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Abstract: Essential to the description of a quantum system are its local degrees of
freedom, which enable the interpretation of subsystems and dynamics in the Hilbert
space. While a choice of local tensor factorization of the Hilbert space is often implicit
in the writing of a Hamiltonian or Lagrangian, the identification of local tensor factors
is not intrinsic to the Hilbert space itself. Instead, the only basis-invariant data of a
Hamiltonian is its spectrum, which does not manifestly determine the local structure.
This ambiguity is highlighted by the existence of dualities, in which the same energy
spectrum may describe two systems with very different local degrees of freedom. We
argue that in fact, the energy spectrum alone almost always encodes a unique description
of local degrees of freedom when such a description exists, allowing one to explicitly
identify local subsystems and how they interact. As a consequence, we can almost always
write a Hamiltonian in its local presentation given only its spectrum. In special cases,
multiple dual local descriptions can be extracted from a given spectrum, but generically
the local description is unique.

Contents

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2. Defining Tensor Product Structures . . . . . . . . . . . . . . . . . . . . .
3. Defining Locality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4. Existence and Uniqueness of Local TPS . . . . . . . . . . . . . . . . . .

4.1 Existence of local TPS . . . . . . . . . . . . . . . . . . . . . . . . .
4.2 Uniqueness of local TPS . . . . . . . . . . . . . . . . . . . . . . . .

4.2.1 Finite number of duals . . . . . . . . . . . . . . . . . . . . . . .
4.2.2 Constant number of duals . . . . . . . . . . . . . . . . . . . . .

5. Numerics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.1 Example showing finite duals . . . . . . . . . . . . . . . . . . . . . .
5.2 Example showing no duals . . . . . . . . . . . . . . . . . . . . . . .

http://crossmark.crossref.org/dialog/?doi=10.1007/s00220-019-03376-w&domain=pdf


J. S. Cotler, G. R. Penington, D. H. Ranard

5.3 Discovering dualities . . . . . . . . . . . . . . . . . . . . . . . . . .
6. Generalizations of Tensor Product Structures . . . . . . . . . . . . . . . .
7. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

7.1 Summary of results . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.2 The minimal data needed to understand a quantum system . . . . . .
7.3 Geometry on the TPS . . . . . . . . . . . . . . . . . . . . . . . . . .
7.4 Quantum simulation . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.5 Why locality? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.6 Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.7 Quantum gravity . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.8 The SYK model . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.9 Final remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1. Introduction

Quantum systems are usually described by a Hilbert space, a state vector, and a Hamilto-
nian. Do these structures alone fully characterize a physical system?Without specifying
more information, like a preferred choice of basis, it is difficult to make sense of the
Hamiltonian or the state. The question of determining a preferred basis or choice of
subsystems is a longstanding problem [1]. Here, we make progress by arguing that suit-
able quantum systemsmay be uniquely decomposed into locally interacting subsystems,
given only basis-invariant data.

As a concrete example, consider the one-dimensional Ising model, with Hamiltonian

H = J
n−1∑

i=1

σ z
i σ z

i+1 + h
n∑

i=1

σ x
i . (1.1)

The Hamiltonian clearly describes a chain of locally coupled two-level systems. This
interpretation is possible because the expression for the Hamiltonian implicitly includes
a partition of the total Hilbert space into subsystems using a tensor product factorization,

H =
n⊗

i=1

C
2. (1.2)

This choice of “tensor product structure” (TPS) allows one to write the Hamiltonian
simply in terms of local operators. However, if one does not specify a TPS but instead
writes the Hamiltonian as a large matrix in some arbitrary basis, the system becomes
difficult to interpret. Is it the one-dimensional Ising model, or is it a collection of inter-
acting particles in three dimensions? Up to a change of basis, different Hamiltonians are
only distinguished by their energy spectra. Moreover, the only canonical choice of basis
is the energy eigenbasis.1 Thus the Hamiltonian and state vector alone do not yield an
obvious physical description, at least without a choice of TPS.

We therefore ask, without a preferred choice of basis, is there a natural way to
decompose the Hilbert space into subsystems (i.e. tensor factors), knowing only the
Hamiltonian?2 In other words, do the energy eigenspaces and spectrum alone determine

1 Of course, this basis is only defined up to unitaries acting within eigenspaces.
2 Likewise one might ask how to most naturally divide up classical phase space into particle degrees of

freedom. For example, given four classical particles in one dimensionwith a contact interaction, we can equally
well describe their dynamics as that of two particles in two dimensions with non-local interactions.
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a natural choice of TPS? This is a question that has rarely been addressed in the literature,
though it is discussed in a few papers such as [2,3].More commonly, it has been assumed
that a preferred TPS must be specified before any further progress can be made in
describing the system [4]. To even attempt finding a natural TPS, one must first specify
what constitutes a natural choice. Here, we seek a choice of subsystems such that most
pairs of subsystems do not directly interact. That is, we want the Hamiltonian to act
locally with respect to the chosen TPS.

The question of finding a natural TPS is especially relevant when one considers
dualities in quantum systems. For instance, consider the mapping

μz
i =

∏

j≤i

σ x
j , μx

i = σ z
i σ z

i+1 , μx
n = σ z

n , (1.3)

under which the Hamiltonian of the one-dimensional Ising model becomes

H = J
n∑

i=1

μx
i + h

n−1∑

i=1

μz
i μ

z
i+1 − J μx

n + h μz
1 (1.4)

where J μx
n and h μz

1 are boundary terms. Themapping demonstrates twodifferent sets of
variables, {σi } and {μi }, which define two different TPS’s. The Hamiltonian acts locally
with respect to both TPS’s, even though the {σi } and {μi } operators are non-locally
related to each other. We say that the {σi } and {μi } descriptions are “dual,” providing
different local descriptions of the same Hamiltonian.

A simple argument in Sect. 4.1 demonstrates that given a random Hamiltonian, there
is usually no choice of TPS for which the Hamiltonian is local. However, given a generic
Hamiltonian that is local in some TPS, we can ask whether that is the unique TPS for
which the Hamiltonian is local. In other words, given a Hamiltonian with some local
description, is that local description unique?

We present evidence that generic local Hamiltonians have unique local descriptions:
that is, dualities are the exception rather than the rule. As a result, the spectrum is
generically sufficient to uniquely determine a natural choice of TPS, whenever such a
choice exists. We formalize a version of this statement and then prove a weaker result.
The weaker result relies on the assumption that there exists at least one example of a
Hamiltonian with a unique local TPS. (By “local TPS,” we mean a TPS for which the
Hamiltonian is local.)

The rest of the paper is organized as follows. In Sects. 2 and 3, we formally define
the notion of a TPS and what it means for a Hamiltonian to be local with respect to a
particular TPS. In Sect. 4, we address the main question of this paper: if a Hamiltonian
is local with respect to some TPS, do we expect that TPS to be the unique TPS for which
the Hamiltonian is local?We then utilize a change in perspective analogous to the change
between active and passive coordinate transformations, allowing one to re-phrase the
central question as follows: given a Hamiltonian local in some fixed TPS, are there other
local Hamiltonians with the same spectrum? When such Hamiltonians exist, we call
them “duals,” like the two Hamiltonians of Eqs. (1.1) and (1.4). For each distinct dual,
the Hamiltonian has a distinct local TPS.

To prove that generic local Hamiltonians have no non-trivially related duals, we break
the argument in two parts. First, we address the “infinitesimal” version of the question: do
Hamiltonians generically have duals that are infinitesimally nearby? In Theorem1, we
address this linearizedversionof the question using a linear-algebraic argument.Next,we
address the more difficult “global” version of the question: do Hamiltonians generically
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have duals related by arbitrary (non-infintesimal) transformations? Theorem2 addresses
this question with algebraic geometry.

Both theorems discussed above rely on crucial the assumption that there exists at
least one local Hamiltonian with no trivially related duals. Given such an example, we
could then conclude that almost all local Hamiltonians do not have duals. This genericity
result holds for k-local Hamiltonians on systems of any finite size, as well as for several
other notions of locality. Restricting to the class of translation-invariant, nearest-neighbor
Hamiltonians on a small number of qubits, in Sect. 5 we proceed to numerically find
an example of such a Hamiltonian with a unique local TPS. When combined with the
numerical result, the analytic result mentioned above provides an effective proof that
there exists a unique local TPS for generic local Hamiltonians within this restricted class.
We speculate that this conclusion extends to generic local Hamiltonians on systems of
any finite size.

All results presented are derived formodels with a finite number of finite-dimensional
subsystems. Suchmodelsmaybeused to approximate regularizedquantumfield theories,
although the results here are not rigorously extended to infinite dimensional Hilbert
spaces. Interesting subtleties may exist for infinite-dimensional systems, both due to the
possibility of continuous spectra and also due to the breakdown of analyticity, familiar
from the study of phase transitions. However, we speculate that results of a similar spirit
would still hold in the large-system limit.

In Sect. 6, we discuss generalizations of TPS’s, needed for fermions and gauge theo-
ries. Finally, we comment on how our results frame discussions of quantum mechanics
and quantum gravity.

2. Defining Tensor Product Structures

Here we precisely define the notion of a tensor product structure, or TPS. Often, one
considers a Hilbert space with an explicit tensor factorization

H1 ⊗ H2 ⊗ H3 ⊗ · · · (2.1)

where the subsystems have Hilbert spacesHi . We will usually imagine that the subsys-
tems correspond to spatial lattice sites. (In few-body quantummechanics, the subsystems
might correspond to distinguishable particles, whereas in many-body physics or regular-
ized quantum field theory, the subsystems might correspond to lattice sites, momentum
modes, quasiparticle modes, or some other choice.)

Our first task is to define a TPS on an abstract Hilbert spaceH that is not written as an
explicit tensor product. This formalism will lend precision to the discussion of different
tensor product structures on the same Hilbert space, the topic at the heart of this paper.

Consider a map T on a Hilbert space H which is an isomorphism (unitary map)

T : H → H1 ⊗ H2 ⊗ · · · . (2.2)

The choice of isomorphism endows H with a notion of locality: one can then speak of
local operators, subsystems, entanglement, and so on within the Hilbert space H. For
instance, we say the operator O on H is local to subsystem i if T OT−1 is local to Hi .
Similarly, the entanglement entropy of a state ψ ∈ H is defined as the entanglement
entropy of Tψ . These notions will remain unchanged if T is composed with a map
U1 ⊗ U2 ⊗ · · · that acts unitarily on each subsystem. We therefore define a TPS as
follows:
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Definition (TPS):A TPS T of Hilbert spaceH is an equivalence class of isomorphisms
T : H → H1 ⊗H2 ⊗· · · , where T1 ∼ T2 whenever T1T

−1
2 may be written as a product

of local unitaries U1 ⊗U2 ⊗ · · · and permutations of subsystems.
To avoid confusion, note that the usage of “local” in the phrase“local unitary” is

distinct from its usage in “local Hamiltonian.” Local unitaries are products of unitaries
acting on single tensor factors, while local Hamiltonians are sums of operators acting
on small subsets of tensor factors.

