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When the wave function of a large quantum system unitarily evolves away from a low-entropy initial
state, there is strong circumstantial evidence it develops “branches”: a decomposition into orthogonal
components that is indistinguishable from the corresponding incoherent mixture with feasible observations.
Is this decomposition unique? Must the number of branches increase with time? These questions are hard to
answer because there is no formal definition of branches, and most intuition is based on toy models with
arbitrarily preferred degrees of freedom. Here, assuming only the tensor structure associated with spatial
locality, I show that branch decompositions are highly constrained just by the requirement that they exhibit
redundant local records. The set of all redundantly recorded observables induces a preferred decomposition
into simultaneous eigenstates unless their records are highly extended and delicately overlapping, as
exemplified by the Shor error-correcting code. A maximum length scale for records is enough to guarantee
uniqueness. Speculatively, objective branch decompositions may speed up numerical simulations of
nonstationary many-body states, illuminate the thermalization of closed systems, and demote measurement
from fundamental primitive in the quantum formalism.
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Given the wave function jψi of a many-body system at a
given time, we seek to identify a unique decomposition into
orthogonal components,

jψi ¼
X

i

jψ ii; ð1Þ

that have effectively “collapsed” in the intuitive sense that
their coherent superposition can’t be distinguished from the
incoherent mixture ρ ¼ P

i jψ iihψ ij by feasible observa-
tions. This decomposition should be as general and abstract
as possible, without a priori reference to a preferred
observer, a preferred apparatus, a preferred set of observ-
ables, or a preferred system distinguished from a remaining
environment; all these should emerge.
Without additional structure, every state jψi ∈ H in the

Hilbert space is equivalent. The minimal ingredient we
choose to assume is a division of the many-body system
into microscopic sites (e.g., qubits), which mathematically
takes the form of tensor-product structure:

H ¼ ⨂
n

EðnÞ: ð2Þ

We take Eq. (2) as a primitive that is ultimately grounded in
spatial locality. The associated multipartite entanglement
[1] in jψi provides a rich foundation.
Our guiding intuition is that when macroscopically

distinct alternatives decohere [2–5], redundant records
about the outcome (defined precisely below) are produced
through the phenomenon of quantum Darwinism [6–12].
In retrospect, this is plainly true in the special case of
laboratory measurements, where abundant classical corre-
lations are evident in, e.g., the measuring apparatus itself, in

the circuits of the electronic readout, in the photons emitted
by a display, and in the brains of nearby observers. Much
more commonly, and less obviously, correlated records are
naturally and prolifically produced in nonanthropocentric
mesoscopic processes, such as when quantum fluctuations
are amplified by classically chaotic systems [13–18] and
subsequently decohered by ubiquitous environments like
scattered photons [19,20]. Our strategy is to identify wave
function branches, at a fixed time, with the multipartite
entanglement structure associated to the records generically
generated in the wake of these dynamical processes. We
expect records in many different locations, but these need
not be microscopically local, so we will look for records to
exist in spatial regions—subsets of the entire lattice, Eq. (2).
As shown rigorously in this Letter, a set of recorded

observables induces an objectively preferred decomposition
of the wave function into branches [Eq. (1)]—each a
simultaneous eigenstate of the entire set—so long as no
two records of one observable, taken together, spatially
overlap all records of another. Redundancy alone, no matter
how large, is not sufficient to guarantee objectivity, but all
counterexamples necessarily feature many unnaturally elon-
gated and delicate records, as exhibited by the Shor error-
correcting code [21]. In fact, the set of all observables
recorded redundantly on regions bounded by any particular
length scale induces a single preferred decomposition of the
wave function into branches. This is shownwithout appeal to
arbitrarily preferred macroscopic degrees of freedom, and
without breaking any symmetries of the lattice Eq. (2), e.g.,
invariance under translations, rotations, and reflections.
Consider any observable ΩF local to some region

F ¼ ⨂n∈F EðnÞ of the larger Hilbert space H ¼ F ⊗ F
containing jψi. Let the eigendecomposition be
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ΩF ¼
X

i

ωiΠF
i ; ωi ∈ R; ΠF

i ΠF
j ¼ δijΠF

i ; ð3Þ

where the ΠF
i ¼ ðΠF

i Þ2 ¼ ðΠF
i Þ† are orthogonal projectors

onto the (generally degenerate) subspaces of F associated
with the distinct eigenvalues ωi, acting trivially on F .

