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The common wisdom in the field of quantum information theory is that when a system is initially correlated
with its environment, the map describing its evolution may fail to be completely positive. If true, this would have
practical and foundational significance. We here demonstrate, however, that the common wisdom is mistaken.
We trace the error to the standard proposal for how the evolution map ought to be defined. We summarize this
standard proposal and then show that it sometimes fails to define a linear map or any map at all. Further, we show
that these pathologies persist even in completely classical examples. Drawing inspiration from the framework of
classical causal models, we argue that the correct definition of the evolution map is obtained by considering a
counterfactual scenario wherein the system is reprepared independently of any systems in its causal past while
the rest of the circuit remains the same, yielding a map that is always completely positive. In a postmortem of
the standard proposal, we highlight two distinct mistakes that retrospectively become evident (in its application
to completely classical examples): (i) The types of constraints to which it appealed are constraints on what one
can infer about the final state of a system based on its initial state; however, such inferences reflect not just
the cause-effect relation between them—which is the basis for defining the correct evolution map—but also
the common-cause relation. (ii) In a (retrospectively unnecessary) attempt to introduce variability in the input
state, it inadvertently introduced variability in the inference map itself, and then tried to fit the input-output pairs
associated to these different maps with a single map.
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I. INTRODUCTION

Quantum state evolution is typically represented by a com-
pletely positive linear map. There are two justifications that
are usually given for this.

The first (the axiomatic justification) is that one always
has the freedom to implement a quantum evolution map on a
subsystem of some composite system, and complete positivity
is then required in order for the state of the composite to
remain positive, which is in turn required in order for the
Born rule to return positive numbers as the probabilities for
the outcomes of future measurements on the system.

The second justification notes that the evolution of an
isolated system is always described by a unitary map. This im-
plies that the most general sort of evolution of an open system
arises by unitarily coupling the system to an environment (in
some fixed state) and then tracing over the environment, and
such evolution is always represented by a completely positive
map.

However, the common wisdom in the field of quantum
information is that there is an exception to the rule that the
evolution of quantum states is represented by completely
positive maps, namely, when the initial state of the system-
environment composite does not factorize. For instance, in
Sec. 8.5 of Ref. [1], Nielsen and Chuang state that
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a quantum system which interacts with the degrees of freedom
used to prepare that system after the preparation is complete
will in general suffer a dynamics which is not adequately
described within the quantum operations formalism (p. 395)

(here, “quantum operations” refers to completely positive
trace-preserving linear maps), and that

it is an interesting problem for further research to study quan-
tum information processing beyond the quantum operations
formalism (p. 395).

A large body of literature has arisen to address this problem
[2–19]. This literature includes a great diversity of examples
to support the claim that quantum state evolution cannot
always be described by a completely positive map from initial
to final states of the system.

Some recent work in the literature, e.g., Refs. [20,21],
has criticized non-completely-positive maps on the grounds
that they lack operational significance. These authors then
advocate for a more operational approach (building on
Refs. [22,23]), introducing an alternative framework that
avoids the issue of noncomplete positivity by proposing a dif-
ferent type of map [20,21,24–27] as representing the evolution
of the system. The relation between this prior work and our
own proposal is discussed in Sec. VII B.

Here, we take a more radical stance against non-
completely-positive maps, arguing that they are explicitly
at odds with the standard notion of evolution that holds
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elsewhere in physics. We highlight this fact by taking the per-
spective of causal modeling. In particular, we do not assume
that the evolution of a quantum state is constrained by the
marginal states of the system before and after the evolution,
as has previously been assumed; indeed, we show that this
constraint does not hold.

In the framework of classical causal models, the evolution
of a system in any setting is described by “do conditionals”
[28]. These were introduced to describe the inferences that
can be made from one variable to another based solely on
their cause-effect relation, even when these variables also
exhibit correlations due to a common cause. In particular,
the correlations that arise between the initial and final ver-
sions of a system undergoing Markovian evolution are an
example of correlations based solely on a cause-effect rela-
tion. If, on the other hand, the system is initially correlated
with an environment with which it subsequently interacts,
then the correlations between the initial and final versions
of the system are due to a combination of cause-effect
and common-cause relations. The presence of a nontrivial
common-cause relation changes the sorts of inferences one
can make about the final version of the system based on
knowledge of the initial version of the system; however,
crucially, the map describing such inferences is not an ac-
curate description of the dynamics under which the system
evolves.

Our criticism of the standard proposal for how to define an
evolution map rests on the fact that, even for purely classi-
cal examples (in the presence of initial system-environment
correlations), it contradicts the answer that one obtains by
defining an evolution map using a do conditional, as one
should do based on the above argument from the framework of
causal inference. The thrust of our paper is to argue that, once
one separates out inference and influence, one sees that the
mathematical relation that the standard proposal focuses on
has no relevance for the map which describes the dynamics
of the system; it need not constrain the evolution map in
any way. This is in explicit contradiction with the common
wisdom.

Consequently, we argue that the common wisdom is mis-
taken and that the evolution of a quantum system in time
is always represented by a linear and completely positive
map. Our definition of the evolution map, therefore, does not
lead to any of the pathological conclusions of the standard
proposal, such as the failure of complete positivity, the failure
of linearity, or the failure to define a map.

When attempting to resolve an (apparent) paradox, a satis-
factory resolution should allow one to retrospectively identify
why there was an appearance of paradox, as argued by Pearl
[29]. The framework of causal modeling allows us to identify
two distinct mistaken assumptions in the standard proposal
and to understand precisely how the pathological conclusions
arise from these mistakes.

We show that the correct evolution map depends on the
marginal state of the environment but does not depend on the
correlations between the system and the environment. This
fact is derived from our conception of evolution and is not
assumed a priori. Further, it holds true regardless of the nature
of the correlations or the operational procedure by which the
initial state was prepared.

Pursuing a quantum generalization of the classical frame-
work of causal modeling has already had many interesting
applications in quantum foundations, including revealing a
quantum advantage for causal inference [30], uncovering new
experimental scenarios wherein there is a gap between quan-
tum and classical correlations [31–37], uncovering a promis-
ing approach to achieving a causal explanation of Bell in-
equality violations without fine-tuning [38–42], expanding the
set of experimental configurations wherein one can achieve
quantum state pooling [43], and exploring the possibility of
quantum uncertainty about the causal structure [44–46].

This article continues this trend by showing that the correct
definition of a quantum evolution map in the presence of
initial system-environment correlations requires a quantum
generalization of a key notion from classical causal modeling,
that of the do conditional, thereby demonstrating the concep-
tual significance of the quantum version of this notion.

A. Outline of the paper

Section II lays out the standard argument for the inade-
quacy of completely positive maps for describing evolution,
abstracted from the various perspectives on the subject found
in the literature. The argument is based on a proposal, which
we term the standard proposal, for how to define the evolution
map in the scenarios of interest. We give several examples in
which the standard proposal leads to problematic conclusions,
and we explain why these conclusions cast doubt on the
validity of the proposal.

In Sec. III, we show that the pathological consequences of
the standard proposal arise even in purely classical scenarios.
In Sec. IV, we describe how to define a classical evolution
map in the presence of initial system-environment correla-
tions, using the notion of do conditionals from the framework
of classical causal models. In Sec. V, we show that the pre-
scription of the standard proposal generally fails to reproduce
it, and we leverage the framework of classical causal models
to elucidate the underlying mistaken assumptions within the
scope of classical scenarios.

In Sec. VI, we show that the definition of the classical evo-
lution map in terms of do conditionals generalizes naturally
to a definition of the quantum evolution map, which is seen
to be always completely positive and to avoid the pathologies
of the standard proposal. We then assess the mistakes of the
standard proposal in the quantum sphere.

Finally, in Sec. VII, we discuss some of the implications
of our definition of the quantum evolution map, we explain
how it can be extracted from experimental data, and we
advocate for the study of open-system dynamics from the
causal modeling perspective.

II. PROBLEMS WITH THE STANDARD PROPOSAL

A. Preliminaries

First, we recall some mathematical facts. Let L(HS ) de-
note the space of linear operators on the Hilbert space HS
describing system S. We denote a map from L(HS1 ) to
L(HS2 ) by ES2|S1 . Such a map is said to be trace preserving if
∀ρS1 ∈ L(HS1 ) : TrS2 [ES2|S1 (ρS1 )] = TrS1 (ρS1 ). It is said to be
positivity preserving, or simply positive, if it takes all positive
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FIG. 1. The scenario of interest. An initially correlated state
of system and environment, ρS1E , evolves according to a quantum
channel ES2 |S1E .

operators to positive operators, ∀ρS1 � 0 : ES2|S1 (ρS1 ) � 0. It
is said to be completely positivity preserving, or simply com-
pletely positive, if its action on a composite system is also pos-
itive; that is, for any ancillary system, denoted E1 at the initial
time and E2 at the final time, and evolving by the identity map,
idE2|E1 , we have ∀ρS1E1 � 0, (ES2|S1 ⊗ idE2|E1 )(ρS1E1 ) � 0.

Suppose that the principal system S is coupled to an ancil-
lary system E by a unitary USE , that E is prepared at the initial
time in the state ρE , and that one traces over the ancillary
system to obtain the final state of the principal system. The
evolution of the principal system is then represented by the
map ES2|S1 ( S1) : L(HS1 ) → L(HS2 ) defined by

ES2|S1

(
S1

) = TrE
[
US1E

(
S1 ⊗ ρE

)
U †

S1E

]
. (1)

Note that throughout this article we denote the argument of a
map by A, where the subscript specifies the type of system
at the input. Clearly, such a map is completely positive and
trace preserving. It turns out, furthermore, that any completely
positive trace-preserving map can be realized in this fashion,
a result known as the Stinespring dilation theorem [47].

B. The standard argument for the inadequacy
of completely positive maps

We now review the standard argument for the inadequacy
of completely positive maps in describing the evolution of the
quantum state of the principal system (which we henceforth
simply call “the system”) when it is initially correlated with
the environment [1–3,5–9,11–14,16,22].

To assume that the system and environment are initially
correlated is to assume that their joint state does not factorize,
that is, ρS1E �= ρS1 ⊗ ρE . The system and environment are
imagined to subsequently interact according to the map

US2E ′|S1E
(

S1E
)

:= U S1EU †, (2)

where U : HS1 ⊗ HE → HS2 ⊗ HE ′ is a unitary operator.
This scenario is depicted in Fig. 1.

In our figures, unadorned wires represent the interacting
systems (termed the “system” and the “environment’]), while
wires adorned with arrows represent classical variables which
can either be controlled (if they are inputs) or postselected
on (if they are outputs), and the ground symbol represents
the trace operation. Boxes represent states, channels, or sets

thereof, in accordance with their associated inputs and outputs
(and as denoted by the explicit labels).

The standard argument is predicated on a particular pro-
posal for how to define the evolution map from S1 to S2, which
we call the standard proposal. (We will argue in the following
that the standard argument is mistaken precisely because the
standard proposal is conceptually misguided.) The standard
proposal begins by assuming that the evolution map, which we
denote here by ES2|S1 , is constrained by the following equation:

ρS2 = ES2|S1

(
ρS1

)
, (3)

where ρS1 denotes the marginal on S1,

ρS1 := TrE
(
ρS1E

)
, (4)

and ρS2 denotes the marginal on S2,

ρS2 := TrE ′
(
US2E ′|S1E

(
ρS1E

))
. (5)

However, Eq. (3) only specifies how a single state of the sys-
tem, namely ρS1 , is transformed. This is clearly not sufficient
to determine how an arbitrary state on S1 is transformed, and
therefore Eq. (3) does not serve to define a map uniquely.1

In order to define a map uniquely, it is critical that its
action be specified on many different input states. Toward
this end, most articles on the topic do not consider a single
joint state on system and environment but rather a set of
such states with differing marginal states for the system. The
specific means by which this variation is generated differs
among proposals: One might apply a transformation on the
system, one might apply a joint transformation on the system
and the environment, or one might imagine performing some
nondestructive measurement on the system. Physically, it
must be that some sort of laboratory operation induces vari-
ation on the initial system-environment state. We denote the
random variable which encodes the setting of this operation
by J and the random variable which encodes its outcome
by K . For each pair of values ( j, k) for these variables, the
system-environment composite is prepared in a corresponding
state ρ

( j,k)
S1E .

The general circuit diagram representing the class of sce-
narios studied in the literature, then, is that of Fig. 2.

The standard proposal asks us to consider the mathematical
relation

R := {(
ρ

( j,k)
S1

, ρ
( j,k)
S2

)}
j,k, (6)

where

ρ
( j,k)
S1

:= TrE
(
ρ

( j,k)
S1E

)
(7)

and

ρ
( j,k)
S2

:= TrE ′
[
US2E ′|S1E

(
ρ

( j,k)
S1E

)]
, (8)

which we term the input-output relation. The standard
proposal asserts that the evolution map ES2|S1 : L(HS1 ) →
L(HS2 ) should satisfy the constraints

∀ j, k : ES2|S1

[
ρ

( j,k)
S1

] = ρ
( j,k)
S2

. (9)

1In particular, any single pair of states ρS1 and ρS2 is consistent
with the map that ignores the state of S1 and simply prepares ρS2 ,
ES2 |S1 ( S1) = ρS2 TrS1 ( S1).
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FIG. 2. The most general circuit considered in the standard
proposal.

Note that one could only hope to uniquely define a map on
all input states in this manner if the map is assumed to be
linear and the domain of the input-output relation includes an
informationally complete set of states [i.e., the set {ρ ( j,k)

S1
} j,k

forms a basis of the operator space L(HS1 )].
The standard argument for the inadequacy of completely

positive maps for describing the evolution of the quantum
state of the system is concluded by noting that, in many
scenarios, the map which is defined by Eq. (9) fails to be
completely positive. We provide a simple example of this type
in the next section.

In fact, one can find examples wherein the prescription that
is endorsed by the standard argument defines a map that is not
linear, and other examples where it does not define any map at
all. We provide such examples in the two subsequent sections.
For each type of failure—the failure of complete positivity,
the failure of linearity, and the failure to define a map—we
explain why it casts doubt on the standard argument.

Before moving to these examples, we pause to note a
problematic feature that lies at the very base of the standard
proposal.

The question that we believe ought to be answered is the
following one:

Q: What is the evolution map from S1 to S2 in the experimental
scenario of Fig. 1?