Another equivalent and useful way to define a TPS involves observables rather than
states. In short, a TPS naturally defines subalgebras of observables local to each subsys-
tem, but we can turn this data around and use the subalgebras to define the TPS. This
perspective was developed by [5] and was studied in the context of quantum gravity in
[6,7]. Let us collect the local observables as a set of mutually commuting subalgebras
Ai ∈ L(H), where L(H) denotes the algebra of operators on H, and Ai denotes the
algebra of operators of the form

1 ⊗ · · · ⊗ 1 ⊗ Oi ⊗ 1 ⊗ · · · ⊗ 1 ,

i.e. operators that act as the identity on all subsystems except i .
With this motivation, we can equivalently define a TPS on H as a collection of of

subalgebras {Ai }, Ai ∈ L(H), such that the following hold:

1. The Ai mutually commute, [Ai ,A j ] = 0 for i �= j .
2. The Ai are independent, Ai ∩ A j = 1.
3. The Ai generate the whole algebra of observables,

∨
i Ai = L(H).

The above definition is equivalent to the first definition, because a choice of subalge-
bras subject to the above conditions will uniquely determine an equivalence class of
isomorphisms T that give rise to the corresponding subalgebras. (The equivalence of
definitions essentially follows from the result stated in [5].) Since one can specify a TPS
either by an equivalence class T or a collection of subalgebras {Ai }, we will switch
between these notations freely.

For a Hilbert space H without additional structure like a Hamiltonian, no choice of
TPS is more interesting or meaningful than another. That is, even though two choices
{Ai } and {A′

i } may differ, neither choice is significant on its own because the states and
operators ofH have no identifying structure to beginwith.However,wewill be interested
in a Hilbert space equipped with a Hamiltonian H , and this additional structure does
distinguish certain states and operators, namely the operator H and its eigenvectors.
The choice of TPS then acquires more meaning; for instance, the ground state might be
entangled with respect to one TPS but separable in another.

On the other hand, certain TPS’s will be effectively equivalent with respect to a
given Hamiltonian. One may think of the operator T HT−1 on

⊗
i Hi as an expression

of H with respect to TPS T . Moreover, two operators on
⊗

i Hi describe physically
equivalent systems if they are the same up to conjugation by local unitaries, permutation
of subsystems, and transposition. That is, conjugation by local unitaries is merely a re-
labeling of the basis within tensor factors, while permutation of subsystems is merely a
re-labeling of how subsystems are labeled. And transposition of the entire Hamiltonian,3

namely THT−1 
→ (THT−1)T = (THT−1)∗, only corresponds to complex conjugation,
or a relabeling of i 
→ −i .

3 Note that although transposition is not itself a unitary map, for any given H , there exists a unitary operator
U such that U (THT−1)U† = (THT−1)T since transposition preserves the spectrum.
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We therefore say that two TPS’s T1 and T2 are equivalentwith respect to the Hamilto-
nian H if the operators T1HT−1

1 and T2HT−1
2 on

⊗
i Hi are the same up to conjugation

by local unitaries, permutation of subsystems, and transposition.
The above may be encapsulated by the following definition. Although this defini-

tion may appear unnecessarily formal, we hope it will eliminate any vagueness of the
discussion, and the definition will not require careful parsing to follow the paper in
general.

Definition (Equivalence of TPS): Two choices (H, H, {Ai }) and (H′, H ′, {A′
i }) of

Hilbert space, Hamiltonian, and TPS are equivalent when there exists a unitary U :
H → H′ such that H ′ = U−1HU or4 H ′ = U−1HTU , and such thatA′

ji
= U−1AiU ,

where j1, . . . , jn is some permutation of i = 1, . . . , n. Alternatively, (H, H, T ) and
(H′, H ′, T ′) are equivalent when there exists a unitary U : H → H′ such that H ′ =
U−1HU or H ′ = U−1HTU , and such that [T ] = [T ′U ].

We will be most interested in considering the same Hilbert space and Hamiltonian
with different TPS’s, given by (H, H, T ) and (H, H, T ′). Rather than talk about two
different TPS’s T , T ′ for the same Hamiltonian H , we can often simplify the discussion
by talking about two different Hamiltonians THT−1, T ′HT ′−1 on the space

⊗
i Hi with

fixedTPS. Both perspectives are equivalent. This observationwill be important and bears
repeating.

Observation: It is equivalent to consider either perspective:

1. A Hilbert spaceH with fixed Hamiltonian H and varying choice of TPS T or T ′, or
2. A Hilbert space

⊗
i Hi with fixed TPS and unitarily varying choice of Hamiltonians

THT−1 or T ′HT ′−1 with the same spectrum.

For some fixed Hamiltonian H , questions about the existence of a TPS in which H is
local may then be translated into questions about the existence of local Hamiltonians
with the same spectrum as H .

The notion of duality can also be expressed in either of these perspectives:

Definition (Dual): From the first perspective above, we say that two TPS’s are dual if
the given Hamiltonian is local in both TPS’s and if also the TPS’s are inequivalent with
respect to that Hamiltonian. From the second perspective, we say that two Hamiltonians
are dual if they are local, have the same spectrum, and cannot be related by local unitaries,
permutations of subsystems, and transposition.

The results of Sects. 4 and 5 will largely be cast in the second perspective, i.e. as
statements about the existence of different local Hamiltonians with the same spectrum.
However, the results may always be re-cast in the first perspective, as results about the
existence of different local TPS for the same Hamiltonian. For instance, we can either
say that generic local Hamiltonians uniquely determine a local TPS, or we can say that
the spectrum of a generic local Hamiltonian will uniquely determine the Hamiltonian.

3. Defining Locality

Given a Hilbert space H and Hamiltonian H , what qualitatively distinguishes different
choices of TPS? Most broadly, we might ask whether some TPS’s yield simpler, more

4 Rather than allowing H ′ = U−1HTU in addition to H ′ = U−1HU , one could allow U to be an anti-
automorphism of the C∗-algebra of observables. Automorphisms of the algebra of observables are given by
unitary conjugation, while anti-automorphisms (multiplication-reversing homomorphisms) are given by the
composition of unitary conjugation and transposition.
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meaningful, ormore calculationally tractable descriptions of a system.More specifically,
we are interested in TPS’s for which the Hamiltonian appears local, in the sense that it
only exhibits interactions among certain collections of subsystems.

We should clarify what it means for a Hamiltonian to include an interaction among
a given collection of tensor factors. In general, one can write a Hamiltonian on n qudits
(i.e., n systems of local dimension d) as

H = a01 +
n∑

i=1

d2−1∑

α=1

aiαO
α
i +

∑

i< j

d2−1∑

α,β=1

ai jαβO
α
i O

β
j +

∑

i< j<k

d2−1∑

α,β,γ=1

ai jkαβγ O
α
i O

β
j O

γ

k + · · ·
(3.1)

where the operators Oα
i for α = 1, . . . , d2 −1 form an orthogonal basis for single-qudit

operators on site i . This decomposition is unique, up to the choice of basis Oα
i . The

terms Oα
i O

β
j O

γ

k , for instance, are considered as interactions between qudits i , j , and
k. The space of operators L(H) decomposes into orthogonal sectors, with one sector
for each combination of subsystems, and we say that H contains an interaction among
some subset of qudits if H has a nonzero component in the corresponding sector.

Qualitatively, we say that a Hamiltonian is local when relatively few combinations
of subsystems are interacting. (Note that we use “local operator” to refer to an operator
that is local to a single subsystem or collection of subsystems, while we use “local
Hamiltonian” to refer to a sum of such operators.) For instance, the Ising model only
exhibits nearest-neighbor interactions, as do lattice-regularized quantum field theories
without higher derivatives.Meanwhile, other models like spin glasses andmatrixmodels
exhibit interactions among all particles, but only in groups of fixed size, like two or four.
Likewise, non-relativistic electrons have only pairwise interactions, if each electron is
treated as a subsystem.5

To incorporate all these notions of locality, one can use a hypergraph. First, note that
an ordinary graph can be thought of as a collection of vertices V , along with a collection
of edges E = {Ei }, where each edge is written as a pair of vertices, Ei = {v, v′} for
v, v′ ∈ V . We emphasize that each Ei , called an “edge,” is a two element subset of V . A
hypergraph is like an ordinary graphwith a set V of vertices, but the “edges” Ei ⊂ V may
contain more than two vertices. For convenience, we subsequently refer to a hypergraph
as a graph. Given a fixed TPS and Hamiltonian, the associated “interaction graph”
has vertices corresponding to the subsystems and has (hyper-)edges corresponding to
every combination of subsystems that interact under the Hamiltonian. We say that the
Hamiltonian is local with respect to some graph G if its interaction graph is a subgraph
G.

Given aHamiltonian H , different choices ofTPST will give rise to different operators
THT−1 on

⊗
i Hi , with different associated interaction graphs. We are interested in

TPS’s which give rise to interaction graphs with edges connecting only a small number
of sites. As one measure of sparsity or locality, we say that a graph is k-local if it has
edges joining at most k vertices.6 Likewise, we call a Hamiltonian k-local with respect to
some TPS if the associated graph is k-local, and we will also refer to the TPS as k-local.

While the study of generic k-local Hamiltonians is important,7 for example in the
study of quantum circuits and black holes, generally we are interested in the stronger

5 The formalism developed here will not directly treat fermions; see Sect. 6.
6 This property is also important in few-body quantummechanics. For an N -particle first quantized quantum

system, k-locality with respect to particle subsystems means that the particles only have k-body interactions.
7 In fact, as mentioned above, an N -particle first quantized quantum system with k-body interactions is

k-local with respect to particle subsystems.
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condition of geometric locality. This means that each site has edges connecting it to
only a small number of other sites. For example, we are often interested in graphs
which form a d-dimensional lattice with only neighboring lattice sites interacting. Such
graphs are ubiquitous since they arise in any local spin system or lattice regularization
of quantum field theory. We might even make further constraints such as requiring that
the Hamiltonian be translation-invariant with respect to the lattice.

All of the analytic results in this paper will be valid for generic Hamiltonians within
any specified locality class, including all the classes discussed above. Specifically, we
prove results about the number of duals within a particular locality class of a generic
Hamiltonian in that same locality class. For example, we can prove results about the
number of translation-invariant duals of a generic translation-invariant Hamiltonian.
It is harder to prove results about the number of k-local duals of generic translation-
invariant Hamiltonians, since translation-invariant geometrically local Hamiltonians are
a measure zero subspace of the larger space of k-local Hamiltonians. However in Sect. 5
we show that some of our results can be extended to such cases.