Definition: We say a local observable ΩF records
another local observable ΩF 0

on a disjoint region F 0 when,
for each i,

ΠF
i jψi ¼ ΠF 0

i jψi: ð4Þ
This is a symmetric relation, naturally extending to a
collection Ω≡ fΩF ;ΩF 0

;ΩF 00
;…g of two or more local

observables, on disjoint regions fF ;F 0;F 00;…g, recording
each other. We discuss Ω collectively as a recorded observ-
able, referring toΩF as a recordofΩ on the regionF , and the
number of records jΩj as the redundancy of Ω. Finally, we
define the unnormalized branch corresponding to i
as jψ ii≡ ΠF

i jψi ¼ ΠF 0
i jψi ¼ ΠF 00

i jψi ¼ � � �.
Remark.—Note that ΩF records ΩF 0

if and only if
ΠF

j ρ
F
F 0∶iΠ

F
j ¼ δijρ

F
F 0∶i, where ρFF 0∶i ¼ TrF ½ΠF 0

i jψihψ jΠF 0
i �

is the state local to F corresponding to the eigenvalue ωF 0∶i
of ΩF 0

i . Therefore, a local observer can make a measure-
ment on F to infer the value of ΩF 0

, and similarly for F 0

and ΩF . In other words, each branch jψ ii lives in its own
subspace of the local Hilbert spaces F and F 0 [22].
Nothing here depends on the actual eigenvalues since they
only label the different eigenspaces. In this sense, the object
being recorded is a local subalgebra of block-diagonal
matrices rather than an observable per se.
A salient characteristic of macroscopic observables,

whether or not associated with the result of laboratory
measurements, is that they are recorded with very high
redundancy, satisfying Eq. (4) to high accuracy [27]. (More
eventually needs to be said about imperfect records and
quantifying redundancy, but ultimately this will be an
approximate notion like thermodynamic irreversibility,
which becomes unambiguous in a large-N limit.) Our goal
is to determine under what conditions there exists a
preferred decomposition of the wave function into branches
that are simultaneous eigenstates of all redundantly
recorded observables, thereby assigning the branches to
the outcomes of performed measurements.
Consider a set of several redundantly recorded observ-

ables fΩa;Ωb;Ωc;…g whose corresponding eigenvalues
are labeled by i, j, k, etc. In agreement with our real-world
expectations, we require that there are records in multiple
places of different observables, but do not require that any
single region contains a record of all such observables [31].
Nonetheless, the records of different macroscopic observ-
ables may generally be on overlapping regions, so that they
are not guaranteed to commute. (That is, if Ωa is recorded
on disjoint regionsF andF 0, andΩb is recorded on disjoint
regions G and G0, F may still overlap with G. See Fig. 1.)
Given this, we would like to determine under what
conditions they are all mutually compatible, as expected
for classical objectivity.

Definition: Suppose fΩa ¼ fΩF
a ;ΩF 0

a ;…gg is a col-
lection of redundantly recorded observables. We say theΩa
are compatible on jψi if there exists a decomposition

jψi ¼
X

i;j;k;…

jψ i;j;k;…i ð5Þ

where the unnormalized jψ i;j;k;…i are simultaneous eigen-
states of all records in fΩag, i.e.,

ΩF
a jψ i;j;k;…i ¼ ωa∶ijψ i;j;k;…i ð6Þ

for all a, for all ΩF
a ∈ Ωa, and for all i indexing the real

eigenvalues ωa∶i of ΩF
a . We call the jψ i;j;k;…i the branches

of the joint decomposition.
If a set of recorded observables fΩag is compatible on

jψi, it follows that the joint branch decomposition Eq. (5) is
orthogonal and unique [since Eq. (6) is equivalent to
ΠF

a∶i0 jψ i;j;k;…i ¼ δi;i0 jψ i;j;k;…i], and the branches span a
subspace on which all records commute.
The joint branch structure recovers the Everettian

intuition that local records can inform localized observers.
It also suggests the unambiguous definition of the coarse-
grained branches jψa∶ii ≡ P

j;k;���jψ i;j;k;…i, jψa∶i;b∶ji≡P
k;���jψ i;j;k;…i, etc. and implies the corresponding