However, the standard proposal immediately substitutes this
question for a new one:

Q′: What is the evolution map from S1 to S2 in the experimen-
tal scenario of Fig. 2?

As noted earlier, the motivation for the substitution is that
there seems to be no way to answer question Q if one is com-
mitted to the standard proposal, that is, if one is committed to
defining the evolution map using an input-output relation for
the input states that are realized in the scenario at hand. We
will ultimately argue that this commitment is mistaken and
that there is consequently no need to retreat from Q to Q′. For
the moment, however, we wish simply to note a problem with
any such retreat. Namely, it implies a violation of a criterion
of universality that we believe ought to be upheld in such
investigations:

FIG. 3. An example where the input-output relation corresponds
to a map that is linear but not completely positive.

Any proposal for the evolution map should be applicable to
any scenario.

In particular, it should be applicable to the natural scenario
depicted in Fig. 1.

C. An example where the standard proposal implies
a map that is not completely positive

This example is motivated by related examples in
Refs. [11,48].

Imagine that one achieves a variation over the initial state
of the system-environment composite as follows: One first
prepares the maximally entangled state between system and
environment, |φ+〉SE := 1√

2
(|0〉S|0〉E + |1〉S|1〉E ), and then,

for each value of a setting variable J , one implements upon it
the binary-outcome measurement associated to the orthogonal
basis {|ψ j,1〉, |ψ j,2〉} with von Neumann–Lüders state update
rule and postselects on obtaining the first outcome, K = 1.
Here, |ψ j,1〉 and |ψ j,2〉 form an orthogonal basis for the qubit
Hilbert space.

This scenario is depicted in Fig. 3. The part of the circuit
that is conceptualized as the preparation of the joint state of
system and environment (that is, the part which corresponds
to the first gate in Fig. 2) is highlighted by a dashed box. This
convention is followed in all of the examples we consider.

Because the environment is initially correlated with the
system, the state that one infers for it from the postselection
depends on the choice of basis and on the outcome, a phe-
nomenon known as quantum steering [49,50]. Specifically,
when one learns from the measurement that the quantum state
of the system is |ψ j,1〉, one infers that the state of the envi-
ronment is |ψT

j,1〉, where T denotes transposition in the com-
putational basis (since 〈ψ |(|φ+〉〈φ+|)|ψ〉 = |ψT 〉〈ψT | for
any ψ).

Thus, by varying the parameter J and conditioning on
obtaining the first outcome of the measurement, K = 1, one
obtains the set {ρ ( j,1)

S1E } j where

ρ
( j,1)
S1E = |ψ j,1〉〈ψ j,1|S1 ⊗ ∣∣ψT

j,1

〉〈
ψT

j,1

∣∣
E
. (10)

The subsequent system-environment interaction is presumed
to implement the swap operation on their states. That is,
US2E ′|S1E is defined, via Eq. (2), by the operator

U = SWAP, (11)

where swap(|φ〉 ⊗ |χ〉) := |χ〉 ⊗ |φ〉 for all χ and φ.
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By Eq. (8), we infer that the marginal states of the system
(for each value of J) after the system-environment interaction
are given by

ρ
( j,1)
S2

= ∣∣ψT
j,1

〉〈
ψT

j,1

∣∣
S2

. (12)

The input-output relation in this case, therefore, is

R = {(|ψ j,1〉〈ψ j,1|S1 ,
∣∣ψT

j,1

〉〈
ψT

j,1

∣∣
S2

)}
j . (13)

If the projectors {|ψ j,1〉〈ψ j,1|S1
} j form a basis for the

operator space L(HS1 ) (i.e., an informationally complete set),
one can conclude that there is a unique linear map defined [via
Eq. (9)] by this relation, namely, the transpose map. This is the
canonical example of a map that is positive but not completely
positive [1].

a. Problematic implications of the failure of complete
positivity. Even though the failure of completely positivity
is obviously acknowledged by proponents of the standard
argument (it is the reason this field of research even exists),
we believe that it already provides good reasons for being
suspicious of the argument.

An immediate worry is that such maps could lead to output
states on system-ancilla composites that fail to be positive.

The standard response to this worry (found, for instance,
in Refs. [8,9]) is that the map describing the evolution of the
system in this circumstance is only applicable on a limited
domain of input states and that this domain of input states does
not include the marginals of the set of entangled states which
manifest the failure of the map to be completely positive.

Note, first of all, that this response is a denial of the
axiomatic justification of complete positivity which we dis-
cussed in the introduction. The problem we see with this
denial is that it forces one to give up on the notion that the
map describing the evolution can support inferences about
counterfactuals. This notion is central to the notion of evo-
lution in physics: Laws of motion are not just descriptions of
historically actual motions, but prescriptions for determining
what motion would occur for any initial condition. The pos-
sibility of making inferences about counterfactual scenarios
is precisely what makes laws of motion so useful in practice.
To entertain the idea that a map only describes the evolution
of a system when that system is assured to be in one of a
restricted set of states is to retreat from the usual conception
of an evolution map.

D. An example where the standard proposal implies
a map that is not linear

The following example is a simplified version of the one
presented in Nielsen and Chuang [1].

Here, one begins with the product state |0〉S1 |0〉E and,
conditioned on the classical control J ∈ {0, 1}, one applies a
controlled-Hadamard gate on the system and a controlled-NOT

gate on the environment. This procedure does not involve any
measurement, and hence K is trivial. The system-environment
composite is therefore prepared in one of the states {ρ ( j)

S1E } j

where

ρ
(0)
S1E = |0〉〈0|S1

⊗ |0〉〈0|E , (14)

ρ
(1)
S1E = |+〉〈+|S1

⊗ |1〉〈1|E , (15)

FIG. 4. An example where the input-output relation corresponds
to a map that is nonlinear.

with |+〉 := 1√
2
(|0〉 + |1〉).

Next, there is a controlled-XH gate with the environment
qubit as control and the system qubit as target,

U = 1 ⊗ |0〉〈0| + XH ⊗ |1〉〈1|, (16)

where XH denotes the unitary gate obtained by performing the
Hadamard gate H followed by the Pauli gate X.

This circuit is shown in Fig. 4.
By Eq. (8), we infer that the marginal states of the system

after the system-environment interaction (for each value of J)
are given by

ρ
(0)
S2

= |0〉〈0|S2
, (17)

ρ
(1)
S2

= |1〉〈1|S2
. (18)

The input-output relation in this case, therefore, is

R = {(|0〉〈0|S1 , |0〉〈0|S2

)
, (19)(|+〉〈+|S1 , |1〉〈1|S2

)}
. (20)

Note that the map implied by the standard proposal is not
completely specified by these constraints. However, any map
consistent with this relation must take nonorthogonal states
to orthogonal states, and every such map is nonlinear. (Note
that once one allows for the failure of linearity, even having
a set of input states that span L(HS1 ) becomes insufficient to
determine how the map acts on all states.)

Problematic implications of the failure of linearity. The
fact that the standard proposal does not always define a linear
map is troubling, because the linearity of transformations can
be justified on numerous physical grounds. For example, rep-
resenting a process by a nonlinear map violates the principle
that processing of a system cannot increase the amount of in-
formation it contains about another system. Specifically, every
such map violates the data processing inequality [1]. Such
violations have physically problematic implications, such as
the possibility of superluminal signaling [51–53].

E. An example where the standard proposal implies
a relation that is not a map

Most pathologically, the standard proposal can yield a
relation which is inconsistent with any map whatsoever. This

022112-5



SCHMID, RIED, AND SPEKKENS PHYSICAL REVIEW A 100, 022112 (2019)

FIG. 5. An example where the input-output relation does not
correspond to any map.

is illustrated by a simple example, motivated by one from
Ref. [5] and pictured in Fig. 5.

Here, K is again trivial, and for each value of J ∈ {0, 1},
one prepares a distinct initial joint state by performing a
controlled-NOT gate on the system with J as the control. In this
way, the system-environment composite is prepared in one of
the states {ρ ( j)

S1E } j , namely

ρ
(0)
S1E = 1

2 |0〉〈0|S1
⊗ |0〉〈0|E + 1

2 |1〉〈1|S1
⊗ |1〉〈1|E , (21)

ρ
(0)
S1E = 1

2 |1〉〈1|S1
⊗ |0〉〈0|E + 1

2 |0〉〈0|S1
⊗ |1〉〈1|E . (22)

Next, there is a controlled-NOT gate with the environment
qubit as control and the system qubit as target, with unitary
description

U = 1 ⊗ |0〉〈0| + X ⊗ |1〉〈1|. (23)

By Eq. (8), we infer that the marginal states of the system
(for each value of J) after the system-environment interaction
are given by

ρ
(0)
S2

= |0〉〈0|S2
, (24)

ρ
(1)
S2

= |1〉〈1|S2
. (25)

The input-output relation defined by this scenario is

R = {(
1
21S1 , |0〉〈0|S2

)
,
(

1
21S1 , |1〉〈1|S2

)}
. (26)

Because this relation is one to many, it does not define a map
from L(HS1 ) to L(HS2 ).

Problematic implications of the failure of the standard
proposal to define a map. The standard proposal purports to
define the evolution map. However, we have just seen that it
sometimes fails to define any map whatsoever. This failure
strikes us as a decisive criticism. Proponents of the standard
proposal have not offered any satisfactory account of how
their scheme can be salvaged in the face of this failure.

F. Every pathology can be obtained from every circuit type

We have provided three examples which illustrate distinct
pathologies of the standard proposal. Much previous work
[2–4,6–9,11–14,16,22] has focused on these distinctions, e.g.,
by seeking necessary or sufficient conditions for the relation to
define a completely positive map, a linear map, and so on. The
coming analysis shows that these questions are misguided:
Evolution maps are always completely positive, and all of the

apparent counterexamples are really just indicative of the fact
that the standard proposal is not the correct way to define the
evolution map.

Our examples differed also in the way in which they intro-
duced variability in the initial state of the system-environment
composite. Specifically, the variability was introduced (re-
spectively) by (a) the choice of transformation on the system-
environment composite, (b) the choice of measurement on the
system and the choice of postselection on its outcomes, and
(c) the choice of transformation on the system alone. Roughly,
all examples in the literature fit into one of these three special
cases of the circuit of Fig. 2. Some articles, however, left the
operational (circuit) description of the problem unspecified
[5,6,8,9,11–14], and took the problem description to be a
(possibly continuous) set of initial states on S1E and a unitary
system-environment interaction, US2E ′|S1E . One consequence
of our work is to show that this version of the problem is not
well posed; knowing the causal structure of the circuit is in
fact critical to defining the evolution map.2

Apart from their simplicity, there is nothing special about
the examples we have chosen. In Appendix A, we show
that each of the three circuit types can generate each of the
pathologies of the standard proposal. In particular, this means
that one cannot evade such pathologies by restricting attention
to one of the three special classes of circuits.

As we argued at the end of Sec. II B, any sensible definition
of the evolution map should satisfy a criterion of universality,
namely, that it should be applicable regardless of the scenario.
As we already noted in that section, the standard proposal
fails to satisfy this criterion because it does not define an
evolution map in the simple scenario of Fig. 1. We are also
not satisfied with the standard responses to the problematic
implications of the standard proposal just outlined, because
they too compromise on the criterion of universality. Indeed,
they do so in a particularly unsatisfying way. Namely, they
assert that their proposed definition of the evolution map
is only applicable to a restricted class of circuits, but the
restriction is ad hoc insofar as no justification is given other
than to avoid the pathologies that would otherwise result.
For example, Refs. [17,54] recognized that certain scenarios
yielded the pathology discussed in Sec. II E and sought to
avoid it by excluding such scenarios by fiat.

III. PERSISTENCE OF THE PROBLEMS OF THE
STANDARD PROPOSAL IN THE CLASSICAL SPHERE

In a classical setting, one can also consider the evolution
map for a system when there are initial correlations between
the system and environment. In this section, we demonstrate
that if one tries to define this classical evolution map using
the prescription endorsed by the standard proposal, then one
obtains all of the same problematic implications that one saw
quantumly. (This should already be evident given that for
many of the quantum examples we presented, both above and
in the Appendix, all the states and maps could be dephased
in the computational basis without affecting our conclusions.)

2There is, however, some prior acknowledgment of the importance
of the form of the circuit in Refs. [22,23].
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Therefore, although it is a widely held belief that the sur-
prising form of quantum evolution maps in cases of initial
system-environment correlations is just another example of a
counterintuitive feature of quantum theory (so-called “quan-
tum weirdness”), we will demonstrate that it should be taken
instead as evidence of the fallacy of the standard proposal for
how to define the evolution map.

A. Classical preliminaries

A classical system is described by a set of physical states,
which can be encoded as values of a random variable S.
The statistical state of the classical system is given by a
probability distribution PS over the possible physical states of
the system. More precisely, if �S denotes the set of possible
values of S (here assumed discrete), then PS : �S → [0, 1],
where PS (s) denotes the probability that S = s. PS satisfies the
normalization condition

∑
S PS = 1, where

∑
S PS denotes the

function on S defined by ∀s ∈ �S : (
∑

S PS )(s) := ∑
s PS (s),

and where the right-hand side of the condition denotes the
function that takes value 1 for all s.

We are interested in the evolution of these probability
distributions for a system interacting with an environment.
We will denote the space of probability distributions on S by
P(S), and for later convenience we introduce the following
notation:

PA = [a] means PA(a) = 1, (27)

PAB = [a][b] ≡ [ab] means PAB(a, b) = 1. (28)

A map �S2|S1 : P(S1) → P(S2) is called stochastic if there
exists a conditional probability distribution PS2|S1 such that

�S2|S1

(
PS1

) =
∑

S1

PS2|S1 PS1 . (29)

Note that this is a linear map.
The most general manner in which a probability distribu-

tion on a classical system can evolve is by a stochastic map.
This can be justified, analogously to complete positivity in the
quantum case, as follows: If one imagines that an ancillary
system is prepared in some fixed distribution, the system-
ancilla composite is subjected to a deterministic dynamics,
and then the ancilla is ignored, then the resulting map on the
probability distribution over the system is always stochastic.
Stochastic maps are also the most general type of map that
preserve positivity for all input distributions.

B. What the standard proposal stipulates in a classical scenario

The standard proposal applies just as well to classical
scenarios as to quantum scenarios, since the former are a strict
subset of the latter, where all operators are diagonal in some
fixed basis. A classical scenario can be described by the same
sort of circuit as a quantum scenario: One simply replaces
quantum states by probability distributions and unitary op-
erations by deterministic functions. Hence, we can consider
a direct analogy for each of the quantum circuits considered
previously.