4. Existence and Uniqueness of Local TPS

4.1. Existence of local TPS. First we ask whether a generic Hamiltonian has any k-local
TPS. The answer is no, as will be demonstrated. We restrict our attention to a finite-
dimensional Hilbert spaceH, dim(H) = N , with Hamiltonian H . We ask whether there
exists a TPS with n subsystems such that the Hamiltonian is k-local. For n sufficiently
larger than k, wewill see that a k-local TPS exists only for ameasure zero set of operators
in L(H).8

Recall from the previous section that for a given Hamiltonian H , a choice of TPS
T produces a Hamiltonian THT−1 on

⊗
i Hi , up to local unitaries and permutations of

subsystems. The operator THT−1 then defines some associated interaction graph, up to
relabeling of vertices. We call the TPS T k-local if it gives rise to a k-local interaction
graph for THT−1.

Note that for any TPS T , H and THT−1 have the same spectrum. Conversely, if there
is some operator O on

⊗
i Hi with the same spectrum as H , then there exists a TPS

T ′ such that O = T ′HT ′−1. So H has a k-local TPS if and only if there is a k-local
Hamiltonian on

⊗
i Hi with the same spectrum.

The above observation allows a change of perspective, as suggested at the end of
Sect. 2. Rather than asking whether generic Hamiltonians on an abstract Hilbert spaceH
have some k-local TPS,we can equivalently askwhether genericHamiltonians on

⊗
i Hi

are isospectral to some k-local Hamiltonian. A simple dimension-counting argument
yields the answer. The space of possible spectra of all Hamiltonians is R

N . Meanwhile,
examining Eq. (3.1), we see that the space of k-local Hamiltonians on

⊗
i Hi will have

dimension

s =
k∑

j=0

(
n

j

)
(d2 − 1) j (4.1)

for n subsystems of local dimension d. Then the space of spectra of k-local Hamiltonians
will also have dimension at most s. For s < N = dn , the space of all spectra of k-local

8 Weonly dealwith sets ofmeasure zero, so the exactmeasure considered is irrelevant; only the specification
of measure zero sets is important. One could choose equally well the Gaussian unitary ensemble, or the
Lebesgue measure on the space of Hermitian matrices in some arbitrary basis, both of which have the same
measure zero sets.
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Hamiltonians will have positive codimension in the space of all possible spectra. So for
any sufficiently large n (e.g. n ≥ 10, for d = 2 and k = 2), the set of Hamiltonians that
are isospectral to a k-local Hamiltonian has measure zero.

In general, the results in this paper will apply to all Hamiltonians in some specified
subspace, excluding an exceptional set of measure zero. On the other hand, when ask-
ing questions of an approximate nature—for instance, when asking whether a generic
Hamiltonian has a TPS that is approximately local—the relevant question is not quite
“Does the exceptional set have measure zero?” but rather “What is the volume of an
ε-neighborhood of the exceptional set?” Such questions are more difficult to tackle
directly, requiring analysis to augment the linear algebra and algebraic geometry used
in this paper. However, the exceptional sets in question not only have measure zero but
also have a codimension that is exponential in the system size, perhaps suggesting that
the desired results about ε-neighborhoods would hold.

4.2. Uniqueness of local TPS. Now we ask, given a Hamiltonian H with some k-local
TPS T , is T the unique k-local TPS, up to equivalence in the sense of Sect. 2 above?
We again follow the strategy of reformulating the question on the space

⊗
i Hi , using

the observation at the end of Sect. 2. Recall that two k-local Hamitonians on
⊗

i Hi are
called dual if they are isospectral and are not related by local unitaries, permutations of
subsystems, or transposition.

Now we can reformulate the question of whether a k-local TPS for a Hamiltonian
is generically unique. The question becomes, does a generic k-local Hamiltonian H on⊗

i Hi have any duals? In other words, can one generically recover a local Hamiltonian
from its spectrum? Posed in the latter terms, the question may be interesting for inde-
pendent reasons. However, we are motivated by the original question, asking whether a
k-local TPS for a Hamiltonian is generically unique.

One’s initial intuition may suggest that a k-local Hamiltonian may indeed be recov-
ered from its spectrum.This intuition is due to dimension counting: a k-localHamiltonian
is specified by a number of parameters polynomial in n, while the number of eigenval-
ues is exponential in n. In the previous section, this dimension counting was used to
rigorously demonstrate that generic Hamiltonians have no k-local TPS. However, the
argument here is less immediate. While the spectrum has more parameters than the
Hamiltonian, this fact alone does not prevent generic Hamiltonians from having duals.
For instance, imagine that we slightlymodified the question, instead defining two k-local
Hamiltonians to be dual whenever they are not related by local unitaries or permutations,
failing to include the possibility of transposition. Then wewould discover that all Hamil-
tonians (except real-symmetric ones) have at least one dual, given by their transpose.
Thus it is not immediately obvious that most k-local Hamiltonians do not have duals.

However, transposition, just like local unitaries and permutations, is a linear map on
the space of Hamiltonians, and it preserves the subspace of local Hamiltonians. A simple
check, after dimension-counting, is to ask whether there are any other linear spectrum-
preserving maps that preserve this subspace. It turns out that no such maps exist. All
linear maps that preserve eigenvalues are generated by transposition and unitaries, and
since we already know that taking the transpose preserves locality, we only have to
worry about whether other unitaries preserve the subspace. Indeed, the only unitaries
that preserve the subspace are compositions of single-site unitaries and permutations.

We therefore argue the following lemma: if a unitary preserves the space of k-local
Hamiltonians when acting by conjugation, the unitary must be generated by 1-local
(single-site) operators and permutations of sites. While this lemma is not central to the
main arguments of the paper, it may be illuminating.
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To begin, we argue an infintesimal, or “linearized,” version of the above: given a
Hermitian operator V such that the map CV : X 
→ i[V, X ] preserves the subspace of
k-local Hamiltonians, V must be a sum of single-site operators. Assume V is an operator
such thatCV (X) = i[V, X ] is k-local for any k-local X . Decomposing V as in Eq. (3.1),
let kmax be the maximum number of interacting sites, and let Vmax �= 0 be the sum of
terms in V , involving all sites on some subset S of size kmax . Suppose X is a k′-site
operator for k′ ≤ k that intersects S at a single site and that does not commute with
V . Then i[X, Vmax ] contains a term with interaction size kmax + k′ − 1, and i[X, V ]
must contain this term as well, because Vmax is a term of maximal interaction size in
V and therefore its contribution to the commutator i[X, V ] cannot be canceled by other
terms in V . But for kmax > 1, we can always choose k′ ≤ k such that X exists and
kmax + k′ − 1 > k. Then i[X, V ] is not k-local and we have a contradiction. It follows
that kmax = 1, i.e. V is a sum of single-site operators.

The global version of this lemma easily follows. That is, we can now argue that
any unitary operator U that preserves the subspace of k-local Hamiltonians under
conjugation must be generated by local (single-site) unitary operators and permu-
tations of sites. Assume U preserves the subspace of k-local Hamiltonians. Con-
sider any 1-local operator O . Then for any k-local operator X , U+XU is k-local, so
i[O,U+XU ] is k-local also. Because U preserves the subspace of k-local operators,
iU [O,U+XU ]U+ = i[UOU+, X ] is k-local as well. That is, CUOU+ preserves the sub-
space of k-local Hamiltonians. By the “linearized” version of the lemma above, UOU+

must then be 1-local. That is, U must send 1-local operators to 1-local operators under
conjugation. Thus for any single-site operator O , UOU+ must be a sum of single-site
terms. By considering (UOU+)2, which must also be a sum of single-site terms, we see
that UOU+ must have support on a single site. Moreover, for two single-site operators
O and O ′ on the same site,UOU+ andUO ′U+ must also be on the same site, otherwise
U (OO ′)U+ would not be 1-local. We conclude that conjugation byU sends the algebra
of operators on one site to the algebra of operators on another site; it follows that U is
generated by a combination of single-site unitary operators and permutations of sites.

4.2.1. Finite number of duals As discussed above, we would like to show that generic
k-local Hamiltonians do not have k-local duals. However, the statements proven in this
paper will be weaker statements. More specifically, our result will apply to any particular
linear subspace of Hamiltonians, for a Hilbert space of fixed size. For instance, consider
the subspace of all k-local Hamiltonians on n qubits. The result then states: if there exists
a single example of a k-local Hamiltonian on n qubits without any duals, then almost
all k-local Hamiltonians on n qubits do not have k-local duals. The analogous result
applies to systems of qudits rather than qubits (i.e. using d-dimensional subsystems).
Or, for instance, consider the linear subspace of all Hamiltonians on spin chains with
nearest-neighbor couplings. Then the result states: if there exists a single example of a
spin chain Hamiltonian on n spins without any duals that are also spin chains, then the
same must hold for almost all spin chain Hamiltonians on n spins.

Of course, these results on their own do not guarantee that almost all k-local Hamil-
tonians do not have duals. However, as a proof of principle, we will numerically find an
example of a translation-invariant spin chain Hamiltonian on 10 spins that does not have
any translation-invariant spin chain duals. Combinedwith the above result, the numerical
example effectively proves that almost all translation-invariant spin chain Hamiltonians
on 10 spins do not have any translation-invariant spin chain duals.

If a family of examples could be generated analytically for systems of different sizes,
perhaps using induction in the size of the system, then our result would imply rigorously
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Fig. 1. We depict the spaces S and OrbU (N )(H) intersecting in the ambient space Herm(H). The Hamiltonian
H is depicted to have no duals. The orbit intersects S in multiple disconnected components, appearing as
circles in the diagram. These disconnected components together make up OrbG (H) = S ∩ OrbU (N )(H).

Each disconnected component of S∩OrbU (N )(H) contains Hamiltonians related by local unitaries (which are
continuous transformations), and the sets are related to one another by permutations of qubits and transposition,
which are discrete transformations. Alternatively, if the intersection contained points not related to H by local
unitaries, permutations, or transposition, then H would have duals. The figure is only intended as a schematic
representation of the spaces involved

that almost all k-local Hamiltonians do not have duals. We suspect that such examples
exist, which would imply that the general result holds.

Now we begin to formalize the statement. Consider a subspace of Hamiltonians,
S ⊂ Herm(H). For instance, S may be the subspace of k-local Hamiltonians on n
qubits. For a given local Hamiltonian H ∈ S, we are interested in whether H has a
dual H ′ ∈ S. By dual, we mean a Hamiltonian H ′ with the same spectrum as H , such
that H ′ is not related by any combination of local unitary transformations, permutations
of qubits, or the transpose operation. Let G be the subgroup of linear transformations
on S generated by local unitary operations, permutations of qubits, and the transpose
operation. In addition, let the unitary groupU (N ) act on Herm(H) by conjugation. Note
that the orbit OrbU (N )(H) is the set of Hamiltonians isospectral to H . Then the local
duals of H are precisely the points in OrbU (N )(H) ∩ S that are not in OrbG(H). Note
that OrbG(H) ⊂ S ∩ OrbU (N )(H). The statement that H has no duals is the statement
that

S ∩ OrbU (N )(H) = OrbG(H). (4.2)

This condition says that the only Hamiltonians in S isospectral to H are those related
by local unitary operations, permutations of qubits, and the transpose operation. Equiv-
alently, the condition states H ∈ S is uniquely determined by its spectrum, up to the
previous operations. The situation of a Hamiltonian with no duals is illustrated in Fig. 1.