FIG. 1. Spatially disjoint regions with the same coloring (e.g.,
the solid blue regions F ;F 0;…) denote different records for the
same observable (e.g., Ωa ¼ fΩF

a ;ΩF 0
a ;…g). (a) The spatial

record structure of the Shor-code family of states, which can
exhibit arbitrary redundancy (in this case fourfold) for two
incompatible observables. (b) The solid orange observable pair-
covers the hashed blue observable because the top two orange
records overlap all blue records. However, if one of the top two
orange records is dropped, then neither observable pair-covers the
other, and hence both are compatible, despite many overlaps of
individual records. (c) Any spatially bounded set of records can be
contained inside a single record of a sufficiently dilated but
otherwise identical set of records for an incompatible observable;
such a state is given in Eq. (9). (d) Any observable with records
satisfying the hypothesis of the corollary for some length l cannot
pair-cover, or be pair-covered by, any other such observable.
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coarse-graining relationships jψa∶ii ¼
P

jjψa∶i;b∶ji ¼P
j;kjψa∶i;b∶j;c∶ki, etc. The partially coarse-grained

branches are eigenstates of the operators that have not
been coarse-grained over.
One can see that compatibility of recorded observables is

not trivial: the Bell state

jΦþi ∝ j↑ij↑i þ j↓ij↓i ¼ j⊙ij⊙i þ j⊗ij⊗i ð7Þ

with j⊙i≡ ðj↑i þ j↓iÞ= ffiffiffi
2

p
and j⊗i≡ ðj↑i − j↓iÞ= ffiffiffi

2
p

,
features two observables, Ω↑;↓ and Ω⊙;⊗, that are recorded
locally twice (once on each qubit) yet are incompat-
ible [32].
In fact, two observables can each be recorded with

arbitrarily large redundancy yet be grossly incompatible—
corresponding to noncommuting observables. An example
of this is provided by the generalized Shor code [21],
(a class of) states used to represent quantum information in
error-correctable form:

jψi ¼ jξþi þ jξ−i; jξ�i≡ ½j0i⊗M0 � j1i⊗M0 �⊗M: ð8Þ

The first incompatible observable is Ω�, which corre-
sponds to the branch decomposition above, and which is
recorded with redundancy M. The second is Ω0;1, which
corresponds to the decomposition jψi ¼ jχ0i þ jχ1i, and
which is recorded with redundancy M0. Here, jχri ¼P

~s∈Zr
⨂M0

m¼1½jsmi⊗M� for r ¼ 0, 1, where ~s¼ðs1;…;sM0 Þ
with sm ¼ 0, 1 is a vector of bits, and where Z0 (Z1)
denotes the set of such vectors with even (odd) parity. The
record structure is illustrated in Fig. 1(a) and further detail
can be found in the Supplemental Material [33].
Therefore, additional assumptions beyond mere redun-

dancy will be required to identify the preferred macro-
scopic observables inducing branch structure. We now
introduce an important (but initially obscure) asymmetric
binary relation on a set of recorded observables and prove it
necessarily holds for some pairs if the set is not compatible;
otherwise, they induce a joint branch decomposition [33].

Definition: Suppose two observables, Ωa and Ωb, are
redundantly recorded on jψi. Then we say Ωa pair-covers
Ωb if there is at least one pair of records ΩF

a , ΩF 0
a ∈ Ωa

such that, for every ΩG
b ∈ Ωb, the region G spatially

overlaps with F or F 0 (or both). Equivalently, Ωa does
not pair-cover Ωb if, for every pair of records ΩF

a ,
ΩF 0

a ∈ Ωa, there exists a record ΩG
b ∈ Ωb such that G is

disjoint from both F and F 0. [See Fig. 1(b).]
Given the very many physical records that exist about

macroscopic observables, we do not expect a pair of
accessible records for one observable to spatially overlap
with all records of another. Even if an observable has some
spurious, highly diffuse records in addition to the localized
ones that are feasibly accessible to observers, the modified
recorded observable formed by simply dropping the diffuse

records should avoid pair-covering other macroscopic
observables. This procedure only fails if most or all of
the records are extensively overlapping in this way. Indeed,
the Shor code exemplifies this; its two incompatible
recorded observables pair-cover each other regardless of
how many records are dropped, since each record of one
observable covers all records of the other. [See Fig. 1(a).]
For large redundancy, the records must become arbitrarily
extended in space.

Main result: Suppose fΩa ¼ fΩF
a ;ΩF 0

a ;…gg is a
collection of recorded observables for jψi. If none of the
recorded observables pair-covers another, then they are all
compatible, and so define a joint branch decomposition of
simultaneous eigenstates of all records.
Proof.—(Sketch.) The strategy is to show that an arbitrary

product of record projectors (ΠF
a∶iΠ

G
b∶j � � �) acting on jψi, as

in Eq. (5), is independent of both the order of the Π’s
and of the particular choice of ΩF

a ∈ Ωa, ΩG
b ∈ Ωb, etc. The

proof is by induction on the number of projectors in the
product, starting with two: ΠF

