatic calculation is
presented in SI Appendix, section 5, and the result reads:

�2 =
2 Tr(J4)−

∑
i[(J

2)ii]2

3 Tr J4 + 1
2 Tr(J2)2 − 6

∑
i [(J2)ii]

2 + 2
∑

ij(Jij)4
,

[13]

which, for large N , becomes

�2 ∼
2 Tr(J4)

3 Tr J4 + 1
2 Tr(J2)2

≤ 4
Tr(J4)
Tr(J2)2 . [14]

The latter can be interpreted as the inverse participation ratio
or purity of the spectrum of the matrix J2 (31). Thus, if all

Fig. 5. The four largest eigenvalues �k of the hessian g�� as a function of
system size N. The largest eigenvalue �1 = 1 corresponds to the eigenvector
v1
≡ h0

� (Eq. 10). The subsequent eigenvalues are all smaller than one.
Their large N behavior is especially important to understand how fine-
tuned the coupling constants J��ij of the 2-local Hamiltonian H′ are (i.e.,
the “sloppiness” of the 2-local Universe); hence their asymptotic behavior
is discussed extensively in the main text, where we suggest a plausible
scenario and its implications. Each dot corresponds to an average over 200
realizations. Solid lines are estimates using expression Eq. 11 where Fk(H) is
constructed using the procedure explained in the main text.

Fig. 6. Distribution of the ordered (decreasing order) eigenvalues �i of the
Hessian g�� for different system sizes N. For clarity, the results are shown as
a function of i/N2, where N2 is the number of 2-local Pauli strings, i.e the
dimension of the Hessian. Only a few large eigenvalues contribute, as shown
in detail in Fig. 5. The typical eigenvalue decreases exponentially decreases
with N, making the model very sloppy.

eigenvalues �J participate equally to �2 then �2 = O(N−1); on
the contrary, if only few of the �J ’s participate, then �2 = O(1).
This remark is of particular importance in that it may explain
the emergence of 2-locality altogether. If �2 → 0, then any
perturbation of the coupling constants h is marginally irrelevant,
meaning that it will not change the spectrum of the theory when
N →∞. These coupling constants are thus by no means fined
tuned to any specific value: They just happen to have a particular
value, but the volume of allowed values they can take on, leaving
the physics unchanged, is enormous. Alternatively, �2 tends to
a constant in the thermodynamic limit, which means that J can
be approximated by a low-rank matrix. The numerical data in
Figs. 5 and 6 suggest this might be the case. Arguments can be
given either way, on the one hand, it seems expected that one
has to put a few more constraints, other than the bandwidth to
stay close to the desired density of states. On the other hand, we
have also explicitly computed the cost function for low-rank J
in SI Appendix, section 6 (SI Appendix, Fig. S3), which suggests
the cost function saturates at a constant at fixed rank, implying
finite error for localization for large N . Regardless of the final
outcome, our results lead to the remarkable observation that one
can either 2-localize a GOE random matrix on a model with a
finite number of parameters or there is large emergent invariance.

Before we conclude, let us stress that, even when �2 is
nonzero, 2-local Hamiltonians are very sloppy (32). That is,
most combinations of parameters h are unimportant, as shown
in Fig. 6. This conclusion is further supported by a simple
generalization of expression Eq. 14 to higher k. While it is
rather cumbersome to establish the full result, the leading order
contribution behaves like �k ∼ Tr(J2k)/ Tr(J2)k. As a result,
the eigenvalues of the metric are expected to follow a geometric
progression, the hallmark of “sloppiness” (32).

B. Geometric locality. The above results are only concerned with
few-body nature of the Hamiltonian, i.e., an arbitrary 2-local
Hamiltonian has all-to-all interactions. However, the sloppiness
of the resulting ensemble suggests the model can still be greatly
simplified without fine-tuning. In particular, Fig. 6 suggests there
are only O(N ) relevant parameters. In supplement, we sparsify
the coupling by adding an l1 penalty to our cost function, a
common practice in spare regression. It is shown that we can

PNAS 2023 Vol. 120 No. 39 e2308006120 https://doi.org/10.1073/pnas.2308006120 5 of 6

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g 
by

 9
4.

21
.2

45
.3

1 
on

 M
ar

ch
 1

8,
 2

02
5 

fr
om

 I
P 

ad
dr

es
s 

94
.2

1.
24

5.
31

.

https://www.pnas.org/lookup/doi/10.1073/pnas.2308006120#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2308006120#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2308006120#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2308006120#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2308006120#supplementary-materials


Fig. 7. Localization error C (as defined by expression Eq. 4) versus graph
degree after localization of a GOE matrix on a random regular graph. Each
datapoint is an average of 200 realizations, realizations meaning different
GOE matrices and different graphs. Remarkably, little loss is observed as
compared to the complete graph by restricting the interactions to a finite low
degree (d ∼ 4) interaction graphs.

achieve high sparsity at almost no cost. To further substantiate
the findings, and make them more tangible, we 2-localize matrices
on a random regular graph (RRG) of degree d . For geometric
locality to emerge, 2-localization should be robust to constraining
to connectivity of the interaction graph. In Fig. 7, we show results
for localization of GOE spectra (see SI Appendix for details on
the method). We find that low connectivity (∼4) regular graphs
are enough to localize GOE spectra with a precision that only
differs from the complete graph by subleading corrections in the
system size N .

4. Conclusion and Discussion

We find that random GOE matrices can be represented in a local
form with very good precision, i.e., the norm of the remaining

nonlocal part decreases exponentially with the size of the system.
This effectively corresponds to an exponential compression of
the amount of data. Among other things, this is a step toward
the resolution of the preferred basis problem: Associated with
each random Hamiltonian, there is a preferred basis in which
this Hamiltonian has an almost local description.

Generic 2-local Hamiltonian has no geometric structure, but
because the problem is sloppy, the additional constraints set
by geometric locality can be incorporated without affecting
the quality of the results. For example, low connectivity ran-
dom regular graphs are already an excellent model for GOE
spectra.

This suggests a route to understand how space could emerge
from quantum mechanics alone by looking at the adjacency
structure of the couplings Jij (28, 29, 33–35). On the other hand,
we also showed that even if generic random Hamiltonians can
be localized efficiently, some particular Hamiltonians cannot.
These are examples of operators that have some fundamental
quantum nonlocal properties and cannot be represented as a
sum of 2-body operators.

We note that our theoretical framework is not limited in
its scope to random matrix models from the GOE (or GUE)
ensembles, but can be successfully applied also to explicit
multispin Hamiltonians such as the SYK model, in that their
spectrum can be accurately reproduced by a two-localized model
with exponential precision. A full discussion of the 2-local analog
of the SYK model will be published elsewhere.

Data, Materials, and Software Availability. A minimal 2-localization
python code aside with our main numerical results is available at
https://github.com/nicolasloizeau/Quantum-Localization (36). All other data are
included in the manuscript and/or SI Appendix.
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