As a first step, we can constrain the answer by counting the dimensions of the spaces
involved. How big is dim(OrbU (N )(H))? For simplicity, consider the tangent space of
OrbU (N )(H) at H , given by the image of the linear map CH : Herm(H) → Herm(H),
taking V 
→ i[V, H ]. The kernel of CH will be the Hermitian operators that commute
with H , i.e. that are diagonal in the energy eigenbasis. A generic local Hamiltonian
will have non-degenerate spectrum, so there will be an N -dimensional space of these
operators. Hence, CH has rank N 2 − N (using dimHerm(H) = N 2), and likewise
OrbU (N )(H) = N 2 − N . Meanwhile, dim S � N , so dim S + dimOrbU (N )(H) �
dimHerm(H). This inequality makes it possible for S ∩ OrbU (N )(H) to be empty,
because the ambient space Herm(H) is sufficiently large. We already know dim S ∩
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Fig. 2. We visualize what cannot happen, namely the intersection of OrbG (H) and S contains both isolated
points and open sets. The directions of S which correspond to local unitary perturbations of the Hamiltonian
are suppressed

dimOrbU (N )(H) ⊃ OrbG(H), so the intersection is not empty, but we might still expect
dim S ∩ dimOrbU (N )(H) contains no further points.

Concretely, wewill consider perturbing aHamiltonian H in the subspace S by unitary
conjugation, such that the perturbed Hamiltonian still lies within S.Wewish to show that
for almost all H , such unitary perturbations will either commute with the Hamiltonian
(and so have no effect at all), or otherwise be local unitary perturbations. This generically
precludes arbitrarily nearby duals in the sense that for almost all H in S, there is an open
set in S containing H for which there are no duals of H .

To implement the proof, we construct a complex-valued polynomial function of the
Hamiltonian, p(H), which has roots precisely at the values of H that have infinitesimally
nearby duals in S. However, any polynomial has the property that either its zeros are a
set of measure zero, or the polynomial is identically zero. In our context, this means that
either almost all Hamiltonians do not have arbitrarily nearby duals, or all Hamiltonians
have arbitrarily nearby duals. Thus, we only need to check if one Hamiltonian has no
arbitrarily nearby duals to determine which scenario holds for S.

Figure 2 depicts a scenario we have shown impossible, namely a Hamiltonian in
S which is dual to a proper open subset of S. Our theorem is in fact stronger: if a
single Hamiltonian in S does not have arbitrarily nearby duals, then almost all other
Hamiltonians in S have no arbitrarily nearby duals. Indeed, the weaker statement follows
since if there were an open set of duals, the number of Hamiltonians with no arbitrarily
nearby duals would not be measure zero.

We now proceed with the result:

Theorem 1 (Finite number of duals). Suppose that we have a subspace S of Hermitian
matrices Herm(N ) together with some subgroup G ⊂ U (N ) that preserves S when
acting by conjugation. Moreover suppose that there exists a matrix H0 ∈ S whose
Jordan form is the generic Jordan form9 on S, such that if

i[V, H0] ∈ S

for some Hermitian matrix V then either [V, H0] = 0 or V ∈ g, where g is the Lie
algebra10 of G. (In particular, g is equal to the space of 1-local Hamiltonians.)

9 By generic Jordan form on S, we mean the unique Jordan normal form associated to all operators in a non-
empty, Zariski open subset of S. For most subspaces S of local Hamiltonians we are interested in, the generic
Jordan form will be non-degenerate, but we consider the general case here. For instance, translation-invariant
spin chains with periodic boundary conditions are generically degenerate.
10 We use the physicist’s convention of taking the Lie algebra to consist of Hermitian rather than anti-

Hermitian operators.
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Then the same property holds for almost all matrices H ∈ S: if

i[V, H ] ∈ S

for some Hermitian matrix V , then either [V, H ] = 0 or V ∈ g.11

In particular, if S is some space of local Hamiltonians with G the group of local unitary
operators, then almost all Hamiltonians H ∈ S have a finite number of duals.

Proof. Consider the linear map fH : Herm(H) → S⊥ on the space of Hermitian
matrices, defined by

fH (V ) = Proj S⊥ i[V, H ] (4.3)

where the projector is onto the orthogonal complement of S with respect to the Hilbert–
Schmidt inner product. Then ker( fH ) is the space of Hermitian matrices V such that

i[V, H ] ∈ S. (4.4)

By construction, g ⊂ ker( fH ) and Stabu(H) ⊂ ker( fH ), where

Stabu(H) = {V ∈ u = Herm(H) | [V, H ] = 0} (4.5)

is the stabilizer of H under the adjoint action of the Lie algebra u of U (N ). So for any
H , we have

g ∪ Stabu(H) ⊂ ker( fH )

dim (g ∪ Stabu(H)) ≤ dim ker( fH ). (4.6)

Also note that

dim (g ∪ Stabu(H)) = dim g + dim Stabu(H) − dim (g ∩ Stabu(H)) (4.7)

and g ∩ Stabu(H) = Stabg(H), so

dim ker( fH ) ≥ dim (g ∪ Stabu(H)) = dim g + dim Stabu(H) − dim Stabg(H) .

(4.8)

We now argue that for almost all H ∈ S, dim ker( fH ) attains its minimal value over
S, i.e.

dim ker fH = min
H ′∈S

dim ker fH ′ (4.9)

for almost all H ∈ S. This fact immediately follows from the lower semicontinuity of
the rank of a matrix, but we will elaborate to provide some intuition about the role of
polynomials. First, recall that a matrix M has rank at least r if and only if there exists an
r × r matrix minor of M with nonzero determinant. Now suppose that dim ker fH0 = r
for some H0. If we consider fH0 as a matrix, there must exist some matrix minor of
fH0 with nonzero determinant formed by removing r rows and columns from fH0 . The
determinant will be a polynomial function of the entries of H0, and because a non-zero

11 The above also result also holds if one replaces S ⊂ Herm(N ) with the complexification
SC ⊂ Mat(N , C) and replaces G ⊂ U (N ) with the complexification GC ⊂ GL(N ). The complexified
version of the statement holds by a nearly identical argument, and the complexified statement will be used in
the proof of Theorem2.
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polynomial is non-zero almost everywhere, the determinant will be non-zero almost
everywhere in S. So for any H0 ∈ S, and for almost all H ∈ S,

dim ker H ≤ dim ker H0 . (4.10)

Now let us assume there exists an H0 satisfying the hypotheses of the theorem, which
may be rewritten as ker fH0 = g ∪ StabU (N )(H0), along with the requirement that H0
has the generic Jordan form on S. Combining Eq. (4.10) with Eq. (4.8), we then have
that for almost all H ∈ S,

dim ker fH ≤ dim ker fH0 = dim g + dim Stabu(H0) − dim Stabg(H0). (4.11)

Because H0 is assumed to have the generic Jordan form on S, and because the generic
Jordan formwill have the smallest eigenvalue degeneracy, H0 will then have the smallest
stabilizer under adjoint action, i.e.

dim Stabu(H0) = min
H

dim Stabu(H). (4.12)

Meanwhile, dim Stabg(H) = dim ker gH where gH (V ) = [V, H ], so by the exact same
argument made below Eq. (4.10),

dim Stabg(H) = min
H ′∈S

Stabg(H
′) (4.13)

for almost all H ∈ S.
Plugging Eqs. (4.12) and (4.13) into Eqs. (4.11) and (4.8), one finds that for almost

all H ∈ S,

dim ker fH ≤ dim g + min
H ′ dim Stabu(H ′) − min

H ′ dim Stabg(H
′)

dim ker fH ≥ dim g + min
H ′ dim Stabu(H ′) − min

H ′ dim Stabg(H
′) (4.14)

and hence the above is an equality, with

dim ker fH = dim(g ∪ Stabu(H)) (4.15)

which implies

ker fH = g ∪ Stabu(H) (4.16)

because ker fH ⊃ g ∪ Stabu(H). Finally, the above expression is precisely the desired
condition of the theorem.

To complete the proof of Theorem 1, it only remains to show that the number of duals
is finite. Suppose that for some H ∈ S then for any V ∈ Herm(N ), i[V, H ] ∈ S implies
either that [V, H ] = 0 or V ∈ g. Then there must exist a finite volume around the
identity in U (N ) within which UHU † ∈ S implies U ∈ G or UHU † = H . However,
since the unitary group is compact, this can only be true for every H ′ = UHU † ∈ S if
the set of Hamiltonians in S with the same eigenvalues as H quotiented by the action
of G by conjugation is finite. However, we have already shown that this exact result is
true for almost all H ∈ S. It follows that for almost all H ∈ S, the set of Hamiltonians
in S with the same eigenvalues as H quotiented by the action of G is finite, which we
defined to be the number of duals. ��
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4.2.2. Constant number of duals To extend our result to non-infinitesimal unitary trans-
formations, considering the whole orbit OrbU (N )(H) rather than just the tangent space
at H , we make use of more sophisticated mathematical tools than were necessary for
the previous results. The proof consists mostly of classical algebraic geometry, though
it makes use of some theorems phrased in the language of schemes.12 Nevertheless, the
basic strategy, as well as the result itself, is highly analogous to the previous section.
We show that almost all local Hamiltonians have the same number of duals. That is, the
number of duals per Hamiltonian is almost everywhere constant over the space of local
Hamiltonians. The numerical results in Sect. 5 will augment the theorem below to show
that the number of duals is generically zero (rather than simply being constant), at least
for certain small systems.

One main difference from the style of the previous proof is that we must include
non-Hermitian local Hamiltonians when searching for duals, rather than just ordinary
Hermitian Hamiltonians. In other words, we must consider the orbit of H under conju-
gation with GL(N ) and not justU (N ). Similarly, we generalize the equivalence classes
associated to a single TPS to include the orbit under conjugation by elements of GL(d)

on each subsystem (analogous to local unitaries), as well as the familiar permutation
of the subsystems and transposition. This requirement is particularly important as it
means we are working over an algebraically-closed field, the complex numbers. When
performing associated numerics, the complexification adds a small amount of numerical
difficulty, since we must search a space with twice the number of parameters.