The classical analog for the general circuit from Fig. 1 is
shown in Fig. 6(a). If one followed the standard proposal, one

FIG. 6. (a) The classical analog of the circuit in Fig. 1. (b) The
classical analog of the circuit in Fig. 2.

would demand that a constraint on the evolution map, which
we denote by �S2|S1 , is

PS2 = �S2|S1

(
PS1

)
, (30)

with PS1 := ∑
E PS1E and PS2 := ∑

E ′ FS2E ′|S1E (PS1E ). One
would again be compelled to introduce variability in the input
state on S1 in a manner analogous to what was done in the
quantum sphere in Fig. 2.

The resulting scenario, a classical analog for the general
circuit from Fig. 2, is shown in Fig. 6(b), where FS2E ′|S1E rep-
resents a stochastic map P(S1) ⊗ P(E ) → P(S2) ⊗ P(E ′)
induced by a deterministic dynamics, so that

FS2E ′|S1E
(

S1E
) =

∑
S1E

δS2, f (S1,E )δE ′,g(S1,E ) S1E (31)

for some functions f and g.
Applying the standard proposal to these classical scenarios,

one simply computes

P( j,k)
S1

=
∑

E

P( j,k)
S1E (32)

and

P( j,k)
S2

=
∑

E ′
FS2E ′|S1E

(
P( j,k)

S1E

)
, (33)

generating an input-output relation

R = {(
P( j,k)

S1
, P( j,k)

S2

)}
j,k

, (34)

as in the quantum case. The standard proposal dictates that the
map describing the evolution should be taken to be one which
satisfies the constraints encoded in this relation; that is, a map
�S2|S1 : P(S1) → P(S2) for which

∀ j, k : �S1|S1

[
P( j,k)

S1

] = P( j,k)
S2

. (35)

As we now show, this prescription for how to define the
evolution map leads to the same sorts of pathologies we saw
in the quantum case.

There exist simple physical scenarios that generate rela-
tions which imply maps that are not stochastic, others which
imply maps that are not linear, and still others which do not
define any map at all.

Our examples of each of the three failures are chosen to
be analogous to the corresponding quantum examples. Note
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that S1, S2, and E are now taken to denote classical random
variables rather than being mere labels of systems.

C. A classical example where the standard proposal
implies a map that is not stochastic

Our example of the failure of stochasticity in a classical
system is analogous to our example of the failure of complete
positivity in a quantum system (described in Sec. II C) and
is realized with a circuit of exactly the same form (shown in
Fig. 3).

Consider a system and an environment that each have four
possible physical states, so that S1, E ∈ {0, 1, 2, 3}. The pair
are first prepared in the joint distribution PS1E := 1

4 ([00] +
[11] + [22] + [33])SE . System S1 is then subjected to one of
three measurements, determined by the value of a ternary
variable J , and each measurement having a binary outcome
K . The J = 1 measurement determines whether S1 ∈ {2, 3} or
not, J = 2 whether S1 ∈ {1, 3} or not, and J = 3 whether S1 ∈
{1, 2} or not. K = 1 labels the outcome wherein S1 is found to
be in the given set, and K = 0 labels the complementary set.
We further imagine that these measurements are not passive
but disturb the value of the system variable. Specifically, the
update rule is such that the final state on S1 depends only on J
and K : S1 is prepared in a uniform distribution over the values
of S1 in the complementary set to the one that S1 was found
in. For instance, if the J = 1 measurement is done and the
outcome K = 1 occurs, verifying that S1 ∈ {2, 3}, then S1 is
reprepared in the distribution 1

2 [0]S1 + 1
2 [1]S1 .

Finally, S1 undergoes a swap operation with E .
In our example, we consider only the cases where the

outcome is found to be K = 1. For each possible value j of
J , the joint distribution on S1 and E , P( j,1)

S1E , is as follows:

P(1,1)
S1E = 1

2 ([0] + [1])S1
1
2 ([2] + [3])E , (36)

P(2,1)
S1E = 1

2 ([0] + [2])S1
1
2 ([1] + [3])E , (37)

P(3,1)
S1E = 1

2 ([0] + [3])S1
1
2 ([1] + [2])E . (38)

It follows that after the swap operation on the system and
environment, the marginal state of S2, for each value j of J
and for K = 1, denoted P( j,1)

S2
, is as follows:

P(1,1)
S2

= 1
2 ([2] + [3])S2 , (39)

P(2,1)
S2

= 1
2 ([1] + [3])S2 , (40)

P(3,1)
S2

= 1
2 ([1] + [2])S2 . (41)

The input-output relation, therefore, is

R = {[
1
2 ([0] + [1]), 1

2 ([2] + [3])
]
,[

1
2 ([0] + [2]), 1

2 ([1] + [3])
]
,[

1
2 ([0] + [3]), 1

2 ([1] + [2])
]}

. (42)

This relation is consistent with a linear map,

�S2|S1 [ �pS1 ] =

⎡
⎢⎣

0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0

⎤
⎥⎦ · �pS1 , (43)

where the probability distribution over the four physical states
of S1 is expressed as a vector, �pS1 . However, this map is not
stochastic (e.g., the columns do not each sum to one), and
in fact there is no stochastic map consistent with the relation
R above. To see this, note that the first ordered pair in R

guarantees that physical state 0 has no probability of mapping
to 0 or 1, the second ordered pair guarantees that it has no
probability of mapping to 0 or 2, and the third ordered pair
guarantees that it has no probability of mapping to 0 or 3.
But every stochastic map is certain to map physical state 0
to some other physical state, in contradiction with these three
constraints.

D. A classical example where the standard proposal
implies a map that is not linear

Next, we provide a classical example in which the standard
proposal yields a map �S2|S1 that fails to be linear. This is
analogous to the failure of linearity in the quantum example
of Sec. II D, and it is realized in a classical circuit of exactly
the same form (shown in Fig. 4).

The system-environment composite is prepared in one of
two possible states, depending on the value of J:

P(0)
S1E = [0]S1 ⊗ [0]E , (44)

P(1)
S1E = 1

2

(
[0]S1 + [1]S1

) ⊗ [1]E . (45)

The system-environment composite then undergoes the
following joint evolution: If E = 0, then S2 = S1, while if
E = 1, then S2 = S1 ⊕3 1, where ⊕d denotes summation
modulo d . (Note that the principal system has three distinct
states in this example.)

The marginal states of the system (for each value of J) after
the system-environment interaction are given by

P(0)
S2

= [0]S2 , (46)

P(1)
S2

= 1
2 ([1] + [2])S2 . (47)

The input-output relation defined by this transformation is

R = {
([0], [0]),

[
1
2 ([0] + [1]), 1

2 ([1] + [2])
]}

. (48)

Any map consistent with this relation must take overlapping
distributions to nonoverlapping distributions, and every such
map is nonlinear.

E. A classical example where the standard proposal
does not define a map

Finally, we provide a classical example in which the stan-
dard proposal fails to yield any map at all. This is an exact
analog of the quantum example of Sec. II E, so it is realized in
a classical circuit of exactly the same form (shown in Fig. 5).

As in the quantum example, K is trivial, and for each
value of J ∈ {0, 1}, one prepares a distinct initial joint state
by performing a controlled-NOT gate on the system. In this
way, the system-environment composite is prepared in one of
the distributions {P( j)

S1E } j , namely,

P(0)
S1E = 1

2 [0]S1 ⊗ [0]E + 1
2 [1]S1 ⊗ [1]E , (49)

P(1)
S1E = 1

2 [1]S1 ⊗ [0]E + 1
2 [0]S1 ⊗ [1]E . (50)
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As before, the system-environment interaction is a controlled-
NOT gate with the environment qubit as control and the system
qubit as target, so that if E = 0, then S2 = S1, while if E = 1,
then S2 = S1 ⊕2 1.

The marginal states of the system (for each value of J) after
the system-environment interaction are given by

P(0)
S2

= [0]S2 , (51)

P(1)
S2

= [1]S2 . (52)

The corresponding input-output relation is

R = {[
1
2 ([0] + [1]), [0]

]
,
[

1
2 ([0] + [1]), [1]

]}
. (53)

Since it is one to many, there is no map consistent with this
relation.

F. Every classical pathology can be obtained from every
classical circuit type

We have designed these specific classical examples to
make the point as simply as possible (while maintaining a
close analogy with the three quantum examples presented
previously). As we show in Appendix B, however, there are
infinite families of examples which exhibit each of the three
pathologies, no matter which type of operational scenario [(a),
(b), and (c) in Sec. II F above] one considers. These generic
classical examples are analogous to the generic quantum
examples in Appendix A.

IV. THE CORRECT DEFINITION OF THE EVOLUTION
MAP IN THE CLASSICAL SPHERE

In the quantum literature, some of the problematic exam-
ples we described earlier led researchers to question the notion
that the evolution of quantum states is always described by a
completely positive map. By contrast, no one has previously
seen fit to cite the kinds of problematic classical examples
that we have just described as a reason to question the claim
that evolution of classical probability distributions is always
described by a stochastic map. Why not? Could it simply be
a failure to recognize the existence of problematic classical
examples?

No. The reason no one has questioned the adequacy of
stochastic maps is because in the classical sphere no one
was inclined to endorse the classical analog of the standard
proposal for how to define the evolution map. Rather, the
framework of causal modeling and the so-called do calculus
was developed [28], and this provided a scheme for inferring
the evolution map on the system even in the presence of initial
correlations between system and environment. It is found to
differ significantly from that of the standard proposal, and in
particular it avoids all of the problematic implications. In this
section, we will present this scheme, explain why it clearly
yields the correct notion of an evolution map in the classical
realm, and identify the mistaken assumptions in the standard
proposal.

The correct definition of an evolution map in the classical
sphere generalizes easily to the quantum sphere, as we will
show in Sec. VI.

FIG. 7. (a) The classical analog of the circuit in Fig. 1. (b) The
hypothetical circuit which aids in defining the evolution map for the
situation in panel (a).

A. The causal perspective on defining an evolution map

We begin with some reflections on the notion of an evolu-
tion map in a classical statistical theory. These are the ideas
that underlie the calculus for causal reasoning that has been
developed by Pearl [28].3

An evolution map is not a mere description of the actual
statistical states of the input and the output of a process,
but a prescription for determining the statistical state of the
output for any statistical state of the input, in analogy to what
distinguishes a law of motion from a historical account (as
we already noted in Sec. II C a). Just as a law of motion is
autonomous from the initial conditions, an evolution map is
autonomous from the state at its input: For any variation of
the state of its input, the map is unchanged.

To define the evolution map from A to B in an arbitrary cir-
cuit, therefore, one considers a counterfactual scenario involv-
ing the minimal modification to the circuit which allows one
to freely vary the statistical state of A, while keeping the rest of
the circuit unchanged. This minimal modification consists of
altering the causal mechanism that determines A, while keep-
ing every other causal mechanism in the circuit unchanged.
(We have here made explicit use of the fact that the different
causal mechanisms in the circuit are autonomous.) Because
the way that B depends on A is only a function of these other
causal mechanisms (and not a function of the mechanism that
determines A), it is the same in the counterfactual circuit as it
is in the actual circuit. Therefore, the evolution map from A to
B in the actual circuit can be identified with the map from A to
B in the counterfactual circuit. We denote the evolution map
from A to B by �B|doA( A), in deference to the notion of a do
conditional from classical causal modeling.

Recall the very first scenario we introduced, shown in
Fig. 1, and consider its classical analog, shown in Fig. 7(a).
For such a circuit, one computes the evolution map from
S1 to S2 by applying the prescription just given, as follows.
One imagines that the naturally occurring state of S1 is

3Classical causal models are typically defined in terms of directed
acyclic graphs, rather than circuit diagrams. We use the latter rep-
resentation because it facilitates the comparison with the quantum
case.
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ignored, and instead a new state for S1 is prepared, in a man-
ner uncorrelated with the systems that would under natural
circumstances be its causal parents. The counterfactual sce-
nario being imagined is depicted in Fig. 7(b). The wire labeled
S1 in the original circuit is replaced, in the counterfactual
circuit, by a pair of wires that are disconnected. The first,
which inherits the label S1, maintains the causal ancestry of
the original, but is marginalized over (denoted by the ground
symbol from electronics). The second, which is labeled by
S′

1, maintains the causal descendants of the original, and is
an input to the counterfactual circuit.

The evolution map from S1 to S2 in the original circuit of
Fig. 7(a), �S2|do(S1 ) : PS1 → PS2 , is defined as the map which
is isomorphic (under the identification of S1 and S′

1) to the map
�S2|S′

1
: PS′

1
→ PS2 in the counterfactual circuit of Fig. 7(b),

that is,

�S2|doS1

(
S1

)
:= �S2|S′

1

(
S′

1

)
. (54)

Given that

�S2|S′
1

(
S′

1

) =
∑

E ′
FS2E ′|S′

1E

(
S′

1
⊗ PE

)
, (55)

where PE := ∑
S1

PS1E , it follows that the evolution map for
the scenario of Fig. 7(a) is

�S2|doS1

(
S1

)
:=

∑
E ′

FS2E ′|S1E
(

S1 ⊗ PE
)
. (56)

The classical causal models framework typically focuses
on the do conditional PS2|doS1 , rather than the evolution map
�S2|doS1 , but the latter is simply related to the former via

�S2|doS1

(
S1

)
:=

∑
S1

PS2|doS1 S1. (57)

Equation (56) implies that the evolution map can be com-
puted directly from the identity of the circuit elements in
the original circuit of Fig. (1). This is because it depends
only on FS2E ′|S1E and PE (which is obtained from PS1E by
marginalization).

It follows, in particular, that there is no need to consider an
input-ouput relation.

This is in contrast to the standard proposal, which (because
of its insistence on starting with the input-output relation)
cannot define a map uniquely unless the scenario explicitly
involves a set of initial states. This is why, as we noted in
Sec. II, the standard proposal cannot define a map for the
circuit of Fig. 1 and why it is forced to consider circuits of
the form of Fig. 2, where there are variables J and/or K that
allow one to introduce variation in the input state.

Note that we are here discussing how to define the evolu-
tion map when one has a complete description of the form
of the circuit and the identity of each of its elements. The
question of how one obtains such a description is not relevant
to the definitional question, and it is important not to confuse
the two questions. We will discuss the question of how to
infer the quantum evolution map from experimental data in
Sec. VII D.