a∶iΠ
G
b∶jjψi ¼ ΠG

b∶jΠ
F
a∶ijψi ¼

ΠG0
b∶jΠ

F 0
a∶ijψi. All steps are elementary, consisting of repeated

application of the definition of local records (i.e., ΠF
a∶ijψi ¼

ΠF 0
a∶ijψi for allΩF

a ,ΩF 0
a ∈ Ωa), and the lack of pair-covering

[i.e., ½ΠF
a∶i;Π

Ĝ
b∶jt� ¼ 0 ¼ ½ΠF 0

a∶i;Π
Ĝ
b∶j� for all ΩF

a , ΩF 0
a ∈ Ωa

and for some choice ΩĜ
b ∈ Ωb with Ĝ ¼ ĜðF ;F 0Þ]. See the

Supplemental Material [33] for details. □

This result gives evidence that our intuition about
records may be enough to fully constrain the branch
structure of a many-body wave function. However, it does
not necessarily single out a unique decomposition. An ideal
criterion for classical observables could be checked on
individual recorded observables yet guarantee mutual
compatibility, thereby identifying a single maximal set.
Note that such a criterion must make reference to

something besides scale-invariant properties of the record-
ing regions. Given an arbitrary set of regions on which
some observable is recorded, an incompatible observable
can be recorded on a dilated but otherwise identical set of
regions. A state fulfilling this is

X

�
½ðj0iGj0iG0 � � �Þ � ðj1iGj1iG0 � � �Þ�ðj�iF 0 j�iF 00 � � �Þ; ð9Þ

where F ¼ ðG ⊗ G0 ⊗ � � �Þ is a region in which one record
of Ωa and all records of Ωb are inscribed. This is illustrated
in Fig. 1(c). In other words, if we know only the regions on
which putatively classical information is redundantly
recorded, it is always possible that incompatible but
redundantly recorded information hides at very small or
very large length scales.
The following corollary assumes a preferred length scale

to state a criterion that can be checked on individual
recorded observables. It is not fully satisfactory as a
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fundamental criterion for objective branch structure, but it
illustrates the form that such a criterion could take.
Corollary: Fix a characteristic spatial distance l and

consider the set of all recorded observables fΩag on jψi
satisfying the following requirement: each Ωa is recorded
on at least 3 regions, with each region fitting in a sphere of
radius l and pairwise separated by the distance l. [See
Fig. 1(d)]. Then none of the Ωa pair-covers another, and
they are all therefore compatible and define a joint branch
decomposition.
Remark.—This bound is tight in the sense that incom-

patible observables each with two such records can exist.
The special role of the number three in this bound is
fundamental, and is essentially the same as in the trior-
thogonal decomposition theorem [34]. In both cases, we are
able to rule out quantum effects in information that is
distributed over more than two subsystems because of the
monogamy of entanglement [35,36].
This corollary is the first place we have associated the

lattice with a notion of distance (or even topology), and it
only functions to ensure that regions are disjoint. The
distance l might be motivated by a fundamental correlation
scale of the state jψi, or the maximum distance over which
realistic observers can make measurements. (Poetically, a
macroscopic wave function at any given time has a unique
branch decomposition generated by all observables that
could be recorded in several human brains, ∼20 cm.)
Note that the mere existence of some records that become
diffused over a distance larger than l does not interfere with
applying the corollary to the modified recorded observable
formed by dropping the superfluous diffuse records.

Discussion.—It seems very unlikely that the recorded
observables corresponding to traditional laboratory mea-
surements would pair-cover one another, by virtue of the
millions [19] of localized records distributed over macro-
scopic distances, so they are expected to generate a joint
branch decomposition in the wave function of the universe.
More generally, we expect the same when classically
chaotic systems amplify quantum fluctuations, which then
decohere [13–18], without any involvement of observers or
laboratory equipment. In contrast to idealizations that
assume that different record-holding regions are approx-
imately separable [20], the above construction is not
stymied by the presence of stray entanglement, an unavoid-
able aspect of the real world [37].
That said, there are important limitations that remain to

be addressed. We have not shown that a branch decom-
position is stable in the presence of small errors or
imperfect records. We have also not resolved how the
decomposition, which is induced by the locally causal
production of records, would transform under relativistic
boosts, nor how it would be defined if there is no Cauchy
surface. The preferred tensor structure, Eq. (2), is justified
by the universal nature of spatial locality (see also
Refs. [38,39]), but this structure is not applicable on scales

smaller than the Compton wavelength of a relativistic
quantum field [29,40–42]. Very importantly, the hypothesis
of the corollary relies on an unexplained length scale and
does not obviously agree with intuition in all cases; a
fundamental uniqueness theorem is lacking.
Ideally, the objective branch structure would be built up