Although the proof itself is somewhat technical, the outline is easy to understand.
First we construct the space of orbits of local complex Hamiltonians under conjugation
by local operators on each subsystem, permutation of subsystems, and transposition.
Then we define a map from this space such that two orbits are mapped to the same
point if and only if they have the same spectrum and are therefore dual. Here, the
complexification of the spaces becomes important. Note that the number of distinct
solutions to the complex algebraic equation f (z) = k is the same for almost all values
of k, although the analogous statement does not hold for real solutions. Similarly, for a
class of sufficiently well-behavedmaps, the number of points in the fiber will be constant
almost everywhere.13

Theorem 2 (Constant number of duals). Suppose that we have a complex subspace SC
of matrices Mat(N , C) that is preserved by transposition, together with some reductive
subgroup G0 ⊂ GL(N ) that preserves SC when acting by conjugation and is invariant
under transposition. Let G be the subgroup of GL(N 2) whose fundamental represen-
tation is generated by transposition and the action of G0 by conjugation. Suppose that
almost all matrices in SC are diagonalizable and moreover that for almost all matrices
in SC, the number of G-orbits SC which are similar is finite; we refer each such orbit
as a “complex dual.” Then the number of complex duals is constant on a Zariski open
subset of SC.

Proof. We want to define a morphism of varieties for which the domain is the orbits
of SC under G and for which the fibers are the sets of duals. Our starting point is the
rational map f : Proj (SC) → �, defined to be the projectivization of the map

H 
−→ {Tr(Hn) | 1 ≤ n ≤ N }.
12 The maps and spaces involved are also complex analytic, a weaker condition. While analyticity alone

should be sufficiently strong to prove the result here, we make use of algebraic structure instead.
13 We first need to projectivize the spaces in order for this statement to hold.
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Here� can be taken to be the weighted projective space which is the quotient ofC
N \{0}

by the action of the multiplicative group C
∗ of nonzero complex numbers, taking

(t1, t2, . . . , tN ) 
→ (λt1, λ
2t2, . . . , λ

N tN ).

Note that we can identify the quotient of C
N by the permutation group SN (acting by

permuting indices) with C
N itself via the map

(λ1, λ2, . . . , λN ) 
→ (e1, e2, . . . , eN )

where e j (λ1, . . . , λN ) are the symmetric polynomials of {λi }, which may be defined by
matching coefficients of the formal power series

N∏

j=1

(x + λ j ) = xN +
N∑

j=1

eN− j x
j .

The elementary symmetric polynomials {e j } of {λ j } can then be identified via Newton’s
identities with the power sum symmetric polynomials {t j }. Since tn = Tr(Hn) is the
nth power sum symmetric polynomial of the eigenvalues {λ j } of H , this gives us an
identification of f : Proj (SC) → � with the map that associates to a matrix H its
projectivized set of eigenvalues with algebraic (not geometric) multiplicities for H . We
make use of projective rather than affine spaces in this construction simply because we
later need to take advantage of the nicer properties of projective morphisms. We are
assuming that SC is nonzero and the generic Jordan normal form of a matrix in SC is
diagonalizable, so a dense open subset in the projective variety Im( f ), which is the
closure in � of the image of f , has fibers that are the intersection of an orbit of GL(N )

with SC, a set of similar matrices.
Now we want to quotient Proj (SC) by the action of G. Since G is not compact, the

topological quotient of Proj (SC) by G is not well behaved. Instead we will show that a
GIT (geometric invariant theory) quotient exists. AGIT quotient of a projective variety is
well-defined for a linearized action of a reductive algebraic group. SinceG0 was assumed
to be reductive and G is a finite extension of G0 which acts linearly on SC we have a
linearized action of G on Proj (SC) and we can construct a GIT quotient by G. A GIT
quotient of a projective variety X with a linear action of G gives a categorical quotient
Xss → Xss //G where Xss are the semistable points of X . A point H is semistable
if and only if there exists a homogeneous G-invariant polynomial which is non-zero
at H . In our case, for any H that is not nilpotent, Tr(Hn) is GL(N )-equivariant and
homogeneous and will be non-zero for some n.

Since a GIT quotient is a categorical quotient on the category of algebraic varieties,
any G-invariant map will uniquely factor through the quotient. Since, for all n, Tr(Hn)

isG-invariant, the restriction of f to the semistable points will uniquely factor through a
map we shall refer to as f2 : Proj (SC)ss //G → �. A GIT quotient is only a geometric
quotient on an open subset known as the stable points, here used in the originalMumford
sense [8] [Definition 1.7]. However since the number ofG-orbitsmapped to a given point
in � is generically finite, such generic orbits will be stable, because all the orbits in a
G-invariant open neighborhood given by the inverse image under f of an open subset
of � will be closed, as the fibers of f will all be closed and the fibers are finite disjoint
unions of orbits. It follows that the open subset of stable points is non-empty and hence
dense (since Proj (SC)ss //G is irreducible).
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The next step will be to take the projective morphism f2 and base change onto an
open subscheme of the image of f2. This new morphism will still be projective since
projectiveness is preserved under base changes.

We make use of [9] III Corollary 10.7 which states that if f : X → Y is a morphism
of non-singular varieties over an algebraically closed field k of characteristic 0, then
there is a non-empty open subset V ⊆ Y such that f : f −1(V ) → V is smooth. This
corollary does not directly apply to f2 since X = SC //G is not necessarily nonsingular,
but since we have assumed that almost all the fibers are finite, the dimension of the
image must be equal to the dimension of X . This means that the image of the singular
locus Sing(X) is not dense in the image of X and hence the complement of the closure
of f2(Sing(X)) in the closure of f2(X) will be an non-empty open subset V1 ⊆ Y and
have non-singular preimage in X . Then applying Corollary 10.7 to the restriction of f2
to f −1

2 (V1), we learn that there exists an non-empty open subset V2 ⊆ X such that the
restriction of f2 to V2 is smooth.

If a morphism is smooth, it is also flat ([9] III Theorem 10.2). Further, f2(V2) is a
Noetherian scheme since it is quasi-projective. This mean that the degree of the fiber,
which for finite fibers is just the number of points in the fiber (counting multiplicities)
is constant everywhere ([9] III Corollary 9.10).

Nowwe take the intersection of V2 with the stable points SC //G. The restriction of the
morphism f2 to this dense open subset will be a morphism from the geometric quotient
byG and hence the degree of the fibers will simply count the number of geometric orbits.
We have therefore shown that a dense open subset of local complex Hamiltonians have
a constant number of complex duals, which completes the proof of Theorem 2.

Notice that the intersection of any nonempty Zariski open with the real subspace of
a complex vector space has complement of measure zero in the real vector space, since
the Zariski open is the complement of the solution space of a set of complex algebraic
equations. When we restrict to the real subspace this becomes the complement of a set
of real algebraic equations (the real and imaginary parts of the original equations) and
all real algebraic equations have measure zero solution except for 0 = 0. If there exists
a Zariski open of local complex Hamiltonians with no complex duals, then generic local
(real) Hamiltonians have no complex duals, and hence since Hermitian duals are simply
a subclass of complex duals, they also have no Hermitian duals.

We also need to show that the assumptions that we made for SC and G0 apply for
the particular case of a space of local complex Hamiltonians with conjugations by local
GL(d) and permutations of tensor product factors.

SC and G0 are trivially invariant under transposition. To show that SC is generically
diagonalizable we first note that in any Zariski closed subspace of Mat(N , C), matrices
will have the generic Jordan form for that space on a Zariski open subspace of it. Then
exactly the same arguments as above, tell us that, generically, Hermitian matrices in SC
will have the generic Jordan form for SC. Since allHermitianmatrices are diagonalizable,
the generic Jordan form for SC must be diagonalizable. To show that G0 is reductive,
we note that the connected component of G0 is the direct product of copies of GL(d)

quotient by a subgroup of the center of the direct product group. It then follows that
since GL(d) is reductive, so is G0.

Finally, we need to be able to confirm that any example we might construct (either
numerically or analytically) with no complex duals, lies in the open subset of local
Hamiltonians in which the number of duals is constant. Firstly, we note from our proof
of Theorem 2 that if H satisfies the conditions in the complex version of Theorem 1
then it lies in the open subspace of stable points of SC. We then simply need to show that
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f2 is smooth at H . However since the GIT quotient is locally just a geometric quotient,
this will be true so long as the differential of f is surjective on the tangent space of SC
quotiented by the tangent space of the orbit of G0, which is again just a restatement of
the conditions for Theorem 1. Finally, again because the differential is surjective, the
point in the fiber necessarily has trivial multiplicity.

Combining Theorems 1 and 2, we have therefore proved analytically that, if we have
a single example (subject to the conditions described above) in some class of local
Hamiltonians which has no complex duals, then almost all Hamiltonians in that class
have a unique TPS in which they are local.

5. Numerics

In the previous section we showed that for systems of a fixed size, if you can find
a single example of a local Hamiltonian with a unique local TPS, then generic local
Hamiltonians of that size must also have a unique local TPS. In this section, we use
numerics to demonstrate that such “example Hamiltonians” exist, at least for a small
class of numerically tractable problems. These numerical examples, when combined
with Theorems 1 and 2, amount to a proof of the following statements:

1. Almost all 2-local Hamiltonians on 10 qubits have finitely many (and possibly zero)
2-local duals.

2. Almost all nearest-neighbor Hamiltonians on 10-qubit spin chains have finitely many
(and possibly zero) 2-local duals.

The above statements are fully proven, if the associated numerical calculation is robust.
We believe the numerical result that aids the proof (analogous to numerically calculating
that a certain quantity is nonzero) is robust to finite-precision machine error, although
we do not undertake a rigorous analysis of the error. On the other hand, the result below
is only verified in a probabilistic fashion, as elaborated later in the section.

3. (Probabilistically verified) Almost all translation-invariant, nearest-neighbor Hamil-
tonians on 6-qubit spin chains have no translation-invariant duals.

The numerical calculations behind these results are discussed below.

5.1. Example showing finite duals. First we focus on finding an example of a local
Hamiltonian with a finite number of duals, or equivalently, a local Hamiltonian with-
out infinitesimally nearby duals. That is, we want a Hamiltonian that will satisfy the
hypotheses of Theorem 1. The theorem applies within the context of a fixed Hilbert
space H and a fixed subspace S of local Hamiltonians, such as the subspace of 2-local
Hamiltonians on 10 qubits (k = 2, d = 2, n = 10). A valid “example Hamiltonian” H0
must have non-degenerate spectrum, and it must have the property listed in Theorem1:
for any V ∈ Herm(H) such that i[V, H0] ∈ S, either [V, H0] = 0 or V ∈ g. Given an
example Hamiltonian, application of Theorem1 implies Statement 1 above.