B. Contrasting the evolution map with the inference map

In the causal modeling framework [28], the primary moti-
vation for introducing do conditionals was to distinguish them
from standard conditionals. We pause here to describe the
distinction because it is critical to our analysis of the mistakes
of the standard proposal.

Suppose that one considers the map defined by the standard
conditional PS2|S1 , namely,

�S2|S1

(
S1

)
:=

∑
S1

PS2|S1 S1 . (58)

The correct way of interpreting the map defined in Eq. (58) is
as an inference map. It answers the following question: Given
a particular state of knowledge of S1, what is the appropriate
state of knowledge to assign to S2? In particular, if one updates
one’s description of S1 (based on passively observing it, for
instance), this map specifies how one should update one’s
description of S2. If S1 and S2 are related causally by both
a cause-effect connection and a common cause of the two,
then the inference map describes what S1 can teach you about
S2 through either causal pathway. By contrast, the evolution
map specifies only what S1 can teach you about S2 through
the cause-effect pathway.

This distinction is often illustrated by Simpson’s paradox.
This is a scenario in which there is a positive correlation
between a treatment variable and a recovery variable, even
though the causal influence of the treatment is to reduce the
probability of recovery (see Sec. 6 of Ref. [28]). The positive
correlation is the result of there also being a common cause
acting on the two variables. For instance, if men are more
likely than women to seek the treatment and are also more
likely than women to recover regardless of treatment, then
gender acts as a common cause. In this circumstance, learning
that an individual in the sample population got the treatment
warrants assigning a higher likelihood to the proposition
that that individual recovered, simply because learning that
someone got the treatment is positive evidence for them being
male, which in turn is positive evidence for them recovering.

To see this mathematically, let R denote the recovery
variable and let T denote the treatment variable. If one naïvely
computes PR|T = PRT /PR, or equivalently, the map �R|T [via
Eq. (58)], it is clear that this does not represent the cause-
effect relation that exists between T and R and hence cannot
be used to make assessments of the effectiveness of the
treatment on recovery. Only the map �R|doT , computed from
PR|doT [via Eq. (57)], wherein the intervention on T rules out
the possibility of inference via a common cause, represents
state updating based purely on the cause-effect relation.

In short, Simpson’s paradox reminds us that correlation
does not imply causation. To draw conclusions about whether
a given treatment contributes causally to recovery, one must
consider what would occur in a trial wherein the value of the
treatment variable is assigned at random (drug or placebo, for
instance), independently of any preferences of the individual.
The do conditional describes what would occur in such ran-
domized trials.

Hence, we see that the evolution map is generally distinct
from the inference map.
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Finally, note that—just as we saw for the evolution map—
the inference map in classical scenarios can be computed
directly from the original circuit elements, so that one need
not consider any sort of input-output relation. To see this, first
note that the conditional PS2|S1 can be expressed as

PS2|S1 =
∑

E

PS2|S1E PE |S1 (59)

=
∑
E ′E

PS2E ′|S1E PE |S1 . (60)

The assumption that the circuit elements in Fig. 7(a) are
known implies that FS2E ′|S1E and PS1E are known. PS2E ′|S1E

in the above equation is just the conditional associated to
the stochastic map FS2E ′|S1E , while PE |S1 can be computed
from PS1E by PE |S1 = PS1E/PS1 , where PS1 = ∑

E PS1E . The
inference map �S2|S1 associated to the conditional PS2|S1 is then
found, via Eq. (58), to be

�S2|S1

(
S1

)
:=

∑
S1EE ′

PS2E ′|S1E PE |S1 S1 =
∑

E ′
FS2E ′|S1E

(
PE |S1 S1

)
.

(61)

V. THE MISTAKEN ASSUMPTIONS OF THE STANDARD
PROPOSAL IN THE CLASSICAL SPHERE

With the causal point of view in mind and the correct
definition of the evolution map in hand, it is very instructive
to revisit the standard proposal in the classical sphere and to
isolate the mistaken assumptions therein.

A. The mistake of confusing the evolution map
with the inference map

Consider what the standard proposal entails for the simple
circuit of Fig. 7(a). There is only a single distribution PS1

and a single distribution PS2 , and so the input-output relation
consists of a single input-output pair, namely, {(PS1 , PS2 )}.
The standard proposal is committed to the notion that this
input-output pair can be interpreted as a constraint on the
evolution map, namely, that the evolution map acting on PS1

must yield PS2 .
Classical probability theory dictates that the relationship

which holds between PS1 and PS2 is

PS2 =
∑

S1

PS2|S1 PS1 , (62)

and consequently, if �S2|S1 is the stochastic map associated to
the conditional PS2|S1 by Eq. (58), then

PS2 = �S2|S1

(
PS1

)
. (63)

But �S2|S1 is the inference map from S1 to S2, which can differ
from the evolution map �S2|doS1 , as discussed in Sec. IV B.
Consequently, the input-output pair {(PS1 , PS2 )} is only guar-
anteed to be consistent with the inference map and is not
guaranteed to be consistent with the evolution map. Indeed,
if there is a common cause acting on S1 and S2, as is the
case in the circuit of Fig. 7(a), then generically the evolution
map and the inference map do differ, and the input-output pair
{(PS1 , PS2 )} is only consistent with the inference map and not
the evolution map.

To assume, as the standard proposal does, that the input-
output pair {(PS1 , PS2 )} constitutes a constraint on the evo-
lution map is to make a mistake akin to inferring causation
from correlation alone. For instance, it is akin to inferring,
from a positive correlation between treatment and recovery,
that treatment has a positive causal influence on recovery even
though there is a common cause (such as gender) that could
account for this positive correlation.

This is the first mistake of the standard proposal.
As we discuss in Appendix C, the inference map and the

evolution map coincide if and only if E and S1 are marginally
independent, PS1E = PS1 ⊗ PE . This is ironic, because propo-
nents of the standard proposal were interested in characteriz-
ing precisely those scenarios which violated this condition.

B. The mistake of taking input-output pairs from different
inference maps as constraints on a single map

Proponents of the standard proposal sought to define a map
through an input-output relation R where variability in the
input state of the system S1 (and therefore also the output state
of S2) was introduced via variation in the values of J and K in
a circuit of the form of Fig. 6(b).

Since, as noted in the previous section, an individual input-
output pair in R is not a constraint on the evolution map, the
set of such pairs obviously does not constrain the evolution
map either. This would seem to leave open the possibility
that the set of input-output pairs might still constrain the
inference map. However, this is not the case either. If con-
fusing inference with evolution had been the only mistake of
the standard proposal, then because every inference map is a
stochastic map, one would never have found any failure of the
input-output relation to define a stochastic map, contrary to
what is found in the pathological examples.

The standard proposal not only fails to yield the evolution
map but also fails to yield the inference map, due to a second
mistaken assumption, which we now discuss.

As we argued in Sec. IV B, the inference map in classical
scenarios can be computed directly from the circuit, with-
out introducing a set of initial states indexed by J and K .
Therefore, introducing explicit variation in the initial state was
unnecessary. Moreover, it is the root of all the pathological
implications of the standard proposal.

The means by which variability was introduced in the input
state inadvertently led to variability in the inference map as
well. That is, for generic examples of circuits to which the
standard proposal has been applied [those of the form of
Fig. 6(b)], the variation in the values of J and K leads not only
to variation in the marginal state of the system S1 but also to
variation in PE |S1 , and hence, given Eq. (61), to variation in the
inference map.

To show this, we determine the formula that relates the
conditional probability PS1|JK to PS2|JK for circuits of the form
of Fig. 6(b).

By definition,

PS2|JK =
∑
S1E

PS2S1E |JK . (64)

To express PS2|JK as a function of PS1|JK , we simply make a
repeated application of an identity from Bayesian probability
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theory, namely, PAB|C = PA|BCPB|C . We infer that PS2S1E |JK =
PS2|S1EJK PE |S1JK PS1|JK and consequently that

PS2|JK =
∑
S1E

PS2|S1EJK PE |S1JK PS1|JK . (65)

For a circuit of the form of Fig. 6(b), the causal structure
ensures that S2 is conditionally independent of JK given S1E ,
so that PS2|S1EJK = PS2|S1E , and we conclude that

PS2|JK =
∑
S1E

PS2|S1E PE |S1JK PS1|JK . (66)

This defines a JK-dependent map from distributions on S1 to
distributions on S2. Specifically, if we define P( j,k)

E |S2
by

∀e, s, j, k : P( j,k)
E |S2

(e|s) := PE |S2JK (e|s jk), (67)

the map is

�
( j,k)
S2|S1

(
S1

) =
∑
S1E

PS2|S1E P( j,k)
E |S1 S1. (68)

Rewriting in terms of the circuit elements given in our sce-
nario [as was done in Eq. (61)], this map has the form

�
( j,k)
S2|S1

(
S1

) =
∑

E ′
FS2E ′|S1E

(
P( j,k)

E |S1 S1

)
. (69)

For one who knows that J = j and K = k, the latter map
is the correct way of making inferences from S1 to S2. The
inference map clearly depends on the values of J and K .

It follows from Eqs. (66) and (68) that if P( j,k)
S1

and P( j,k)
S2

are defined by

∀s, j, k : P( j,k)
S1

(s) := PS1|JK (s| jk), (70)

∀s, j, k : P( j,k)
S2

(s) := PS2|JK (s| jk), (71)

then the input-output pair {(P( j,k)
S1

, P( j,k)
S2

)} is consistent with

the map �
( j,k)
S2|S1

in the sense that

P( j,k)
S2

= �
( j,k)
S2|S1

(
P( j,k)

S1

)
. (72)

However, the prescription of the standard proposal was to find
a single map �S2|S1 such that

∀ j, k : P( j,k)
S2

= �S2|S1

(
P( j,k)

S1

)
. (73)

This last step is the origin of the pathologies of the standard
proposal. As Eq. (72) shows, in general the input-output pairs
for different values of JK describe the input and output states
of different maps. But the prescription of the standard proposal
asks us to collect all of these input-output pairs into a single
set, the input-output relation, and to try and find a single map
that is consistent with all of them. Given the origin of these
pairs, there is no guarantee that there is any such map, and
even if there does happen to be one, there is no guarantee that
it is linear or stochastic.

To summarize, the second mistake of the standard proposal
is to have inadvertently introduced variability in the inference
map and then to have tried to define a unique map from
the input-ouput pairs that are associated to these different
inference maps.

C. The correct evolution map(s) for the scenarios wherein
the standard proposal led to pathologies

In the previous section, we noted that the inference map
can be JK dependent in the scenario of Fig. 6(b). It turns
out that the evolution map can also be JK dependent in this
scenario. Generally, therefore, there is no single evolution
map to be characterized in this scenario. Rather, following the
prescription of Sec. IV A, one finds that for each valuation
( j, k) of J and K , there is a (generally) distinct marginal state
P( j,k)

E of the environment, which leads to distinct evolution
maps, namely,

�
( j,k)
S2|doS1

(
S1

) =
∑

E ′
FS2E ′|S1E

(
S1 ⊗ P( j,k)

E

)
. (74)

At first glance, this may seem problematic, but in fact the
knowledge dependence of evolution maps is ubiquitous in
both classical and quantum physics. We give several examples
in Appendix D.

D. Illustrating the mistakes with the classical examples
considered previously

In this section, we illustrate the general discussion just
given by explicitly analyzing classical examples introduced
previously, highlighting interesting features along the way.

Consider again the third classical example, discussed in
Sec. III E, where the input-output relation failed to identify
any map at all.

Recall that the example has no K variable, so only J is
relevant. Consider the inference map from S1 to S2 for a
particular value j of J . Specializing Eq. (69), this has the form

�
( j)
S2|S1

(
S1

) =
∑

E ′
FS2E ′|S1E

(
P( j)

E |S1 S1

)
. (75)

The coupling of system and environment implies that S2 =
S1 ⊕2 E ; that is, it implies that S2 tracks the parity of S1 and E .
The controlled-NOT operation from J to S1 toggles this parity
in a J-dependent way, but without changing the marginal state
of S1. Thus, as one varies J , one has variability in the state on
S2, but no variability in the state on S1, leading to the one-to-
many relation that fails to correspond to any map.

One way to understand the fact that different values of
J lead to different states on S2 is that E is correlated with
J given S1, so that ∃e, s : PE |S1J (e|s, 0) �= PE |S1J (e|s, 1), or
equivalently [given Eq. (70)], P(0)

E |S1
�= P(1)

E |S1
, and consequently

the inference map in Eq. (75) becomes J dependent.
Indeed, as we show in Appendix E, the inference maps for

the two values of J are

�
( j)
S2|S2

(
S1

) = δS2, j, (76)

so that for J = 0 (J = 1), one updates one’s description of S2

to the state [0]S2 ([1]S2 ) regardless of one’s state of knowledge
of S1.

Recall the input-output relation for this example, Eq. (53).
Clearly, the first (J = 0) input-output pair is consistent

with the inference map for J = 0, �
(0)
S2|S1

, while the second
(J = 1) input-output pair is consistent with the inference map
for J = 1, �

(1)
S2|S2

. However, if one mistakenly considers both
input-output pairs to be associated to a single map, one finds
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a contradiction. This illustrates the second mistake of the
standard proposal.

The first mistake of the standard proposal is also illustrated
in this example.

The correct evolution map is straightforward to identify
using the prescription of Sec. IV A. For both values of J , the
marginal state of the environment is uniformly random, so the
evolution map is J independent and equal to the randomizing
map

�S2|doS1

(
S1

) = 1
2

(
[0]S2 + [1]S2

)
, (77)

which takes any input probability distribution on S1 to a
uniformly random distribution on S2. This is distinct from
either of the inference maps �

(0)
S2|S1

or �
(1)
S2|S1

and so confirms
that the evolution map is not constrained at all by the input-
output pairs considered in the standard proposal.

We now turn our attention to the second classical example,
discussed in Sec. III E.

Again, only the J variable is nontrivial in this example.
However, whereas J was a cause of S1 alone in the third
classical example, here it is a cause of E as well. In fact, J
is the complete common cause of S1 and E and consequently
E is conditionally independent of S1 given J , PE |S1J = PE |J .
Thus, Eq. (69) specializes to the expression

�
( j)
S2|S1

(
S1

) =
∑

E ′
FS2E ′|S1E

(
P( j)

E ⊗ S1

)
(78)

for the inference map from S1 to S2 in this example. Different
values of J lead to different marginals on E and therefore
different inference maps.