from a Lorentz and scale invariant condition
(cf. Refs. [43,44]). This might be based on a preferred
length scale or inertial frames extracted from the state jψi,
or it might appeal to other principles, such as the informa-
tion redundantly recorded in most collections of lattice sites
[10,45]. In any case, the decomposition will only be
convincing if it is simple and rigorously recovers all
intuition about the evolution of macroscopic observables.
Of course, for some states the decomposition may be trivial
(just one branch) but insofar as it is defined by properties
that the macroscopic classical world is expected to obey,
the induced branches would be nontrivial and objectively
exist “out there in the real world”—they would not be just a
useful structure relative to a particular observer.
The production of records during macroscopic amplifi-

cation is a thermodynamically irreversible process; in
principle, it is always possible to conduct quantum experi-
ments in a perfectly sealed laboratory and have the resulting
outcomes “recohered” by an external agent with suffi-
ciently powerful abilities. Therefore, we do not expect
branching to occur at an exact moment in time, but rather to
emerge in a large-N limit. (Certainly, the production of only
three records, as in a GHZ state [1], is not enough to ensure
persistent objectivity of the recorded observable.) So it is
likely that some distinguishability metric between candi-
date branches could usefully quantify the permanence of
branching. One possibility is simply the amount of redun-
dancy, which is somewhat analogous to the Hamming
distance between alternative branches. Perhaps more com-
pelling is (a computable approximation to) the logical depth
[46] or quantum circuit complexity [47,48] between
branches; with careful preparation, matter interferometers
successfully interfere different configurations of 104 nucle-
ons [49] (and hence, in a sense, 104 records), but this would
be infeasible if the two configurations were well scrambled
[50,51]. Given a sufficient threshold, we expect branches to
divide, but not recombine, under time evolution. For time-
homogeneous systems, branches presumably divide into
sub-branches at a regular rate, leading to a total number of
branches that increases exponentially in time.
For the sake of argument, suppose we have identified a

satisfying (though possibly laborious) procedure for
decomposing the wave function at any given time into
branches of simultaneous eigenstates of preferred observ-
ables [52]. Given this, we can investigate how the number
and type of branches at different times relate to each other.
Many compelling questions could be investigated: What is
the behavior of the entropy defined by the spectrum of
squared branch weights (fjjψ i;j;k;…ij2g) [55], and is it
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related to the Kolmogorov-Sinai entropy of the macro-
scopic degrees of freedom [15]? At what branch-distance
threshold is branch formation irreversible? Finite-
dimensional systems allow for at most a finite number
of orthogonal branches [56–58]; when does branching halt,
and what does the transition look like? Since thermalized
systems are characterized by a lack of redundancy—
disjoint local measurements inside a uniform-temperature
oven are completely uncorrelated with each other—can the
destruction of records connect the dissolution of branch
structure with the thermalization process itself?
If a computationally efficient method for identifying

branches for a given state jψi could be found, it would
enable simulations of any nonstationary many-body
systems whose failure to be compactly described by a
tensor network is due to an exponential proliferation of
branches—and, hence, long-range entanglement. Such
entanglement builds up, for instance, when local excitations
scatter into superpositions of different out-states. Crucially,
an N-point function can be calculated by sampling the
branches for observables recorded more than N times:
hψ jO1 � � �ON jψi ¼

P
i;j;…hψa∶i;b∶j;…jO1 � � �ON jψa∶i;b∶j;…i,

because there exists choices of ΩF
a ;ΩG

b;…, such that
0 ¼ ½ΠF

a∶i;On� ¼ ½ΠG
b∶j;On� ¼ � � �, for all n. Here, the

sum need only include enough choices of ði; j;…Þ to
ensure a small error, which scales polynomially with the
desired accuracy and is independent of the number of
branches for finite variance. As the total number of
branches increases exponentially with time evolution, the
number that need to be simulated can be held constant;
some branches would be retained with probability propor-
tional to their norm squared, and the rest “pruned”.
In principle, an objective branch decomposition of the

wave function of the universe at every moment in time
could reduce quantum theory to a classical stochastic
theory—without invocation of observers or measurements
as primitive concepts—in the following sense: It would
provide a well-behaved probability distribution over differ-
ent outcomes, and for each outcome it would specify a
preferred set of observables and their values (while remain-
ing appropriately silent on the values of incompatible
observables). These observables would follow quasiclass-
ical trajectories over time scales on which the conditions for
Ehrenfest’s theorem hold. It would thus convert the ad hoc
operational procedure by which quantum mechanics is
applied [58–61] into a formal calculus.
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