We want to choose a particular Hamiltonian H0 ∈ S and check numerically that
the above criterion holds. From the proof of Theorem 1, we see that the criterion is
equivalent to asking that dim(ker fH ) = dimG − dimGC (H0) + N , provided that H0
has nondegenerate spectrum. The connected component ofG is the group of local unitary
operators, so dimG = n(d2 − 1) + 1. We will assume that H0 does not commute with
any local unitaries besides the identity, which is true for generic local Hamiltonians, and
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which is easy to check for a particular H0. Then dimGC (H0) = 1, and the criterion
becomes

dim(ker fH0) = n(d2 − 1) + N . (5.1)

For a particular choice of H0, one could compute the rank of the operator fH0 directly.
However, we will use a more efficient approach to check the above criterion. Note that

CH (ker fH0) = Im(CH0) ∩ S (5.2)

and
dim Im(CH0) ∩ S = dimCH (ker fH0) = dim(ker fH0) − N . (5.3)

Furthermore, Im(CH ) = {[A, H ] | A ∈ Herm(H)} is precisely the set of operators with
zero diagonal entries in the eigenbasis {|Ei 〉} of H0. That is,

Im(CH ) = {A | A ∈ Herm(H) s.t. 〈Ei | A |Ei 〉 for i = 1, .., N }. (5.4)

So Im(CH0) ∩ S is the set of local operators that have all zero diagonal entries in the
eigenbasis of H0. With this motivation, define the matrix

Mi j := 〈Ei | L j |Ei 〉 (5.5)

where |Ei 〉 are the eigenvectors of H0, and {Li }si=1 in some basis for S. The matrix M
may be computed somewhat efficiently. The vectors in ker M correspond to elements of
Im(CH0)∩S. (Alternatively, it is easy to see that ker M is the set of local operators which,
when added to the Hamiltonian, do not alter the spectrum to first order in perturbation
theory.) Thus dim ker M = dim ker fH0 , and checking the criterion of Theorem 1 for H0

only requires computing dim ker M ,with the criterion satisfied if dim ker M = n(d2−1).
Although the chosen H0 need not be “random,” we may choose H0 by randomly

generating a 2-local Hamiltonian on 10 qubits (k = 2, d = 2, n = 10). First we must
confirm numerically that the spectrum is nondegenerate. Then we must confirm that H0
does not commute with any local unitary operators besides the identity. (This condition
can be checked analytically for any particular H0.) Finally, we must calculate ker M .

Numerically, we calculated dim ker M = n(d2 − 1) + N = 30. Then applying
Theorem 1, we have effectively proven that almost all 2-local, 10 qubit Hamiltonians
have a finite number of 2-local duals (and possibly no duals).

Again, the above conclusion only applies to almost all 2-local Hamiltonians, 10-qubit
Hamiltonians. Any particular 2-local Hamiltonian may well have an infinitude of duals,
but such Hamiltonians are measure zero. However, we can still make conclusions about
more specific classes of Hamiltonians. Consider some more narrow subclass of local
Hamiltonians, given as a linear subspace V ⊂ S ⊂ Herm(H). For instance, we might be
interested in taking V as the subspace of Hamiltonians with nearest-neighbor couplings
on spin chains, while S is still the space of 2-local Hamiltonians. Because V is measure
zero within S, the above result still allows the possibility that all Hamiltonians in V have
infinitely many 2-local duals. However, a simple extension of Theorem 1 implies that
given an example Hamiltonian H0 ∈ V ⊂ S, we can conclude not only that almost all
Hamiltonians in S have finitely many duals, but also that almost all Hamiltonians in V
have finitely many duals, which is a stronger statement.

We randomly generated examples of Hamiltonians with nearest-neighbor couplings
on 10-qubit spin chains. These examples satisfied the hypothesis of Theorem 1, taking
S to be the space of 2-local Hamiltonians on 10 qubits. Then the above generalization of
Theorem 1 implies that almost all 10-qubit spin chain Hamiltonians have finitely many
2-local duals.
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5.2. Example showing no duals. Now we find an example to satisfy the hypotheses of
of Theorem2, in order to verify Statement 3 above. That is, we want an example of
Hamiltonian H0 ∈ S such that H0 has no duals in SC, where SC is the complexification
of S. Because this task is more difficult numerically, we choose a smaller subspace for S.
In particular, we will consider S as the space of translation-invariant, nearest-neighbor
Hamiltonians on 6-qubit spin chains; SC consists of complex linear combinations of these
operators. Although the non-Hermitian operators in SC do not correspond to physical
Hamiltonians, we are interested in checking for complex duals in order to satisfy the
hypotheses of Theorem2, which then applies to generic local Hamiltonians that are
Hermitian.

Given a randomly generated Hamiltonian in H0 ∈ S, we want to find all possible
complex duals by searching over the space SC for (non-Hermitian) Hamiltonians with
the same spectrum. That is, we want to find solutions H to the equation

spectrum(H) = spectrum(H0) (5.6)

for H ∈ SC, where spectrum(H ) denotes the list of eigenvalues. These equations are
difficult to solve, and the problem falls in the general class of “inverse eigenvalue prob-
lems” [10]. It is useful to think of the solutions as solving an optimization problem: the
duals are given by the set

argmin
H∈SC

‖spectrum(H) − spectrum(H0)‖ (5.7)

up to equivalence by local unitary operators and translations and reflections of the chain.
Any norm may be used (for instance, the 
2–norm). The duals will be exact global
minima, with ‖spectrum(H) − spectrum(H0)‖ = 0.

Because we only care about finding duals up to conjugation by 1-local operators, it
would bemore efficient to search over a quotient of SC by the action of 1-local operators,
rather than searching over the full space SC. In fact, such a quotient is easy to define. For
simplicity, we will first describe how to form a quotient of S by local unitary operators,
rather than a quotient of SC by general 1-local operators. Moreover, we will consider
the case of qubits in a translation-invariant spin chain, but the construction is easily
generalized to qudits with any pattern of interactions.

By analogy to the language of gauge theory and gauge-fixing, one might say that we
want to find a“gauge-fixed” W ⊂ S, where local unitary operators on qubits play the
role of the gauge group. This analogy may be helpful to those familiar; otherwise, we
simply say that W should have exactly one representative from each orbit of the group
of local unitaries acting on S. We can write H ∈ S as

H =
n∑

i=1

3∑

a=0

3∑

b=1

cab σ a
i σ b

i+1 (5.8)

with 12 real coefficients cab , with Pauli operators σ i
a , with i as a site index, identifying

σ n+1
a = σ 1

a . That is, we take S to be the space of translation-invariant, nearest-neighbor
Hamiltonians on an n-qubit chain, up to an additive constant c 1, with dim S = 12.
Because dim SU (2) = 3, we have 3 “gauge” degrees of freedom, corresponding to local
unitary operators in SU (2), which act by conjugation on S, with the same local unitary
acting on each qubit. We want to find W ⊂ S with dimW = dim S − dim SU (2) = 9.

First, consider the terms a01σ 1 +a02σ 2 +a03σ 3. There is a local unitary that diagonal-
izes this sum, which is to say that the terms a01σ 1+a02σ 2+a03σ 3 are unitarily equivalent
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to the terms a′
03σ

3 for some a′
03. We can then remove the terms a01σ 1 + a02σ 2 from the

gauge-fixed subspaceW ⊂ V , because any H ∈ S is equivalent to some H ′ ∈ V . Acting
by conjugation with diagonal matrices in SU (2) will preserve the a′

03σ
3 term, and it

will rotate the a11σ 1
i σ 1

i+1 and a12σ 1
i σ 2

i+1 terms between each other. In particular, there
exists some diagonal matrix in SU (2) that acts by conjugation to rotate the two terms
a11σ 1

i σ 1
i+1 + a12σ

1
i σ 2

i+1 into the single term a′
11σ

1
i σ 1

i+1. Then any H ∈ S is equivalent to
some H ′ ∈ V , where V is of the form of Eq. (5.8), but with a01 = a02 = a12 = 0, using
only 9 coefficients.

From dimensional considerations, for almost all H ∈ W , H will be isolated point in
the intersection ofW with the orbit of H under local unitary conjugation. In other words,
there are no infinitesimally nearby points inw that are related by local unitaries.However,
the orbit of H under local unitary conjugation may intersect V in several isolated points.
(In keeping with the analogy to gauge theory, one might say that the gauge-fixing is
not global, and there is “Gribov ambiguity.”) Similarly, the complexification WC ⊂ VC
will contain at least one representative of each orbit of VC under conjugation by 1-local
invertible operators. Then we can search for duals by optimizing

argmin
H∈WC

‖spectrum(H) − spectrum(H0)‖ (5.9)

rather than optimizing over VC.
It is difficult to performaglobal optimization numerically; that is, it is difficult to know

that the minima found by the optimization algorithm are global minima and not just local
minima. Luckily, we know the value of the global minimum (zero), and we know at least
one of the global minima (i.e., H0), but we want to find all global minima. We perform a
gradient-descent-type search over WC, starting with a random initial point Hinit ∈ WC.
After finding a global minimum H ∈ WC with ‖spectrum(H) − spectrum(H0)‖ = 0,
we check whether it is related to H0 by some combination of local unitary operations,
reflections of the chain, or transposition. (Despite searching over the “gauge-fixed”
subspace VC, we must still check whether H is related to H0 by local unitaries, due to
the imperfect gauge-fixing discussed above.) If H is not related to H0 in this way, it is
not a true dual.

In practice, we consistently found that for a randomly generated H0 and randomly
generated starting point Hinit , the search algorithm found either the global minimum
H0, or some other global minimum H related to H0 by local unitaries, reflections, or
transpose. Because the starting point Hinit was chosen independently of the original
point H0, and because several choices of random initial point consistently led to H0 or
some a related Hamiltonian, we expect that H0 has no duals. The more times the search
is repeated with different starting points, the more confident one becomes that H0 has
no duals.

One might worry that the global minimum H0 sits in a wide basin, i.e. the function
‖spectrum(H) − spectrum(H0)‖ is flat around H0. Then H0 would be found for most
starting points, while perhaps the duals of H0 are global minima that sit in narrower
basins for some reason, making them difficult to find with a local search algorithm.
If this were the case, consistently finding H0 from a random starting point would not
necessarily be evidence that H0 has no duals. On the other hand, we can repeat the search
for many choices of H0. If the latter scenario were true, where H0 sometimes has duals
that sit in narrow basins, one would expect that some of these randomly generated H0
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actually sit in the narrower basin, in which case the search would find the dual, because
the dual would then be in the wider basin.

Given 1000 randomly generated H0 ∈ WC, with a randomly generated starting point
Hinit for each H0, we found that in all of the trials, the search algorithm identified
either the global minimum H0 or another global minimum H related by local unitaries,
reflections of the chain, or transposition. We therefore strongly believe that these H0
have no duals, although we do not undertake a rigorous analysis of the efficacy of this
probabilistic verification. However, assuming that these randomly-generated H0 indeed
have no duals, we can apply Theorem 2 to imply that almost all translation-invariant,
nearest-neighbor Hamiltonians on 7-qubit spin chains have no duals. Alternatively, we
have demonstrated that for generic translation-invariant spin chains, the Hamiltonian
may be uniquely determined from the spectrum.