The inference map for J = j is

�
( j)
S2|S1

(
S1

) = δS2,(S1⊕3 j), (79)

as shown in Appendix E. For any state of knowledge of S1,
one should assign the same state of knowledge to S2 if J = 0,
and the same state of knowledge modulo an increase of the
value by 1 (in arithmetic modulo 3) if J = 1.

Again, one can check explicitly that in this example an
individual input-output pair for J = j [as in Eqs. (44) and
(46)] is a constraint on the inference map for J = j. However,
if one mistakenly considers both input-output pairs to be
associated to a single map, then the only maps consistent with
the constraint are nonlinear.

In this example, it happens that the evolution map for a
particular value j of J coincides with the inference map for
that same value,

�
( j)
S2|doS1

= �
( j)
S2|S1

. (80)

The reason is that conditioning on J makes S1 and E indepen-
dent, so that in the presence of this conditioning, one need not
intervene on the system to achieve this independence.

The analysis of the first classical example is similar and is
also provided in Appendix E.

The situation in the classical sphere can be summarized as
follows. The only sensible notion of an evolution map classi-
cally is the one defined by a do conditional, but the informa-
tion used in the standard proposal to try to infer the system’s
evolution—input-output pairs of statistical states—does not
constrain the evolution map but instead only constrains the

FIG. 8. (a) Repeat of Fig. 1, for ease of reference. (b) The
hypothetical circuit which aids in defining the evolution map for the
situation in panel (a).

inference map. Furthermore, even if one were content to try
to identify the inference map rather than the evolution map,
the prescription of the standard proposal does not provide a
means of doing so because it takes a number of input-output
pairs for different inference maps and mistakenly takes them
all to be constraints on a single map.

VI. THE CORRECT DEFINITION OF THE EVOLUTION
MAP IN THE QUANTUM SPHERE

The definition of a classical evolution map, presented in
Sec. IV, generalizes naturally to the definition of a quantum
evolution map. It suffices to substitute the quantum analogs
of the relevant classical notions (quantum states for statistical
states and unitary dependences for functional dependences) in
the definition provided there.

The ideas underlying the definition are the same as those
outlined in Sec. IV A: An evolution map for quantum states of
a system is a prescription for determining the quantum state
of the output for any quantum state of the input, and it is
autonomous from the state at its input.

Just as in the classical case, one imagines the counter-
factual scenario with the minimal modification to the circuit
which allows one to freely vary the quantum state of A, while
keeping the rest of the circuit unchanged; the evolution map
from A to B in the actual circuit can then be identified with
the map from A to B in the modified circuit. We denote an
evolution map from quantum system A to quantum system B
by EB|doA( A), where the “doA” on the right of the conditional
parallels the classical notation and is a reminder that the
definition requires contemplating the counterfactual scenario
just described.

Let us return to the most basic quantum circuit wherein the
system and environment are initially correlated, that of Fig. 1,
reproduced here as Fig. 8(a). For this case, the relevant coun-
terfactual scenario is depicted in Fig. 8(b). We again denote
the version of the system which is varied counterfactually by
S′

1, and here the ground symbol from electronics represents
the trace over a subsystem.

The evolution map from S1 to S2 in the circuit of Fig. 8(a),
denoted ES2|doS1 : L(HS′

1
) → L(HS2 ), is defined as the map

which is isomorphic (under the identification of S1 and S′
1)

to the map ES2|S′
1

: L(HS′
1
) → L(HS2 ) in the counterfactual
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circuit of Fig. 8(b); that is,

ES2|do(S1 ) := ES2|S′
1
. (81)

This prescription unambiguously leads one to identify the
evolution map to be

ES2|do(S1 )
(

S1

) = TrE ′
(
US2E ′|S1E

(
S1 ⊗ ρE

))
, (82)

where ρE := TrS1 (ρS1E ). This is the quantum analog of
Eq. (56). It is always completely positive.

The quantum evolution map can be deduced from the iden-
tity of the circuit elements in the original circuit of Fig. 8(a)
because it depends only on US2E ′|S1E and on ρE (which is
obtained from ρS1E by taking a partial trace). No input-output
relation is needed.

Furthermore, like its classical counterpart, the quantum
evolution map is knowledge dependent insofar as it depends
on one’s information about the environment, encoded in the
quantum state ρE .4 As we discuss in Appendix D, this knowl-
edge dependence of one’s description of evolution is ubiqui-
tous in physics, including textbook quantum mechanics.

For completeness, in Appendix F we determine the correct
evolution map for each of the three quantum examples from
Sec. II. We also show that the most general circuit considered
in the standard proposal, Fig. 2, is described by a distinct
evolution map for each valuation ( j, k) of J and K :

E ( j,k)
S2|do(S1 )

(
S1

) = TrE ′
(
US2E ′|S1E

(
S1 ⊗ ρ

( j,k)
E

))
. (83)

A. What is an inference map quantumly?

Once one takes a causal point of view, the description
of quantum evolution is scarcely more complicated than the
description of classical evolution. Devising a complete frame-
work for describing inference in quantum theory, however, is
a much more complicated venture, and remains an open prob-
lem [39,43,55]. (Note that, in keeping with the framework laid
out in Sec. IV, both evolution and inference are formalized as
maps from states of S1 to states of S2, and it is this type of
object that we are interested in here. We discuss maps with a
more general input type in Sec. VII B).

The root of the problem lies in how one acquires the infor-
mation about S1 that is input into the map. Classically, passive
observation of a variable does not change the dependence
of that variable on its causal parents. So, there is a way to
update one’s knowledge of S1, and therefore the distribution
PS1 , without changing any of the causal mechanisms that
relate S1 to the other variables of interest. In the quantum
realm, however, it is unclear whether there is an appropriate
analog of passive observation given that every attempt to gain
information about a system changes its state. Consequently,

4Some previous works (e.g., Refs. [5,11]) sought to define the
evolution map as a function of the marginal state of the environment
and also as a function of the initial system-environment correlations
present in the initial state of the composite. This prescription is
distinct from that of the standard proposal, but it does not correspond
to our prescription. In particular, it does not reproduce the correct
evolution map [of Eq. (82)] because the latter depends only on the
marginal state of the environment.

it would seem to be impossible to update one’s knowledge
of S1, and therefore the state ρS1 , without changing any of
the causal mechanisms that relate S1 to the other systems of
interest. (For example, measuring a quantum system generally
leads to a different postmeasurement state, altering the way in
which the system affects its causal children, while preparing
the system in a known state nullifies the influence of its causal
parents.)

It is worth noting that, even classically, it is only for a
limited set of probing schemes on S1 (which includes “pas-
sive” measurements, which are nondisturbing and maximally
informative) that the question of what one can infer about S2

(given the outcome of the probing scheme) can be answered
by an inference map that takes statistical states on S1 as
input. Since this is mathematically a limiting case of the full
quantum treatment, one can see already that for quantum
systems, too, only a limited set of probing schemes on S1 could
possibly admit inferences about S2 that can be expressed by
a map with quantum states on S1 as input. Moreover, since
quantum states generally contain richer information about a
system than their classical limit, the set of scenarios that admit
such an inference map is likely to be even more restricted.
Nonetheless, it is conceivable that there are intrinsically quan-
tum scenarios—those that cannot be reduced to an effectively
classical description—wherein such an inference map can be
defined.

For generic probing schemes (both classical and quantum),
there is no such map which takes a state of S1 as input.

B. The mistakes of the standard proposal in the quantum sphere

The set of quantum states and evolution maps includes
the set of classical states and evolution maps as special cases
(wherein all operators are diagonal in some fixed basis). The
fact that the standard proposal fails to identify the correct
evolution map in various classical examples, therefore, im-
plies that it is not a valid prescription for identifying the
correct evolution map in the quantum sphere. Furthermore, the
mistaken assumptions of the standard proposal that we have
identified by considering classical examples remain mistaken
assumptions in the quantum sphere.

Outside the classical subtheory, the story is more subtle,
but analogs of the two mistaken assumptions can be identi-
fied. We begin with the quantum analog of the first mistake.
Although we have left open the question of whether one
can make sense of the notion of an inference map from
S1 to S2 in such examples, it is still clear that, whenever
one has initial system-environment correlations, the quantum
systems S1 and S2 are causally related not only as cause
and effect but by a common cause as well. As such, an
individual input-output pair of states in such a scenario will
generally not reflect the cause-effect relation alone. But given
that the correct definition of the evolution map depends only
on the cause-effect relation, there is no reason to think that
an individual input-output pair of states is a constraint on
the evolution map when there are initial system-environment
correlations.

Indeed, as we show in Appendix G, the necessary and
sufficient condition for an individual input-output pair to
be a constraint on the evolution map is that the joint state
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FIG. 9. Composition of system-environment interactions, lead-
ing to non-Markovian evolution on the system.

on S1E factorizes, ρS1E = ρS1 ⊗ ρE . The ironic conclusion
(reached also in our discussion of the classical case) is that the
only circumstance in which the first mistake of the standard
proposal would be innocuous is the case of no initial system-
environment correlations.

If there is (as speculated in the previous section) a subset
of intrinsically quantum scenarios where an inference map
can be defined, and the scenario in question is presumed to
be within this subset, then perhaps an input-output pair of
states for a given value of JK could be taken as a constraint
on the inference map. But it would still be the case that the
inference map would vary with JK , and consequently it would
be inappropriate to consider all of these input-output pairs as
constraints on a single map. This is the second mistake of the
standard proposal.

VII. DISCUSSION AND FUTURE WORK

We here summarize some of the lessons of our analysis.
First, one cannot define an evolution map simply by listing
a set of marginal states at its input and at its output, since
if there is a common cause acting on the input and the
output, then such pairs of states do not constitute constraints
on the evolution map. Second, one should not restrict the
input domain of the evolution map, as this would violate the
counterfactual conception of evolution, embodied for instance
in the idea that a law of motion should be autonomous from
the initial conditions. Further, such restrictions are not needed
to preserve complete positivity. Third, the marginal state of
the environment is relevant to the evolution map, while the
system-environment correlations are not. This latter fact is not
assumed but rather is derived from our conception of evolu-
tion and holds true in all possible operational scenarios and for
all possible initial states. Fourth, because the marginal state
one assigns to the environment describes one’s information
about the environment, the evolution map one assigns will
depend on one’s state of knowledge. If a scenario includes a
variable that contains information about the environment, then
that scenario is associated to a set of evolution maps rather
than a single evolution map, one for each value of the variable.

We hope that these lessons might be valuable outside the
scope of this work.

A. Composition of evolution maps

The definition of the quantum evolution map, Eq. (82),
has the following feature: For a circuit of the form of Fig. 9,

the composition of the evolution map from S0 to S1 with the
evolution map from S1 to S2 does not generally yield the evo-
lution map from S0 to S2; that is, the compositional property
ES2|doS0 = ES2|doS1 ◦ ES1|doS0 fails to hold.

This compositional property only holds if S1 constitutes the
complete causal mediary between S0 and S2. For the circuit in
Fig. 9, however, E1 is also such a causal mediary, and so the
only sequential decomposition of the evolution map from S0

to S2 that holds is the decomposition into an evolution map
from S0 to S1E1 and an evolution map from S1E1 to S2, that is,
ES2|doS0 = ES2|doS1doE1 ◦ ES1E1|doS0 .

It is only with the correct definition of the evolution map
that one can properly pose the question of how it can be
decomposed into a temporal sequence of evolution maps.
Therefore, we expect that our results will have relevance to
questions about the divisibility of quantum channels and the
detection of nonMarkovianity [56,57].

B. Comparison with prior work

As mentioned in the introduction, some prior work has
also criticized the standard argument for the inadequacy of
completely positive maps [20,21]. These works have argued
against the standard proposal on the grounds that it lacks
operational meaning, for instance, by pointing out that one
cannot vary the marginal state of the system while keeping
the system-environment correlations fixed. In contrast, our
criticism of the standard proposal is that (i) it fails to satisfy
the criterion of universality, e.g., it only seeks to answer
question Q′ (concerning Fig. 2) rather than question Q of
Sec. II B (concerning Fig. 1), and even for question Q′ it
sometimes fails to identify any map as the description of the
evolution of the system, and (ii) in the classical limit, it fails to
reproduce the evolution map that is implied by the framework
of classical causal modeling.

This prior work, e.g., Refs. [20,21,24–27], has also pro-
posed a framework for analyzing dynamics in the presence
of system-environment correlations, where one focuses on
an altogether different type of map that does have a clear
operational meaning and which is always completely positive.
Specifically, whereas maps purporting to describe the dynam-
ics of system S typically take states on S1 as input and have
states on S2 as output, these new maps take instruments from
S1 to S′

1 as input and have states on S2 as output. In other
words, the domain of the map is the space of operators on two
rather than one copy of the system’s Hilbert space, that is, on
HS1 ⊗ HS′

1
rather than on HS1 .

One can motivate this perspective by considering the cir-
cuit in Fig. 10(a), which is clearly a special case of Fig. 2, and
reconceptualizing the experiment not as a preparation of a set
of initial joint states on S′

1E , but rather as an interventional
probing scheme on the system. This idea is represented in
Fig. 10(b), where the intervention on the system, highlighted
by a dashed box, is associated with a map E ( j,k)

S′
1|S1

: L(HS1 ) →
L(HS′

1
) for each value k of K and j of J , whereas the

circuit fragment outside the dashed box is associated with a
map ES2S1|S′

1
: L(HS′

1
) → L(HS1 ⊗ HS2 ). The circuit fragment

defines a map from each element of the instrument describing
the intervention, E ( j,k)

S′
1|S1

, to a state ρ
( j,k)
S2

using the link product
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FIG. 10. (a) The subset of circuits considered in the standard
proposal wherein the setting variable J determines the measurement
on the system and one postselects on the measurement outcome K .
(b) The same operational scenario as in panel (a), but reconceptual-
ized as an intervention with setting J and outcome K on the system,
rather than a preparation of a set of states labeled by J and K .

of Ref. [58], ES2S1|S′
1
	 E ( j,k)

S′
1|S1

= ρ
( j,k)
S2

, where the S1 output of
the circuit fragment is fed into the S1 input of the instrument
and the S′

1 output of the instrument is fed into the S′
1 input

of the circuit fragment. This sort of map has been studied
in many formalisms [20,44,58–64] and is often termed a
quantum comb [58] or a process matrix [61]. When it was
introduced for the study of open quantum systems in Ref. [20],
this object was termed the M map.

