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As one expects in this case, the better the scattering environment can dis-
tinguish between system states |α〉 and |β〉 the more coherence is lost in this
elastic process.

In the general case, the decay of off-diagonal elements will be due to a com-
bination of elastic and inelastic processes. Although little can be said without
specifying the interaction, it is clear that the integral over |fαα − fββ |2 in
(5.184), a “decoherence cross section” without classical interpretation, is not
related to the inelastic cross sections characterizing the population transfer,
and may be much larger. In this case, the resulting decoherence will be again
much faster than the corresponding relaxation time scales.

5.5 Robust States and the Pointer Basis

We have seen that, even though the decoherence predictions of linear coupling
models has to be taken with great care, the general observation remains
valid that the loss of coherence may occur on a time scale γ−1

deco that is
much shorter the relaxation time γ−1. Let us therefore return to the general
description of open systems in terms of a semigroup generator L, and ask
what we can say about a general state after a time t which is still small
compared to the relaxation time, but much larger than the decoherence time
scale. From a classical point of view, which knows only about relaxation, the
state has barely changed, but in the quantum description it may now be well
approximated by a mixture determined by particular projectors P�,

eLt : ρ
γ−1
deco�t�γ−1

−−−−−−−−−→ ρt ' ρ′ =
∑

�

tr(ρP�)P�. (5.185)

This set of projectors {P�}, which depend at most weakly on t, is called
pointer basis [43] or set of robust states [44]. It is distinguished by the fact
that a system prepared in such a state is hardly affected by the environment,
while a superposition of two distinct pointer states decoheres so rapidly that
it is never observed in practice.

We encountered this behavior with the damped harmonic oscillator dis-
cussed in Sect. 5.3.4. There the coherent oscillator states remained pure un-
der Markovian dynamics, while superpositions between (macroscopically dis-
tinct) coherent states decayed rapidly. Hence, in this case the coherent states
Pα = |α〉〈α| can be said to form an (over-complete) set of robust states,
leading to the mixture

ρ′ =
∫

dμ (α) tr(ρPα)Pα , (5.186)

with appropriate measure μ.
The name pointer basis is well-fitting because the existence of such robust

states is a prerequisite for the description of an ideal measurement device in
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a quantum framework. A macroscopic – and therefore decohering – appara-
tus implementing the measurement of an observable A is ideally constructed
in such a way that macroscopically distinct positions of the “pointer” are
obtained for the different eigenstates of A. Provided these pointer positions
of the device are robust, the correct values are observed with certainty if
the quantum system is in an eigenstate of the observable. Conversely, if the
quantum system is not in an eigenstate of A, the apparatus will not end up
in a superposition of pointer positions, but be found at a definite position,
albeit probabilistically, with a probability given by the Born rule.

The main question regarding pointer states is, given the environmental
coupling or the generator L, what determines whether a state is robust or
not, and how can we determine the set of pointer states without solving the
master equation for all initial states. It is fair to say that this issue is not
fully understood, except for very simple model environments, nor is it even
clear how to quantify robustness.

An obvious ansatz, due to Zurek [6, 45], is to sort all pure states in the
Hilbert space according to their (linear) entropy production rate, or rate of
loss of purity,

∂tSlin[ρ] = −2 tr (ρL(ρ)) . (5.187)

It has been called “predictability sieve” since the least entropy producing and
therefore most predictable states are candidate pointer states [6].

In the following, a related approach will be described, following the pre-
sentation in [3, 46]. It is based on a time-evolution equation for robust states.
Since such an equation must distinguish particular states from their linear
superpositions it is necessarily nonlinear.

5.5.1 Nonlinear Equation for Robust States

We seek a nonlinear time-evolution equation for robust pure states Pt which,
on the one hand, preserves their purity, and on the other, keeps them as close
as possible to the evolved state following the master equation.

A simple nonlinear equation keeping a pure state pure is given by the
following extension of the Heisenberg form for the infinitesimal time step,

Pt+δt = Pt + δt

(
1
i
[At,Pt] + [Pt, [Pt,Bt]]

)
, (5.188)

where A and B are hermitian operators. In fact, the unitary part can be
absorbed into the nonlinear part by introducing the hermitian operator
Xt = −i[At,Pt] + Bt. It “generates” the infinitesimal time translation of the
projectors (and may be a function of Pt),

Pt+δt = Pt + δt[Pt, [Pt,Xt]] . (5.189)

With this choice one confirms easily that the evolved operator has indeed the
properties of a projector, to leading order in δt,
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P†
t+δt = Pt+δt (5.190)

and

(Pt+δt)
2 = Pt+δt +O(δt2) . (5.191)

The corresponding differential equation reads

∂tPt =
Pt+δt − Pt

δt
= [Pt, [Pt,Xt]] . (5.192)

To determine the operator Xt one minimizes the distance between the time
derivatives of the truly evolved state and the projector. If we visualize the
pure states as lying on the boundary of the convex set of mixed states, then
a pure state will in general dive into the interior under the time evolution
generated by L. The minimization chooses the operator Xt in such a way that
Pt sticks to the boundary, while remaining as close as possible to the truly
evolved state.