5.3. Discovering dualities. So far, we have been focused on finding examples to estab-
lish that almost all Hamiltonians of a given class do not have duals. However, suppose
that we are given a spectrum that does have duals. Then the algorithms mentioned above
can find the dual descriptions.

For concreteness, consider the one-dimensional Ising model, given in Eq. (1.1) in the
introduction, repeated here:

H = J
n−1∑

i=1

σ z
i σ z

i+1 + h
n∑

i=1

σ x
i .

In fact, the Ising model is special, and has many duals that are geometrically 2-local
plus boundary terms, even when we require that they must be translation-invariant. We
discoveredmany duals numerically by searching over the relevant class of Hamiltonians.

To find the particular dual in Eq. (1.4), namely

H = J
n∑

i=1

σ x
i + h

n−1∑

i=1

σ z
i σ z

i+1 − J σ x
1 + h σ z

n ,

we limited our search to a more restricted subspace of Hamiltonians which contains our
dual of interest. This subspace is defined by the class of Hamiltonians of the form

n−1∑

i=1

⎛

⎝
3∑

p=1

ap σ
p
i σ

p
i+1 + bp σ

p
i

⎞

⎠ +
3∑

p=1

(cp σ
p
1 + dp σ

p
N ) (5.10)

where the
∑3

p=1(cp σ
p
1 + dp σ

p
N ) terms are possible boundary terms. To be clear, unlike

above where we searched over allHamiltonians of a particular locality class, here we are
restricting the search to an essentially arbitrary, smaller ‘locality class’ of Hamiltonians
that was deliberately chosen to contain a particular dual.

Numerically searching over the class of Hamiltonians in Eq. (5.10) indeed recovered
H , and also found the desired dual in Eq. (1.4). Thus, by using locality to guide our
search in the space of Hamiltonians, we may search for dualities of a given system if we
have reason to believe that such dualities exist.
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6. Generalizations of Tensor Product Structures

So far, we have restricted our discussion to finite-dimensional bosonic systems, i.e.
hardcore bosons or generalized spin systems. One desired line of generalization is to
consider infinite-dimensional systems, mentioned at the end of the section. Another line
of generalization is to consider theories which are qualitatively local, but for which the
observables do not form a strict tensor product structure, at least in the sense defined by
Sect. 2.

Examples of local theories without strict TPS’s are fermionic theories and gauge the-
ories. In Sect. 2, a TPS on a Hilbert spaceHwas defined as a collection of of subalgebras
{Ai },Ai ∈ L(H), such that [Ai ,A j ] = 0 for i �= j ,Ai ∩A j = 1, and

∨
i Ai = L(H).

Fermionic lattice theories do not directly fit this description, because fermionic operators
at different sites anti-commute. One might therefore wonder in what sense fermionic
theories “local”: is commutation necessary for locality? In fact, commutation relations
are generally necessary to prevent signalling between distant locations. But physical
theories with fermions are nonetheless local, because the Hamiltonian contains terms
with even products of nearby fermion operators, and these terms do commute with each
other. By restricting the algebra of observables on the Hilbert space to the subalgebra
of “physical” observables—namely, even products of single-fermion operators—we can
then arrange the physical algebra into mutually commuting subalgebras associated with
spatial regions. This general notion is captured by a “net of observables,” the basic
structure used in algebraic quantum field theory [11], and one can easily adapt the field-
theoretic definition to discretized lattice systems. We equip a Hilbert space with a set
S of spatial sites, like the points of a lattice. Crucially, these sites do not correspond
to tensor factors of the Hilbert space; they are just abstract labels. Subsets U ⊂ S are
“regions,” and we have

Definition (Net of observables):Anet of observables onHilbert spaceH is a subalgebra
of “physical” observablesA ⊂ L(H), along with a set of sites S, and an assignment of a
subalgebraA(U ) ⊂ A to each region U ⊂ S. The subalgebras must satisfyA(S) = A,
along with

1. A(U ) ⊂ A(V ) for U ⊂ V
2. [A(U ),A(V )] = 0 for disjoint regions U ∩ V = ∅
3. A(U ) ∩ A(V ) = 1 for disjoint regions U ∩ V = ∅.
Finally, one might also require:

4. The map A(U ) ⊗ A(V ) → A(U ∪ V ), A ⊗ B 
→ AB is injective.

This definition is similar to that used by [12]. In the context of a net of observables,
a local Hamiltonian would be one that may be written as a sum of terms in A(U ) for
small regions U , perhaps where S has the additional structure of a geometric lattice.

As a simple example of a net of observables, consider a Hilbert spaceH = ⊗n
i=1Hi

with an ordinary TPS. Then the naturally associated net of observables would be defined
by A(U ) = L(HU ) for HU = ⊗

i∈U HI . However, the purpose of defining a net of
observables is that not all nets must be associated with explicit tensor factorizations of
H. For instance, given a fermionic theory on a lattice, we would define A(U ) to be
generated by products of even numbers of fermion creation and annihilation operators.
Then A(S) � L(H), i.e. only fermion-even operators are considered physical, and the
Hilbert space has no natural TPS.14

14 In one dimension, local fermionic systems may be re-written as local bosonic systems using the
Jordan–Wigner transformation, and the bosonic system has an ordinary TPS. In that sense, one-dimensional
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Like fermionic theories, gauge theories also lack an ordinary TPS, at least when
restricting to the “physical”Hilbert space. But, like fermionic theories, the local structure
of gauge theories is suitably generalized by using a net of observables instead. For
simplicity, consider two-dimensional Z2-lattice gauge theory. The full, “unphysical”
Hilbert space is the tensor product of qubit degrees of freedom living on the edges of
a square lattice. So the full Hilbert H space is endowed with a natural TPS. However,
the physical HilbertH � H is the proper subspace gauge-invariant physical states, and
the physical observables L(H) consist of gauge-invariant observables on H, restricted
to the gauge-invariant subspace. In general, a subspace of a space with an explicit TPS
will not inherit the TPS in any natural way, so the physical Hilbert space will not have a
natural TPS. On the other hand, we can construct a net of observables by defining A to
be the algebra of gauge-invariant observables, withA(U ) the algebra of gauge-invariant
observables local to U . Gauge theory does not have the property that A(U ) ⊗ A(V ) ∼=
A(U ∪ V ) for disjoint regions U ∩ V = ∅, which would be true for any theory with
an ordinary TPS, showing that an ordinary TPS would not have sufficed to capture the
local structure of the theory.

We have seen that nets of observables provide a generalized notion of TPS sufficient
to capture the local structure of fermions and gauge theory. Do the uniqueness results
at the heart of this paper generalize to theories whose local structure is described by a
net of observables, rather than a strict TPS? That is, given an abstract Hilbert space and
Hamiltonian, we can ask whether there exists a net of observables on the Hilbert space
such that the Hamiltonian is local. And then, given that such a net exists, we can ask
whether it is unique.

Questions about nets are harder to tackle than the analogous questions about ordinary
TPSs. To see why, let us reconsider a nuance in the discussion of ordinary TPSs that
we have not addressed. Given some local system of qubits, rather than simply asking
whether the system has a dual using a different set of qubit degrees of freedom, wemight
ask whether there is a dual using qudits. That is, we may want to consider duals that use
different “types” of TPSs. Up to unitary equivalence, a TPS on a Hilbert space is just
characterized by the list of dimensions of the subsystems, and these must multiply to
the total dimension, so it is easy to characterize the “types” of TPS’s: qubits, or qutrits,
or some combination, etc. Meanwhile, there are many more types of nets. Indeed, on
a given Hilbert space, there are more possible nets of observables, even up to unitary
equivalence. The net corresponding to fermions is different than the net corresponding to
gauge theory, because they use different sorts of algebrasA(U ), and one could construct
nets that do not obviously correspond to bosons, fermions, or gauge theories. The harder
question then becomes: given some Hamiltonian H that looks local using a given net,
does H have any duals that not only use different local degrees of freedom but also use
a different type of net?

While the above questions are certainly difficult, the following observation suggests
theymay tractable.We already know the types of TPS are easy to characterize, controlled
by the dimension of theHilbert space.Given somefixed dim(H), theTPS cannot have too
many subsystems, assuming each subsystem has dimension greater than one. The types
of nets are similarly controlled. As long as one assumes that the algebra A(U ) is non-

Footnote 14 continued
fermionic systems do have natural TPS. However, in higher dimensions, the immediate generalization of the
Jordan–Wigner transformation does not map local Hamiltonians to local Hamiltonians, so higher-dimensional
fermionic systems do not have natural TPS in which local Hamiltonians appear local with respect to the TPS.
(There do exist constructions that embed the Hilbert space of any fermionic theory into a larger Hilbert space
with explicit TPS, and these embeddings preserve locality by using auxiliary degrees of freedom [12].)
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trivial for any region U larger than some fixed size, then condition (4) in the definition
of a net ensures that dim(H) will be exponential in the number of sites. So for given
Hilbert space H, a net cannot be constructed with more sites than about log(dim(H)),
offering some control on the types of nets allowed.

None of the results in this paper directly apply to infinite-dimensional systems. There
are three types of infinities to consider. First, a theorywith non-hardcore bosonswill have
infinite-dimensional Hilbert spaces at each lattice site. Second, in the continuum limit,
there are infinitely many lattice sites per fixed volume, associated with UV divergences.
Third, in the large system limit, there are infinitely many lattice sites at fixed spacing.
The large-system limit alone may yield interesting complications when attempting to
reproduce the finite-dimensional results. The discussion in Sect. 4 relies essentially
on the well-behavedness of the map from a Hamiltonian to its spectrum. However, in
the large-system limit, the eigenvalues may vary non-analytically with respect to the
Hamiltonian, leading famously to phase transitions. Another result of non-analyticity
is that properties which are true generically for finite-size systems may not be true
generic infinite-size systems. For instance, finite-size local Hamiltonians are generically
non-degenerate; that is, a random local perturbation of a degenerate local Hamiltonian
will break the degeneracy. But certain infinite-size lattice systems have topological order,
with a ground state degeneracy that is robust to any local perturbation. In particular, there
exist open neighborhoods in the space of infinite two-dimensional lattice Hamiltonians
such that all Hamiltonians in the neighborhood have degenerate spectrum. Therefore,
one cannot naïvely rule out the possibility that there exists a region of nonzero volume
in the space of infinite-size local Hamiltonians where the Hamiltonians all have duals.