The evolution map can be recovered from a specification
of the M map (see the discussion surrounding Eq. (84) and
in Sec. VII C). Nonetheless, the formalism of M maps differs
from our own framework in two key respects.

First, the M map and our evolution map seem to have been
proposed as answers to different questions: The M map was
introduced to describe aspects of the system’s dynamics in an
experiment of the form of Fig. 10(b), where an intervention
is actually made on the system, whereas our proposal is
intended to describe the evolution of the system in the natural
experiment of Fig. 1. In other words, whereas we aim to
answer question Q from Sec. II B (concerning Fig. 1), the M
map is proposed as an answer to a question of the form of
Q′, but with the experiment given by Fig. 10(b) (rather than
Fig. 2).

Second, we have defined the evolution map to be a com-
plete description of the inferences one can make from S1

to S2 based purely on the cause-effect relation between the
two, while the M map does not capture only those types of
inferences but rather includes (as noted in, e.g., Ref. [20])
information about the initial correlations between the system
and environment and hence describes one’s inferences based
on both the cause-effect and on the common-cause relation
between S1 and S2. One consequence of this distinction is
that our notion of the quantum evolution map reduces in the
classical limit (where all operators are diagonal in some fixed
basis) to the classical evolution map, which we identify with
Pearl’s do conditional, whereas the M map does not reduce
to the do conditional in the classical limit. Indeed, from our
perspective, the very fact that the M map takes an instrument
from S1 to S′

1 as input rather than a state on S1 precludes it
from being a candidate for the evolution map.

Reference [65] also asks a question of type Q′; namely,
it asks what map one should use to describe scenarios in
which certain special types of interventions are performed
on the system. One such set of interventions considered in
Ref. [65] and called “stochastic preparations” consists of a
trace operation on S1 and a repreparation of S′

1 in one of
an informationally complete set of states. For such a set of
interventions, the map that is tomographically reconstructed
from data is

ES2|S′
1

(
S′

1

) = TrS1 ◦ ES2S1|S′
1

(
S′

1

)
. (84)

Based on the notation used for this object in Ref. [20], we call
it the L map. Unlike the M map, it is identical in form to the
evolution map we have introduced in Eq. (82). However, just
as we noted in our discussion of the M map, we read this prior
work as asserting that the L map describes the dynamics only
for a very limited scope of experiments, namely those wherein
a “stochastic preparation” was actually implemented, and not
that it does so for the general case involving no intervention,
depicted in Fig. 1.

This prior work appears to be motivated by a type of
operationalism wherein an entity is only meaningful insofar
as one can specify the experimental procedure that would
allow one to measure it. In particular, it defines both the M
map and the L map in terms of the tomographic procedure by
which one could identify it. By contrast, the causal modeling
perspective that we adopt in this work is not wedded to this
positivist notion of meaningfulness and therefore aims to
answer question Q directly, without recourse to interventions
but rather through the use of counterfactuals.

Note, however, that if one adopts the positivist attitude
merely as a means for discovering the form of the L map, but
one then kicks away this empiricist ladder and simply treats
the L map as the correct description of dynamics even in the
case of Fig. 1 (where there are no interventions on which
any operational definitions could be based), then one comes
to the same conclusion regarding the correct definition of the
evolution map as we have reached here by adopting the causal
modeling perspective.

Similarly, one might appeal to such a ladder-kicking pro-
cedure to justify considering the M map as pertinent not just
to the class of experiments shown in Fig. 10(b) but also to
the general case of Fig. 1. Even reconceptualized in this way,
however, the M map is not an evolution map in our sense, for
the reasons described above. So what does the map ES2S1|S′

1

describe from the causal modeling perspective? We address
this question in the next section.

C. The status of the quantum comb from
the causal point of view

Viewed as a description of the general case of Fig. 1,
Eq. (84) shows how the map ES2S1|S′

1
can be used to recover the

evolution map, which describes inferences that can be made
solely on the basis of the cause-effect relation between S1 and
S2. Additionally, ES2S1|S′

1
can be used to recover an inference

map that describes inferences that can be made solely on the
basis of the common cause relation between S1 and S2. In
order to be assured that one’s inferences about S2 are based
purely on knowledge of S1, and not on knowledge of S′

1,
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one presumes a state of complete ignorance regarding S′
1,

represented by the completely mixed state ρS′
1
= 1

dS′
1

1S′
1
, where

dS′
1

is the dimension of HS′
1
. The object that allows one to

make inferences based solely on the common cause relation,
therefore, is the joint state

ρS1S2 := ES2S1|S′
1

(
1

dS′
1

1S′
1

)
. (85)

In particular, if one implements a measurement on S1 and one
obtains an outcome X = x associated to a positive operator
E (x)

S1
, then one should update one’s description of S2 to

ρ
(x)
S2

= NTrS1

(
ρS1S2

(
E (x)

S1
⊗ 1S2

))
, (86)

where N is a normalization constant. This defines a map
from effects on S1 to states on S2 which has been termed
the steering map and discussed in Ref. [30]. It is linear and
co-CP (that is, the composition of the map with the tranpose
operation is completely positive).

Based on these facts, one might hope that the map ES2S1|S′
1

simply represents the elusive quantum inference map that we
discussed in Sec. VI A. However, it does not.

Here, one must again distinguish between two sorts of
maps that might describe such inferences—one whose inputs
are operators on a single copy of S1 and one whose inputs are
operators on two copies of S1. It is the possibility of the former
that we discussed in Sec. VI A, whereas the map ES2S1|S′

1
, if it

is to be interpreted as an inference map, is of the latter variety.
Even if it turns out that the only sort of inference map which
can sensibly be defined in generic quantum scenarios has as
input a state on HS1 ⊗ HS′

1
,5 the natural inference map would

still be of the form ES2|S1S′
1

rather than ES2S1|S′
1
. Defining such

a map likely requires a theory of quantum Bayesian inversion
(e.g., to determine the correct input state on HS1 ⊗ HS′

1
from

a specification of an instrument from S1 to S′
1).

D. Experimentally determining quantum
combs and evolution maps

Our focus herein has been on elucidating the correct def-
inition of the evolution map when the circuit is completely
specified. A secondary problem concerns deducing the evolu-
tion map from experimental data. (It is secondary insofar as it
can only be addressed once one has the correct definition of
the evolution map.)

It is clear that if one can experimentally characterize the
different components of the circuit (the state ρS1E and the
unitary map US2E ′|S1E ), then one can deduce the evolution map
from Eq. (82). Although this is sufficient, it is not necessary
for characterizing the evolution map. The question arises,
therefore, of what is the minimal experimental effort that
suffices.

5Which is a reasonable conjecture: Even in the classical sphere,
disturbing interventions are most naturally described by an inference
map from states of knowledge on two copies of random variable S1

to S2.

To begin with, consider the idealization wherein one can
perfectly implement any desired laboratory operation. The
causal map ES2S1|S′

1
has input space L(HS′

1
) and output space

L(HS1 ⊗ HS2 ) Hence, if one intervenes on the system by
performing an informationally complete measurement on S1

and then repreparing one of an informationally complete set
of states on S′

1, and one also implements (for each state on S′
1)

an informationally complete measurement on S2, then one can
tomographically reconstruct the causal map. This was termed
causal tomography in Ref. [30].

If one has experimentally determined the causal map,
then the evolution map can be computed directly from it via
Eq. (84). A less demanding experimental method, however, is
to simply ignore S1 (rather than measuring it) and prepare S′

1
in one of an informationally complete set of states. For each
such state, one then implements an informationally complete
measurement on S2. This achieves process tomography on the
evolution map. Note that this corresponds to experimentally
implementing the intervention that is contemplated in the
counterfactual circuit that defines the evolution map. It is
analogous to measuring a classical do conditional by imple-
menting a randomized trial.

What about experimentally determining the causal map or
evolution map when the experimenter does not have ideal
laboratory operations? For example, what if they are not able
to localize their operations to particular systems, or to char-
acterize their laboratory operations accurately? Because such
limitations can result in inadvertently preparing initial system-
environment correlations, they have previously served as a
motivation for this field. Specifically, it has been suggested
that if no completely positive map fits the relation of the
standard proposal, this should be taken as evidence that one
has inadvertently introduced system-environment correlations
[22,66].

Given our demonstration that the prescription of the stan-
dard proposal does not yield the evolution map, we advocate
against analyzing experimental data in the manner it proposes,
even if only as a diagnostic for imperfections in one’s labo-
ratory operations. The solution to the problem of imperfect
laboratory operations is to use a form of tomography in which
various features of the probing scheme (such as the identities
of the laboratory operations and the dimensionality and nature
of the systems being probed) are not presupposed but are
rather taken to be hypotheses whose plausibility is assessed
on the basis of the data. In identifying the evolution map
that provides the best fit to the experimental data, the maps
over which one varies must be constrained to be completely
positive (by virtue of the definition of an evolution map), and
if the quality of the fit is poor (as is indicated, for instance,
by a bad p value), then the correct reaction is not to entertain
the possibility that completely positive maps are inadequate
for describing evolution, as has previously been suggested
[22,66], but to reject one or more of the assumptions about
features of the probing scheme. A demonstration of how to
implement tomography in this way is provided in Ref. [67].

Finally, we note that in classical scenarios, it is sometimes
possible to identify the evolution map from purely passive
observations if these are made on the right systems. (The
more general problem of identifying the do conditional for
some pair of variables embedded in a given causal structure is
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known as the “identifiability problem” [28].) The significance
of this fact is that although evolution maps are defined in terms
of hypothetical nonpassive interventions, these nonpassive
interventions need not necessarily be performed in order to
identify the map. Whether there is a sensible quantum analog
of the identifiability problem and whether it is possible to
sometimes deduce the quantum evolution map without non-
passive interventions remains unclear. In particular, to even
pose the question, one must explore whether there is anything
in quantum theory that ought to be considered an analog of
passive observation.

VIII. CONCLUSION

We have argued that, for a general circuit wherein a system
interacts with its environment such as the one in Fig. 1,
the evolution map on the system should be defined as in
Eq. (82). This map is always linear and completely positive,
even in the presence of arbitrary initial system-environment
correlations. Thus, we have shown that the common wisdom
that such initial correlations constitute an exception to the rule
of complete positivity is mistaken.

Our results provide good reasons to abandon a host of
questions that have previously been the primary focus of re-
search in this field. There is no reason to find necessary or
sufficient conditions under which one can find a completely
positive map (or a linear map, a positive map, etc.) that
is consistent with the input-output relation of the standard
proposal, because this relation has no bearing on the evolution
map. There is also no reason to worry about the physical
meaning of evolution maps that are not completely positive
or not linear, because these never arise.

Instead, we advocate for pursuing a new set of questions,
inspired by the drive to generalize the do calculus of Ref. [28]
to the quantum realm [41,68]. Are there circumstances in
which one can define an intrinsically quantum inference map?
Can one sometimes identify the evolution map even with-
out implementing the hypothetical intervention invoked in
its definition? What are the implications of our results for
continuous-time dynamics of open quantum systems, and in
particular, non-Markovian dynamics?

ACKNOWLEDGMENTS

We acknowledge useful comments by K. Modi, F. Costa,
and F. Buscemi on a draft of this article, particularly concern-
ing how our results relate to previous work. D.S. is supported
by the Mike and Ophelia Lazaridis Foundation. K.R. is par-
tially supported by the Austrian Science Fund (FWF) through
the SFB FoQuS F4012. This research was also supported by
a Discovery grant of the Natural Sciences and Engineering
Research Council of Canada and by Perimeter Institute for
Theoretical Physics. Research at Perimeter Institute is sup-
ported by the Government of Canada through the Department
of Innovation, Science, and Economic Development Canada
and by the Province of Ontario through the Ministry of
Research, Innovation, and Science.

APPENDIX A: GENERIC FAMILIES OF QUANTUM
EXAMPLES IN WHICH THE STANDARD

PROPOSAL FAILS

We here illustrate the breadth of the pathologies of the
standard proposal and show that there is nothing special about
the examples we have given.

In Sec. II F, we argued that there exist operationally realiz-
able relations R = {(σ j, τ j )} j for which the following is true:

(1) There is no completely positive map E such that ∀ j :
E (σ j ) = τ j .

(2) There is no linear map E such that ∀ j : E (σ j ) = τ j .

(3) There is no map E such that ∀ j : E (σ j ) = τ j .

For notational simplicity, we have dropped the system
labels on the quantum states in the relation; throughout, note
that σ j ∈ L(HS1 ) and τ j ∈ L(HS2 ).

We further asserted that all three of these failures can arise
in each of the three operational circuit types described in
Sec. II F; namely, circuits where the initial state of the system
is varied by

(a) the choice of transformation on the system-
environment composite,

(b) the choice of measurement on the system (and the
choice of postselection on its outcome), and

(c) the choice of transformation on the system alone.
All of these are, of course, special cases of the general

circuit in Fig. 2. We have highlighted these three specific
circuit types because they cover the range of operational
scenarios considered in the literature. Roughly, scenarios of
type (a) are considered in Refs. [20,23–26]; of type (b) in
Refs. [3,5,14,16,23], and of type (c) in Refs. [20,23–26].
Furthermore, all examples in the literature, to our knowledge,
fit within one of these three categories.

We now provide these nine families of examples (one for
each pairing of 1,2,3 and a,b,c), in order to cover the full
diversity of examples in the literature and to demonstrate ex-
plicitly that one cannot salvage the standard proposal simply
by restricting to one of the families of operational circuits
(a,b,c).

For simplicity of presentation, we represent the system-
environment interaction in these examples by a general quan-
tum channel FS2|S1E rather than a unitary channel US2E ′|S1E .
(Of course, any such quantum channel could be dilated to
recover a unitary description of the same example, although
this dilation might require an increase in the dimensionality
of the environment to accommodate the ancilla required to
achieve the dilation.)

Examples of types 1,2,3 will be given, respectively, by
providing an operationally realizable relation such that the
following is true:

(1) The set {σ j} j is informationally complete, and ∀ j :
τ j := T (σ j ), where T denotes the transpose map (relative to
some basis), so that E is this transpose map and consequently
is not completely positive.

(2) The {τ j} j are more distinguishable6 than the {σ j} j , so
that E is necessarily a nonlinear map.