The (Hilbert–Schmidt) distance between the time derivatives can be cal-
culated as

‖L(Pt)︸ ︷︷ ︸
≡Z

−∂tPt‖2HS = tr
[
(Z− [Pt, [Pt,Xt]])

2
]

= tr
(
Z2 − 2(Z2Pt − (ZPt)

2)
)

+2 tr
(
(Z− X)2Pt − ((Z− X)Pt)

2
)
. (5.193)

We note that the first term is independent of X, whereas the second one is
non-negative. With the obvious solution Xt = Z ≡ L(Pt) one gets a nonlinear
evolution equation for robust states Pt, which is trace and purity preserving
[46],

∂tPt = [Pt, [Pt,L(Pt)]] . (5.194)

It is useful to write down the equation in terms of the vectors |ξ〉 which
correspond to the pure state Pt = |ξ〉〈ξ|,

∂t|ξ〉 = [L(|ξ〉〈ξ|)− 〈ξ|L(|ξ〉〈ξ|)|ξ〉
︸ ︷︷ ︸

“decay rate”

]|ξ〉 . (5.195)

If we take L to be of the Lindblad form (5.79) the equation reads

∂t|ξ〉 =
1
i�

H|ξ〉+
∑

k

γk

[
〈L†

k〉ξ
(
Lk − 〈Lk〉ξ

)
− 1

2

(
L†

kL− 〈L†
kLk〉

)]
|ξ〉

− 1
i�
〈H〉ξ|ξ〉 . (5.196)

Its last term is usually disregarded because it gives rise only to an additional
phase if 〈H〉ξ is constant. The meaning of the nonlinear equation (5.196) is
best studied in terms of concrete examples.
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5.5.2 Applications

Damped Harmonic Oscillator

Let us start with the damped harmonic oscillator discussed in Sect. 5.3.4. By
setting H = �ωa†a and L = a (5.196) turns into

∂t|ξ〉 = −iωa†a|ξ〉+ γ

(
〈a†〉ξ(a− 〈a〉ξ)−

1
2
(
a†a− 〈a†a〉ξ

)
)
|ξ〉 . (5.197)

Note that the first term of the non-unitary part vanishes if |ξ〉 is a coherent
state, i.e., an eigenstate of a. This suggests the ansatz |ξ〉 = |α〉 which leads
to

∂t|α〉 =
[(
−iω − γ

2

)
αa† +

γ

2
|α|2

]
|α〉 . (5.198)

It is easy to convince oneself that this equation is solved by

|αt〉 = |α0e−iωt−γt/2〉 = e−|αt|2/2eαta
† |0〉 (5.199)

with αt = α0 exp (−iωt− γt/2). It shows that the predicted robust states are
indeed given by the slowly decaying coherent states encountered in Sect. 5.3.4.

Quantum Brownian Motion

A second example is given by the Brownian motion of a quantum particle.
The choice

H =
p2

2m
and L =

√
8π
Λth

x (5.200)

yields a master equation of the form (5.117) but without the dissipation term.
Inserting these operators into (5.196) leads to

∂t|ξ〉 =
p2

2mi�
|ξ〉 − γ

4π
Λ2

th

[(x− 〈x〉ξ)2 − 〈(x− 〈x〉ξ)2〉ξ︸ ︷︷ ︸
σ2

ξ(x)

]|ξ〉 . (5.201)

The action of the non-unitary term is apparent in the position representation,
ξ(x) = 〈x|ξ〉. At positions x which are distant from mean position 〈x〉ξ as

compared to the dispersion σξ(x) =
〈
(x− 〈x〉ξ)2

〉1/2

ξ
the term is negative

and the value ξ(x) gets suppressed. Conversely, the part of the wave function
close to the mean position gets enhanced,

〈x|ξ〉 =
{

suppressed if |x− 〈x〉ξ | > σξ(x)
enhanced if |x− 〈x〉ξ | < σξ(x) .

(5.202)
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This localizing effect is countered by the first term in (5.201) which causes
the dispersive broadening of the wave function. Since both effects compete
we expect stationary, soliton-like solutions of the equation.

Indeed, a Gaussian ansatz for |ξ〉 with ballistic motion, i.e., 〈p〉ξ = p0,
〈x〉ξ = x0 + p0t/m, and a fixed width σξ(x) = σ0 solves (5.201) provided [44]

σ2
0 =

1
4π

√
kBT

2�γ
Λ2

th =
(

�
3

8γm2kBT

)1/2

, (5.203)

see (5.128). As an example, let us consider a dust particle with a mass of 10 μg
in the interstellar medium interacting only with the microwave background of
T = 2.7K. Even if we take a very small relaxation rate of γ = 1/(13.7×109 y),
corresponding to the inverse age of the universe, the width of the solitonic
wave packet describing the center of mass is as small as 2 pm. This sub-
atomic value demonstrates again the remarkable efficiency of the decoherence
mechanism to induce classical behavior in the quantum state of macroscopic
objects.
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