7. Discussion

7.1. Summary of results. Webegan by formally defining a tensor product structure (TPS)
on a Hilbert space, allowing one to pose clear questions about the existence of TPS’s
for which a Hamiltonian is local. First we observed that for some fixed Hamiltonian
H , questions about the existence of a TPS in which H is local may be translated into
questions about the existence of local Hamiltonians with the same spectrum as H . With
this perspective, we showed that almost all Hamiltonians do not have any TPS for which
the Hamiltonian is local. Equivalently, generic Hamiltonians are not isospectral to any
local Hamiltonian.

On the other hand, physical systems are distinguished by the property that they are
local in some TPS, or at least approximately so. We therefore considered Hamiltonians
known to have some local TPS and argued that the local TPS is generically unique.
Equivalently, a generic local Hamiltonian is uniquely determined by its spectrum. Put
a third way, generic local Hamiltonians do not have “duals.” The argument for this
claim involves two parts: first, we proved that if there exists a single example of a
local Hamiltonian without any duals, then almost all local Hamiltonians have no duals.
Second, we found numerical examples of local Hamiltonians for small systems that do
not have any duals, effectively proving that almost all Hamiltonians on these systems do
not have any duals. We speculated that these results may be extended to arbitrarily large
finite-dimensional systems, with the possibility of interesting subtleties in the infinite-
size limit.

Finally, we presented a generalization of a TPS, suitable for fermions and gauge the-
ories. Further generalizations discussed below address situations where only a subspace
of the full Hilbert space is equipped with a TPS, perhaps with relevance to the bulk side
of holographic theories.
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7.2. The minimal data needed to understand a quantum system. In this paper we argue
that given the spectrum of a Hamiltonian that is local in some TPS, then generically
the local TPS is uniquely determined. In fact, one can also determine the local TPS by
merely knowing the time evolution of a single generic state in the Hilbert space, without
otherwise knowing H . The time evolution of a generic state |�〉 has the form

|�(t)〉 =
∑

j

α j e
−i E j t |E j 〉 (7.1)

which contains a non-zero amplitude α j for each of the eigenstates |E j 〉 with energy
E j . Taking the Fourier transform of |�(t)〉 with respect to time, we can determine the
spectrum and hence the local TPS.

However, even with a known TPS, much remains to be understood about the unitary
evolution of states. Much research is dedicated to the subject of expressing the wave-
function as a sum of decoherent classical branches [13–15]. This research generally
assumes the existence of some underlying TPS and it has been recognized that it would
be preferable to have the TPS emerge naturally in the same way as the branches [16];
our results suggest a way to do that.

7.3. Geometry on theTPS. Givenboth a low-energy state and aTPS, recentwork [17,18]
suggests one can construct ametric on the discrete sites of the TPS. The distance assigned
between sites is dictated by the mutual information between the subsystems, giving a
“geometry” that depends on the state. It would be possible to combine this approach
with the work in this paper, determining both a TPS and a notion of distance between
subsystems, starting from just the spectrum. First one determines the most local TPS,
then finds the ground state of the Hamiltonian with respect to that TPS, and finally uses
the mutual information of the ground state to define distances between subsystems.

In this paper, we already associate a graph to the TPS, based onwhich sites are directly
interacting under the Hamiltonian. The graph approximately describes the topological
structure of the space, while the proposal of [18] would assign lengths to the edges of the
graph, upgrading the topological data to geometric data. However, when theHamiltonian
is already known, it may be more natural to rely on dynamical notions of distance like
the light-cone or butterfly velocity, rather than asking about the mutual information of a
state at fixed time.

7.4. Quantum simulation. Recent progress has been made on the construction of uni-
versal quantum simulators [19]. In particular, consider a finite lattice system in d spatial
dimensions, governed by local Hamiltonian H on Hilbert spaceH. Then one can always
construct a local, two-dimensional spin system with Hamiltonian H ′ on Hilbert space
H′, such that the low energy subspace of H ′ reproduces the spectrum of H with arbitrary
precision.

Because the simulator requires many auxiliary degrees of freedom, the number of
lattice sites used inH′ will be larger than the number of sites present in the original system
H, soH �∼= H′ and the systems are not dual in the strict sense used above. However, one
might consider the notion of a TPS for a subspace of the full Hilbert space. Restricting
attention to the low energy subspace of the device, one could in principle find the TPS
corresponding to the simulated system. This situation may be analogous to the AdS/CFT
duality in which the TPS of the bulk gravity theory only describes a subspace of the full
Hilbert space. This is further discussed in Sect. 7.7 below.
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7.5. Why locality?. Until now, we have avoided the question of why to prefer one TPS
over another. Instead, we have simply asserted that we are interested in TPS’s for which
dynamics appear local. If one treats the wavefunction and its Hamiltonian without any
preferred basis as the only fundamental data of a quantum system, then a priori all TPS’s
are equally valid descriptions of the system.15

Because the world around us has local interactions, it is natural that we are interested
in TPS’s with local dynamics. However, one might ask why our experience privileges
a particular TPS for the universe—namely, the TPS associated with spatial degrees
of freedom? One possible answer is that local interactions are an essential ingredient
for localized observers. For contrast, consider some randomly chosen TPS, in which
interactions are non-local. A hypothetical observer “localized” in this TPS will quickly
become delocalized, so perhaps observers in such a TPS cannot exist for extended peri-
ods. Instead, only a TPS with local dynamics can naturally describe localized observers,
and their experience will privilege that local TPS.

The existence of localized observers may also require more than just a local TPS. For
example, even local interactionsmay be strongly coupled and chaotic, such that localized
objects quickly become maximally entangled with their environment. One might expect
that such dynamics do not allow localized observers, because such observers would
quickly become delocalized despite having only local interactions.

A measure of entanglement growth was considered in [2] as a criterion for choosing
a TPS, though the author restricted the analysis to TPSs related by Bogoliubov transfor-
mations. When searching for a TPS with slow entanglement growth, one must decide
for which class of states to consider the entanglement. One possibility is to consider
random product states, while another natural choice would be low-energy states.

7.6. Complexity. The computational complexity of a unitary operator—the number of
local quantum gates needed to contstruct the operator—is an important notion in quan-
tum information theory and features in discussions of quantum gravity [20–22]. The
complexity of an operator depends crucially on the choice of TPS.

Given a fixed TPS, random unitary operators will have complexity that is exponential
in system size, as demonstrated by a dimension-counting argument. Moreover, by an
argument similar to that of Sect. 4.1, generic unitary operators will have no TPS in which
they have low complexity.

However, if a Hamiltonian is local in some TPS, the time-evolution operator e−i Ht

will have much smaller complexity in that TPS, at least for times sub-exponential in
the system size. Because the locality of H determines the growth rate of complexity of
e−i Ht , at least for sufficiently small times, an alternate description of the local TPS is
the TPS in which e−i Ht has minimal complexity at small times.

7.7. Quantum gravity. The most well-known of the dualities in quantum gravity is the
AdS/CFT correspondence between strongly coupledN =4 super Yang–Mills in 3 + 1–
dimensions (the boundary theory) and weakly coupled quantum gravity in AdS5 × S5

(the bulk theory) [23,24]. This duality is unlikely to satisfy the precise definition of
duality used in this paper, even using the generalization of Sect. 6. In particular, the
TPS in the bulk is only defined for a subspace of states of the complete Hilbert space.

15 This is a radical view if taken literally. If one built a quantum simulator of the kind discussed in Sect. 7.4,
the radical view would suggest that the TPS of the simulated system has the same ontological status as the
TPS of the simulation device.



J. S. Cotler, G. R. Penington, D. H. Ranard

These are states associated with small perturbations of the geometry around a flat AdS
background [25,26].

However, when the state contains a black hole, for example, it does not make sense
to talk about the same approximately-local degrees of freedom that existed in flat space.
The discrepancy is especially manifest in tensor network toy models of AdS/CFT, where
the model of a black hole involves tearing out tensors from the network [26]. This model
completely removes some of the bulk lattice sites, and instead the ‘correct’ TPS for the
subspace of states containing the black hole consists of the remaining bulk sites, together
with new lattice sites at the boundary of the black hole. Describing different subsets of
states in the Hilbert space with different TPS’s in a coherent way seems to require yet
another generalization tensor product structures.

The question of whether the boundary theory or bulk theory is “more local” is some-
what subtle. The bulk gravitational theory will necessarily have small non-local inter-
actions, but it also has far fewer degrees of freedom at each “lattice site” than does the
boundary theory, where there is a large N × N matrix of operators associated to each
site. The bulk TPS has a much smaller algebra of local operators, since it divides the
Hilbert space up into much smaller subsystems. One might therefore describe the bulk
TPS as more local than the boundary TPS when considering the low energy subspace,
even though the Hamiltonian is only approximately local with respect to the bulk TPS.

More speculatively, we might also guess based on our arguments in Sect. 7.5 that the
boundary theorymay be too strongly coupled and chaotic to describe localized observers.

7.8. The SYK model. A toy model for AdS/CFT, the Sachdev–Ye–Kitaev model [27–
29], is particularly relevant to the discussions in this paper. TheHamiltonian of the theory
is comprised of N majorana fermions ψa with all-to-all 4-local coupling terms:16

H =
∑

a<b<c<d

jabcd ψaψbψcψd . (7.2)

The coefficients jabcd are sampled from i.i.d. randomGaussians, describing an ensemble
of Hamiltonians. Since this ensemble is the fermionic analog of a class of bosonic local
Hamiltonians considered in this paper, we might expect that generic SYK Hamiltonians
would not have any local duals. On the other hand, when one disorder-averages the SYK
Hamiltonian and takes the expectation of observables over the probability distribution
for { jabcd}, one can remarkably rewrite the theory in terms of degrees of freedom that
include a type of Einstein–Dilaton gravity in 1 + 1 dimensions [29]. As a consequence,
one can compute the spectrum of the bulk gravity theory by computing the spectrum of
theMajorana theory (in a particular limit), which is comparatively easier to treat [30,31].

In accordance with our intuition, it is likely that the complete description of the
dynamics is not even approximately local at scales smaller than the 1+1d AdS scale.
Nonetheless, it is interesting that this alternative description is able to exist at all, when
the Hamiltonian itself is generic within some class of local Hamiltonians.

7.9. Final remarks. There are many open questions about whether our results extend
to the generalized notion of TPS suitable for fermions and gauge theories discussed in
Sect. 6, as well as to infinite-dimensional systems or approximately local TPSs. Further-
more, while we have provided evidence that recovery of the TPS from the spectrum of

16 Note that while the Hamiltonian is 4-local, it is completely geometrically non-local, with every site
interacting with every other site.
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spin chains is generically possible in principle, we have not discussed practical measures
to determine whether a local TPS exists for a given spectrum or how to find it apart from
numerically searching through possible TPSs. It appears that finding the most local TPS
for a given spectrum is computationally impractical (using classical computation) for
all but the smallest Hilbert spaces, but it is possible that there may be very good heuris-
tic algorithms. It would be interesting if there was, in contrast, an efficient quantum
algorithm to find local TPS’s.
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