6That is, if there exists a pair (τ j, τk ) which has a smaller fidelity
than the corresponding pair (σ j, σk ).
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(3) The σ j are independent of j (so ∀ j : σ j := σ̄ for some
fixed σ̄ ) but τ j varies nontrivially with j, so that the relation
is one to many, and there can be no map E consistent with it.

1. Operational scenarios in which the setting variable J affects
the system and the environment and K is trivial

Here, we provide quantum examples of types (a, 1), (a, 2),
and (a, 3).

If the setting variable J influences both the principal system
and the environment, one can prepare any initial joint state on
the system and environment. Then, one can easily generate
any relation R at all, including all three types from above.
The following arguments can be seen as a generalization of
arguments originating with Pechukas [2].

For example, by taking the environment system to have
dimension equal to the cardinality of the set {σ j} j , then for
any set {σ j} j one can prepare the system-environment joint
state σ j ⊗ | j〉〈 j| when J = j. The system and environment
may then interact via the controlled channel FS2|S1E ( S1E) =∑

j〈 j|(TrS1 ( S1E))| j〉E (τ j )S2 , for any set of states {τ j} j on S2.
Hence, for J = j the final marginal state of the system is τ j .
Since both sets {σ j} j and {τ j} j are completely unconstrained,
one can certainly satisfy any of the conditions articulated in 1,
2, and 3.

2. Operational scenarios in which the setting variable J
determines the measurement on the system and one postselects

on the measurement outcome K

Here, we provide quantum examples of types (b, 1), (b, 2),
and (b, 3).

Suppose that the initial state of the system-environment
composite is a maximally entangled state. By the Hughston-
Josza-Wootters theorem [69], it is possible, by implementing a
j-dependent measurement on the system and postselecting on
outcome k, to steer the environment to any arbitrary state τ j,k .7

Further, the update rule of the measurement (which affects
only the system) can be arbitrary. Given an outcome k of the
jth measurement, one can find an update rule which ignores
the state of the system and simply reprepares it in the state
σ j,k . If the subsequent system-environment interaction is a
SWAP gate, one can generate the input-output relation R =
{(σ j,k, τ j,k )} j,k for completely unconstrained sets {σ j,k} j,k and
{τ j,k} j,k . Hence, one can certainly satisfy the conditions of 1,
2, and 3 (where j is replaced with j, k).

3. Operational scenarios in which the setting variable J affects
only the system and K is trivial

Here, we provide quantum examples of types (c, 1), (c, 2),
and (c, 3).

Suppose that one of four possible states are prepared
by implementing a transformation on the system, as fol-

7Note that for a given choice j of measurement, the ensemble
to which one steers is not entirely arbitrary: The weighted average
of the states in the ensemble is fixed. However, we can avoid this
restriction by postselecting on a particular outcome for each choice
of measurement.

lows: One applies a “preparation” channel G j ⊗ idE, for j ∈
{1, 2, 3, 4} and for G j : L(HS0 ) → L(HS1 ), to the fiducial
state |�+〉S0E := 2−1/2(|0〉S0 |0〉E + |1〉S0 |1〉E ), where

G j
(

S0

) = Xj
(

S0

)
X †

j (A1)

and where {Xj} j is the standard set of four Pauli matrices. In
this case, there are four possible system-environment states,
corresponding to the elements of the Bell basis,

(ρ j )S1E = (Xj ⊗ 1)|�+〉〈�+|S0E (X †
j ⊗ 1). (A2)

Each of these has the same marginal on S1—the completely
mixed state—so

∀ j : σ j = 1
21. (A3)

Now suppose that the system-environment interaction con-
sists of a measurement of the Bell basis on the system-
environment composite and then a repreparation of the system
in a state depending on the outcome that was obtained,

FS2|S1E
(

S1E
) =

∑
j

〈φ+|(Xj ⊗ 1)( S1E )(X †
j ⊗ 1)

× |φ+〉S1E (τ j )S2 , (A4)

where {τ j} j denotes an arbitrary set of four states on S2.
The input-output relation in this case, therefore, is easily

verified to be

R = {(
1
21, τ j

)}
j
. (A5)

If the τ j depend nontrivially on j, then the relation is one to
many, so we have an example of type 3.

We can modify this example slightly to get one of type 2.
Simply let the initial preparation channel on the system, G j ,
be a Pauli unitary with probability (1 − ε) and a repreparation
of an arbitrary state σ̃ j with probability ε:

G j
(

S1

) = (1 − ε)Xj
(

S1

)
X †

j + εσ̃ j, (A6)

where the σ̃ j can be drawn from an arbitrary set of four states
{σ̃ j} j . In this case, the four initial system-environment states
one generates are

(ρ j )S1E = (1 − ε)(Xj ⊗ 1)|�+〉〈�+|S0E (X †
j ⊗ 1)

+ εσ̃ j ⊗ 1
21. (A7)

The four corresponding marginals on S1 are

σ j = (1 − ε) 1
21 + εσ̃ j . (A8)

The measurement of the Bell basis on the system-
environment composite gives a uniform distribution over its
outcomes if the joint state is of the form σ̃ j ⊗ 1

21, so that
applying Eq. (A4) with a set {τ̃ j} j rather than {τ j} j to the state
in Eq. (A7) gives the four final marginal states of the system
τ j = (1 − ε)τ̃ j + ε 1

4

∑
j τ̃ j . Taking 1

4

∑
j τ̃ j = 1

21 as a simple
special case, we have

τ j = (1 − ε)τ̃ j + ε 1
21. (A9)

The input-output relation in this case is therefore

R = {[
(1 − ε) 1

21 + εσ̃ j, (1 − ε)τ̃ j + ε 1
21

]}
j
. (A10)

Since both sets {σ̃ j} j and {τ̃ j} j are completely unconstrained
sets of four states, one can certainly choose them (for any ε)
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to satisfy condition 2. One can also choose them to satisfy
condition 1, since a set of four states can be informationally
complete for a two-dimensional Hilbert space. The simplest
such construction would take the set {σ̃ j} j to be an informa-
tionally complete set of pure states, ε = 1

2 , and τ̃ j = T (σ̃ j ) for
all j, where T is the transpose operation.

APPENDIX B: GENERIC FAMILIES OF CLASSICAL
EXAMPLES IN WHICH THE STANDARD

PROPOSAL FAILS

All nine families of quantum examples from Appendix A
have close classical analogs.

For simplicity of presentation, we represent the system-
environment interaction in these examples by a conditional
probability distribution PS2|S1E rather than the deterministic
map FS2E ′|S1E . (Of course, the stochastic map induced by
PS2|S1E can always be dilated to a deterministic map FS2E ′|S1E .)

We show that [for probability distributions ω j ∈ P(S1) and
ν j ∈ P(S2)] there exist operationally realizable input-output
relations R = {(ω j, ν j )} j for which the following is true:

(1) There is no stochastic map � such that ∀ j : �(ω j ) =
ν j .

(2) There is no linear map � such that ∀ j : �(ω j ) = ν j .

(3) There is no map � such that ∀ j : �(ω j ) = ν j .

Each point is demonstrated, respectively, by providing an
operationally realizable input-output relation such that the
following is true:

(1) The set {ω j} j is informationally complete (that is,
forms a basis for the space of functions on S1), and the
convex hull of the {ω j} j has symmetries that are not shared
by the full simplex of probability distributions on S1, so
that any map implementing such a symmetry transformation
cannot be a mixture of permutations of the physical states and
consequently cannot be a stochastic map.8

(2) The {ν j} j are more distinguishable than the {ω j} j ,9 so
that � is necessarily a nonlinear map.

(3) The ω j are independent of j (so ∀ j : ω j = ω̄ for some
fixed ω̄) but ν j varies nontrivially with j, so that the relation
is one to many, and there can be no map � consistent with it.

We again demonstrate that all three of these failures occur
in each of the three operational circuit types (listed as a,b,c in
Appendix A).

1. Classical operational scenarios in which the setting variable J
affects the system and the environment and K is trivial

Here, we provide classical examples of types (a, 1), (a, 2),
and (a, 3).

If the setting variable J influences both the principal system
and the environment, one can prepare any initial joint proba-

8This holds because transformations generated by symmetries of
the full space of probability distributions P(S1) are reversible, and
the only reversible transformations on the physical states correspond
to permutations—that is, symmetries of the simplex; further, all
stochastic maps can be expressed as a mixture of permutations. We
give a specific example of this form in Appendix B 1.

9That is, there exists a pair (ν j, νk ) which has a smaller classical
fidelity than the corresponding pair (μ j, μk ).

bility distribution on the system and environment. Then, as in
the quantum case, one can easily generate any relation R at
all, including all three types from above.

For example, taking the environment system to have
dimension equal to the cardinality of the set {ω j} j , then
for any set {ω j} j one can prepare the system-environment
joint state ω j ⊗ [ j] when J = j. The system and envi-
ronment may then interact via the channel �S2|S1E ( S1E) =∑

j

∑
S1E δ j,E S1E (ν j )S2 , for any set of states {ν j} j . Hence,

for J = j the final marginal state of the system is ν j . Since
both sets {ω j} j and {ν j} j are completely unconstrained, one
can certainly satisfy the conditions of 1, 2, and 3.

2. Classical scenarios in which the setting variable J determines
the measurement on the system and one postselects on the

measurement outcome K

Here, we provide classical examples of types (b, 1), (b, 2),
and (b, 3).

Suppose that the initial state of the system-environment
composite is a maximally correlated probability distribu-
tion. By the natural classical analog of the Hughston-Josza-
Wootters theorem, it is possible, by implementing a j-
dependent measurement on the system and postselecting on
outcome k, to steer the environment to any arbitrary probabil-
ity distribution ν j,k (see footnote 7). Further, the update rule
of the measurement (which affects only the system) can be
arbitrary. Given an outcome k of the jth measurement, one
can find an update rule which ignores the physical state of
the system and simply reprepares the system in the state ω j,k .
If the subsequent system-environment interaction is a swap
gate, one can again generate the input-output relation R =
{(ω j,k, ν j,k )} j,k for completely unconstrained sets {ω j,k} j,k and
{ν j,k} j,k . Hence, one can certainly satisfy the conditions of 1,
2, and 3 (where j is replaced with j, k).

3. Classical operational scenarios in which the setting variable J
affects only the system and K is trivial

Here, we provide classical examples of types (c, 1), (c, 2),
and (c, 3).

Suppose that one of four possible states are prepared by
implementing a transformation on the system, as follows. For
setting j ∈ {1, 2, 3, 4}, one applies a transformation �� j ⊗
I to the fiducial state PS1E := 1

4 ([11] + [22] + [33] + [44]),
where I denotes the identity map and each �� j is the map
on probability distributions over system S1 induced by the
corresponding permutation of ontic states (in cycle notation):

�1 := (1)(2)(3)(4),

�2 := (12)(34),

�3 := (13)(24),

�4 := (14)(23). (B1)

In this case, there are four possible system-environment dis-
tributions, corresponding to four maximally correlated proba-
bility distributions,

(Pj )S1E = (
�� j ⊗ I

)(
PS1E

)
, j = {1, 2, 3, 4}. (B2)
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Each of these has the same marginal on S1, namely, the
uniform probability distribution

ω j = 1
4 ([1] + [2] + [3] + [4]) := ω̄. (B3)

Now suppose that the system-environment interaction con-
sists of a measurement distinguishing the supports of the
maximally correlated states defined by Eq. (B2) (that is,
a measurement whose outcome j can be associated to the
response function δ� j (S1 ),E ), followed by a repreparation of
the system in the state ν j , thereby enacting the stochastic map

�S2|S1E
(

S1E
) =

∑
j

∑
S1E

δ� j (S1 ),E S1E (ν j )S2 , (B4)

where {ν j} j denotes an arbitrary set of four probability distri-
butions.

The input-output relation in this case is

R = {(ω̄, ν j )} j . (B5)

If the ν j depend nontrivially on j, then the relation is one to
many, so we have an example of type 3.

We can modify this example slightly to get one of type
2. Simply let the initial transformation �� j on the system be
generated by the permutation � j of Eq. (B1) with probability
(1 − ε) and a repreparation of an arbitrary state ω̃ j with
probability ε, so that

� j
(

S1

) = (1 − ε)�� j

(
S1

) + εω̃. (B6)

In this case, the four initial system-environment states are

(Pj )S1E = (1 − ε)
(
�� j ⊗ I

)(
PS1E

) + εω̃ ⊗ ω̄. (B7)

The marginals on S1 are

ω j = (1 − ε)ω̄ + εω̃. (B8)

The measurement defined above gives a uniform distribu-
tion over its outcomes if the joint probability distribution is of
the form ω j ⊗ ω̄, so that applying Eq. (B4) with ν j replaced by
ν̃ j to the state in Eq. (B7) gives the four final marginal states of
the system ν j = (1 − ε)ν̃ j + ε 1

4

∑
j ν̃ j . Taking 1

4

∑
j ν̃ j = ω̄

as a simple special case, we have

ν j = (1 − ε)ν̃ j + εω̄. (B9)

The input-output relation in this case, therefore, is

R = {[(1 − ε)ω̄ + εω̃ j, (1 − ε)ν̃ j + εω̄]} j . (B10)

Since both sets {ω̃ j} j and {ν̃ j} j are completely unconstrained
sets of four states, one can certainly choose them (for any ε)
to satisfy condition 2.

One can also choose them to satisfy condition 1. As one
example, let ε = 1

2 , and let the ω̃ j be

ω̃1 := 1
2 [1] + 1

2 [2],

ω̃2 := 1
2 [1] + 1

2 [3],

ω̃3 := 1
2 [1] + 1

2 [4],

ω̃4 := 1
2 [3] + 1

2 [4]. (B11)

The set {ω̃ j} is a basis for the space of distributions over
the four physical states. Let the ν j be ν̃ j = 2ω̄ − ω̃ j , so

that

ν̃1 := 1
2 [3] + 1

2 [4],

ν̃2 := 1
2 [2] + 1

2 [4],

ν̃3 := 1
2 [2] + 1

2 [3],

ν̃4 := 1
2 [1] + 1

2 [2]. (B12)

The relation in such circumstances is

R = {[
1
2

(
ω̄ + 1

2 [1] + 1
2 [2]

)
, 1

2

(
ω̄ + 1

2 [3] + 1
2 [4]

)]
,[

1
2

(
ω̄ + 1

2 [1] + 1
2 [3]

)
, 1

2

(
ω̄ + 1

2 [2] + 1
2 [4]

)]
,[

1
2

(
ω̄ + 1

2 [1] + 1
2 [4]

)
, 1

2

(
ω̄ + 1

2 [2] + 1
2 [3]

)]
,[

1
2

(
ω̄ + 1

2 [3] + 1
2 [4]

)
, 1

2

(
ω̄ + 1

2 [1] + 1
2 [2]

)]}
. (B13)

There is a linear map which fits the input-output relation:
It is given by the matrix⎡

⎢⎢⎢⎣
−1/2 1/2 1/2 1/2

1/2 −1/2 1/2 1/2

1/2 1/2 −1/2 1/2

1/2 1/2 1/2 −1/2

⎤
⎥⎥⎥⎦ (B14)

(acting on probability distributions over the four physical
states of S1, expressed as four-component vectors). This linear
map is not stochastic, since the elements in the matrix are
not all positive. Because the set of input distributions in the
relation form a basis for the space of all distributions over
physical states, this is the unique linear map satisfying the
relation. Hence, in such an example, the only linear map
consistent with the standard proposal is nonstochastic.

Geometrically, the convex hull of the distributions in
Eqs. (B11) and (B12) forms an octahedron inside the 4-
simplex of all probability distributions. The evolution map one
finds by the standard proposal [defined by Eq. (B13)] corre-
sponds to a reflection through the origin, which is a reversible
injective map. However, this map (extended uniquely by lin-
earity to the whole space) does not correspond to a symmetry
of the 4-simplex. Hence, the linear map in this example does
not correspond to any permutation of the physical states.

APPENDIX C: WHEN DOES THE EVOLUTION MAP
COINCIDE WITH THE INFERENCE MAP CLASSICALLY?

Consider the classical circuit of Fig. 7(b). Generally, it is
possible to have inferences along a common cause pathway
and therefore possible that the inference map might differ
from the evolution map. What are the necessary and sufficient
conditions on PS1E for them to be the same for all FS2E ′|S1E ?
The answer is simply that E and S1 must be marginally
independent,

PS1E = PS1 ⊗ PE . (C1)

A sufficient condition for this independence to hold is that
S1 and E have no common ancestors in the causal struc-
ture. However, the independence relation can sometimes hold
when this causal condition fails, for instance, using fine-tuned
choices of circuit elements [28,38].

If one is considering a circuit that contains some variables
which one is conditioning upon (like J and K in the examples
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we considered previously), then the sufficient condition for
equality of the inference and evolution maps is simply that
one must have S1 independent of E after conditioning on these
variables. It is worth noting that this provides another example
(besides the possibility of fine-tuning) of how a statistical
independence can hold in spite of the variables failing to
have disconnected causal ancestry—in classical example 2,
for instance, J is a common cause of S1 and E , but if one
conditions upon it, then S1 and E become independent.

Therefore, the precise circumstances under which confus-
ing inference and evolution has no consequences are when
there are no initial system-environment correlations. In other
words, the first mistake of the standard proposal, conflating
inference and evolution, is problematic precisely because
the standard proposal sought to address scenarios with such
correlations.

APPENDIX D: KNOWLEDGE DEPENDENCE
OF EVOLUTION MAPS

We mentioned in Secs. V C and VI that the classical and
quantum evolution maps depend on one’s knowledge of the
state of the environment. We now provide several textbook
examples of this phenomena, simply to show that it is not a
cause for concern.

Consider encoding a single bit using a Vernam cypher
(one-time pad). Let S be the bit to be encoded (the plain text)
and E be the key, which is shared between the sender and the
receiver. The value of E is sampled uniformly at random. To
encode the plain text, a controlled-NOT is implemented on S
with the key E as control, as shown in Fig. 11. Because the
users of the cypher know the value of E , they describe the
evolution of S, conditional on the value of E , as follows: If
E = 0, the evolution map is the identity, while if E = 1, it
is the bit flip. An eavesdropper assigns to E the uniformly
random distribution 1

2 ([0] + [1]) and therefore describes the
evolution of S as the randomization channel (the equal mixture
of identity and bit-flip channels).

The knowledge dependence of one’s description of evolu-
tion is also seen in many protocols for quantum cryptography.
For example, a private quantum channel on a qubit [70] can
be implemented as follows. The sender and receiver share
a uniformly random two-bit key. The sender draws a Pauli
matrix from the set {I, X,Y, Z} based on the value of the key
and implements it on the system. To decode, the user applies
the same Pauli. The users of the channel, who know the key’s
value, describe the evolution as ρ → σiρσ T

i . An eavesdropper
who does not know the key’s value but knows only that the

FIG. 11. (a) A one-time pad. The decoder and eavesdropper have
distinct information about the key (E ).

key was drawn uniformly at random, describes the evolution
as ρ → 1

21.
As a final example, consider the transformation that a

quantum state undergoes when it is measured. The map
which one uses to update the state of the measured system
depends on how much one knows about the outcome of
the measurement. Consider for simplicity a rank-1 projective
measurement {�k}k performed on some initial state ρ. If
one has no information about which outcome occurred, then
the correct update map is given by the nonselective update
rule, ρ → ∑

k �kρ�k . On the other hand, if one knows that
outcome k occurred, then the correct update map is given by
the selective update rule, ρ → �kρ�k .

APPENDIX E: ANALYSIS OF THE THREE CLASSICAL
EXAMPLES OF SEC. III

We now provide a derivation of the claims of Sec. V D,
completing the analysis of the three classical examples from
Sec. III and the mistakes of the standard proposal when
applied to them. For convenience, we represent the system-
environment interaction in each case by the probabilistic
dependence PS2|S1E = ∑

E ′ PS2E ′|S1E , where PS2E ′|S1E is the con-
ditional associated to the stochastic map FS2E ′|S1E ; we also
indicate conditioning on J = j or K = k in the subscripts
[e.g., PE |J=0(e) := PE |J (e|0)].

1. Classical example 3, from Sec. III E

Consider again the third classical example, introduced in
Sec. III E and discussed in Sec. V D.

As indicated by Eq. (75), the inference map from S1 to S2

for a particular value j of J is

�
( j)
S2|S1

(
S1

) =
∑
S1E

PS2|S1E PE |S1J= j S1 . (E1)

Given the nature of the coupling of system and environ-
ment, we have

PS2|S1E = δS2,S1⊕2E . (E2)

Denote the early version of S1 by S0. Then, because the
joint distribution over S0 and E is a state of perfect positive
correlation with uniform marginals,

PS0E = 1
2 [0]S0 ⊗ [0]E + 1

2 [1]S0 ⊗ [1]E

= (
1
2 [0]S0 + 1

2 [1]S0

)
δE ,S0 , (E3)

and because the controlled-NOT from J to S0 is modeled by
the conditional

PS1|S0 = δS1,S0⊕2J , (E4)

a simple application of Bayesian probability theory implies
that

PE |S1 =
∑

S0

PE |S0 PS0|S1

=
∑

S0

δE ,S0δS0,S1⊕2J

= δE ,S1⊕2J . (E5)
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Finally, substituting Eqs. (E2) and (E5) into Eq. (E1), we
conclude that

�
( j)
S2|S1

(
S1

) =
∑
S1E

δS2,S1⊕2EδE ,S1⊕2 j S1 (E6)

= δS2, j (E7)

= [ j]S2 . (E8)

This constitutes the proof of Eq. (76).
The correct evolution map in this example is straightfor-

ward to identify using the prescription of Sec. IV A. For
both values of J , the marginal state of the environment is
uniformly random, so there is a unique evolution map. It
is easily seen to be the randomization channel, which takes
any input probability distribution PS1 to a uniformly random
distribution on S2, as stated in Eq. (77).

2. Classical example 2, from Sec. III D

We start with Eq. (78), in the form

�
( j)
S2|S1

(
S1

) =
∑
S1E

PS2|S1E PE |J= j S1. (E9)

Recalling the details of the example, one has

PS2|S1E = δS2,(S1⊕3E ). (E10)

Furthermore, because E simply tracks J , we have

PE |J = δE ,J . (E11)

Substituting these expressions into Eq. (E9), we conclude that

�
( j)
S2|S1

(
S1

) =
∑
S1E

δS2,(S1⊕3E )δE ,J S1 (E12)

=
∑

S1

δS2,(S1⊕3 j) S1, (E13)

confirming Eq. (79)

3. Classical example 1, from Sec. III C

Here, both J and K are nontrivial. The causal structure is
the same as that of Fig. 3 and ensures that E is conditionally
independent of S1 given JK , PE |S1JK = PE |JK . Thus, the infer-
ence map for J = j and K = k is

�
( j,k)
S2|S1

(
S1

) =
∑
S1E

PS2|S1E
(
PE |J= j,K=k ⊗ S1

)
. (E14)

Because of the perfect correlation between S and E in the
initial joint state, whatever one infers about S from learning
that j = j and K = k, one learns the same thing about E as
well. Consequently,

PE |J=1,K=1 = 1
2 [2]E + 1

2 [3]E , (E15)

PE |J=2,K=1 = 1
2 [1]E + 1

2 [3]E , (E16)

PE |J=3,K=1 = 1
2 [1]E + 1

2 [2]E . (E17)

The system and environment interact via a swap, so

PS2|S1E = δS2,E . (E18)

Substituting these expressions into Eq. (E14), we have

�
(1,1)
S2|S1

(
S1

) = 1
2 [2]S2 + 1

2 [3]S2 , (E19)

�
(2,1)
S2|S1

(
S1

) = 1
2 [1]S2 + 1

2 [3]S2 , (E20)

�
(3,1)
S2|S1

(
S1

) = 1
2 [1]S2 + 1

2 [2]S2 . (E21)

The inference map for K = 1 and for the different values
of J is simply the map that ignores the distribution on S1

and outputs whatever distribution one infers for E as the
distribution on S2. Clearly, therefore, the inference map is JK
dependent in this example.

Recalling Eq. (42), one sees that each of the input-output
pairs (for a given value of J when K = 1) is consistent with the
corresponding inference map in Eqs. (E19)–(E21). But if one
tries to find a single map that is consistent with all three input-
output pairs, as the standard proposal mistakenly suggests we
do, one finds that no stochastic map can do the job.

As with example 2, it happens that the evolution map for
any given values of J and K coincides with the inference map
for those values because the causal structure is such that S1

and E are conditionally independent given JK , so that an
intervention on S1 does not change the map after conditioning
on JK ,

�
( j,k)
S2|doS1

= �
( j,k)
S2|S1

. (E22)

APPENDIX F: THE CORRECT QUANTUM EVOLUTION
MAPS FOR SCENARIOS WITH NONTRIVIAL J AND K

Consider the scenario at play in the standard proposal,
shown in Fig. 2. Following the prescription of Sec. VI, one
obtains (for J = j and K = k) a map in the modified circuit
given by

E ( j,k)
S2|S′

1

(
S′

1

) = TrE ′
(
US2E ′|S′

1E

(
S′

1
⊗ ρ

( j,k)
E

))
(F1)

where ρ
( j,k)
E = TrS1 (ρ ( j,k)

S1E ). Thus, by Eq. (81), the evolution
map from S1 to S2 in the circuit of Fig. 2, given that the setting
variable has value j and the outcome was found to be k, is

E ( j,k)
S2|do(S1 )

(
S1

) = TrE ′
(
US2E ′|S1E

(
S1 ⊗ ρ

( j,k)
E

))
. (F2)

This is the quantum analog of Eq. (74).
As was the case classically, the evolution map generally

depends on the values of the parameters JK , through the
marginal state of the environment appearing in Eq. (F2).

1. Resolution of the three quantum examples in Sec. II

Using Eq. (F2), we can compute the correct evolution maps
for the three quantum examples of Sec. II.

In the first quantum example (Sec. II C), the evolution map
for J = j and K = 1 is

E ( j,1)
S2|do(S1 )

(
S1

) = ∣∣ψT
j,1

〉〈
ψT

j,1

∣∣
S2

. (F3)

In other words, for each value j of J (which corresponded
to preparing |ψ j,1〉S1

as the marginal state of the system), one
has a distinct map, which ignores the input on the system and
reprepares the fixed state |ψT

j,1〉S2
.
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In the second quantum example (Sec. II D), the evolution
maps for J = 0 and J = 1 are

E (0)
S2|do(S1 )

(
S1

) = S1 , (F4)

E (1)
S2|do(S1 )

(
S1

) = (XH) S1(XH)†. (F5)

That is, for J = 0 the controlled operation is not activated,
while for J = 1 it is.

For these two quantum examples, if one considers specific
values for J and K , the input-output pair associated to that
valuation is consistent with the evolution map for that valua-
tion. This is because in both examples conditioning on J and
K makes S1 and E marginally independent in the sense that

ρS1E |J= j,K=k = ρS1|J= j,K=k ⊗ ρE |J= j,K=k (F6)

and therefore satisfies the condition of Eq. (G1) for the
equivalence of the evolution map and the inference map.

In the third quantum example (Sec. II E), there is a unique
evolution map E ( j,k) = E , since ρ

( j,k)
E = ρE . It is

ES2|do(S1 )
(

S1

) = 1
2 S1 + 1

2 Z S1Z
†, (F7)

the dephasing map in the Z basis. This is intuitively clear from
the fact that we are performing a flip of the system in the Z
basis, conditioned on an environment whose marginal state is
completely mixed.

In this example, each individual input-output pair for a
given value of J and K is not consistent with the evolution
map. This is because, for a given value of J , if you came
to know something about S1, it would inform you about S2

both by the cause-effect connection between S1 and S2 and
by the common-cause connection between S1 and S2 that is
mediated by E . The precise formalism for modeling this sort
of inference in quantum theory, however, is not yet clear.

APPENDIX G: WHEN DO INDIVIDUAL INPUT-OUTPUT
PAIRS OF QUANTUM STATES CONSTRAIN THE

QUANTUM EVOLUTION MAP?

Here, we show that the necessary and sufficient condition
for an individual input-output pair appearing in the standard
proposal to be a constraint on the evolution map is that S1 and
E are marginally independent,

ρS1E = ρS1 ⊗ ρE . (G1)

The proof is by contradiction. If the joint state on S1E did not
factorize, then there would be a choice of unitary in the circuit
such that S2 depended explicitly on the correlations between
S1 and E for a given value of JK . The input-output pair for
that value of JK would then reflect this dependence. On the
other hand, by the definition of the quantum evolution map,
its output on S2 cannot depend on the correlations between S1

and E , and so cannot yield the same input-output pair.
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