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We examine the relationship between the decoherence of quantum-mechanical histories of a closed 
system (as discussed by Gell-Mann and Hartle) and environmentally induced diagonalization of the 
density operator for an open system. We study a definition of decoherence which incorporates both 
of these ideas, and show that it leads to a consistent probabilistic interpretation of the reduced 
density operator. 
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I. INTRODUCTION 

In classical physics, there is no apparent need to  an- 
alyze the role of the observer. As long as one assumes 
that  observations can be made with negligible effect on 
the properties observed, one can ascribe properties to  
objects without considering whether or not those prop- 
erties have actually been observed. In quantum physics, 
a t  least in the Copenhagen interpretation, the situation 
is radically different: objects are assumed not to  have 
any properties a t  all, unless and until those properties 
have been measured by an  outside observer. Under such 
an  assumption, an analysis of measurement becomes an 
indispensable part of the  interpretation of the  theory. 

In quantum cosmology the "object" of study is the  en- 
tire Universe. The quantum theory of the Universe must 
be interpreted without relying on the idea of measure- 
ment. This is not, as was the  case in classical physics, 
because measurement is innocuous; rather, it is because 
it is impossible. There cannot be any outside observer of 
the entire universe. 

I t  has been suggested [I, 21 by Gell-Mann and Har- 
tle (GH) that  the  Copenhagen notion of measurement 
could be replaced by the concept of "decohering histo- 
ries." This concept is a generalization of the  idea of "con- 
sistent histories" advanced by Griffiths [3] and studied 
also by Omnks [4]; a recent paper by Dowker and Halli- 
well [5] analyzes several examples of decohering histories. 
GH suggest several different versions of the  condition for 
decoherence (which they refer to  as the weak, medium, 
medium-strong, and strong conditions), and it is an open 
question within the  program of GH of what is the best 
definition of decoherence to impose. 

Other authors [6] have investigated how, when a sys- 
tem interacts with its environment, the  density operator 
for the  system becomes diagonal (in a particular basis). 
This diagonalization can also be argued to  provide an  
answer to  the  question of how, without relying on the 
idea of measurement, it is possible to  say when a prop- 

*Electronic address: JFINKELOSJSUVM1.BITNET 

erty is real or when an event has happened; in fact, this 
diagonalization has also been termed decoherence. In the  
following, we shall refer to  the diagonalization of the den- 
sity operator for a system, due to  its interaction with its 
environment, as Z decoherence. 

In this paper we study the  properties of yet another 
definition of the decoherence of histories, which we will 
refer to  as partial trace (PT)  decoherence. \lie will see 
tha t  P T  decoherence implies the medium decoherence 
condition of GH, and that  it also involves the  diagonal- 
ization of the  density operator; in a sense, P T  decoher- 
ence can be taken to characterize those histories which 
decohere by the  mechanism of Z decoherence. In the  next 
section we will review the definitions of histories and de- 
coherence as they were used in Refs. [l, 2,5]; we will then 
define a generalization of the decoherence functional, and 
use it t o  state the condition that  we call P T  decoherence. 
In the  final section we will establish and discuss some of 
the properties of histories which exhibit P T  decoherence, 
and compare them with properties implied by other def- 
initions. 

11. FORMALISM 

Since we are interested in those sets of histories for 
which we can discuss Z decoherence, we will limit our 
discussion to  the  case in which, from among all the  vari- 
ables which describe the world, we distinguish a certain 
fixed subset of them, and say that  this subset describes 
the "system"; the remaining variables then describe the  
"environment." Formally, we write the state space 7-1 of 
the  world as the  tensor product of spaces S of the system 
and E of the environment: 3-1 = S 8 E. The discussion 
of histories will involve (Schrodinger picture) projection 
operators P, and we only consider those projection op- 
erators which act trivially on &, and so can be written 
P = P s @ I & .  

Following GH, we define a history by a sequence of pro- 
jections made a t  a fixed sequence of times t l  . . . t ,  which 
satisfy t l  < . . .  < t,. For each given time tk, the set 
of projection operators will be denoted by {P&), where 
a particular value of the  index a k  denotes a particular 
operator in the  set. The superscript k on P is required 
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since we are allowing different sets of projectors a t  dif- 
ferent times. For each fixed value of k, the projections 
are supposed to represent an exhaustive set of exclusive 
alternatives, which implies that these operators satisfy 
P,Pp = 6,pP, and C,  P, = I. A particular history 
is then labeled by a sequence a = [al l . .  . ,an]. For a 
particular sequence a, define 

The condition of the world at the initial time to  < t l  will 
be represented by the density operator p(t0). Then the 
decoherence functional is [I, 21 

Although the definition of C, given in Eq. (1) differs 
slightly from that used in [1,2], the decoherence func- 
tional defined in Eq. (2) agrees exactly with the one de- 
fined in [1,2]. 

The definition of decoherence that was emphasized in 
[2] was the "medium decoherence" condition; this is the 
requirement that,  for two alternative histories labeled by 
a and a', 

We will say that a family of histories for which Eq. (3) 
holds satisfies "GH decoherence." Probabilities p (a )  can 
be assigned to the members of a family of histories satis- 
fying Eq. (3) by p(a)  = D ( a ,  a ) ;  Eq. (3) then guarantees 
that p (aorp)  = p(a)  +p(P) ,  where p(aorp)  is calculated 
from Eq. (2) with C, ., p = C ( a )  + C(P).  

One would certainly expect that,  in cases where the 
GH decoherence condition [Eq. (3)] is (at least approxi- 
mately) satisfied, this would come about because tracing 
over the environment in Eq. (2) would give (at least ap- 
proximately) zero; this is well illustrated by examples 
considered in [2] and in [5]. In particular, the example 
that GH present in Sec. IV of [2] in order to discuss the 
relation with Z decoherence was constructed with this ex- 
pectation. In order to  formalize this expectation, we now 
define a generalized decoherence functional D by restrict- 
ing the trace in Eq. (2) to be just over the environment; 
that is, we define 

For fixed a and a', D(a l ,  a )  is thus an operator in S, 
which can easily be shown to satisfy 

TrD(al ,  a )  = D ( a l ,  a ) ,  

D ( a ,  a ')  = D + ( a l ,  a ) ,  

where, in Eq. ( 7 ) ,  ps  is the density operator for the 
system ps  = Tre[p], and we have used C,  C, = 
e-iH(tn-to). We can now state the condition that we call 
(since it is defined by a partial trace) P T  decoherence: 
we will say a family of histories satisfies P T  decoherence 

if, for any alternative histories a and a', 

In a realistic situation, we would expect Eq. (8) to be, a t  
best, approximately satisfied. The matrix elements of b 
can be shown to satisfy the following inequality: 

The generalization of the condition for approximate deco- 
herence suggested in [5] would be to require the left-hand 
side of this inequality to be, if not zero, at least much 
less than the right-hand side, for all i and j. However, 
we shall not consider further the notion of approximate 
decoherence; in the following, decoherence will be taken 
to be exact. 

In the next section we will establish and discuss the 
following properties of P T  decoherence. 

(1) P T  decoherence implies the medium-decoherence 
condition of GH. 

(2) For a family of histories satisfying P T  decoherence, 
the projectors a t  the final time tn  must be, in the space 
S, onto (perhaps a coarse graining of) a basis which di- 
agonalizes ps  (t,). In this sense a PT-decoherent family 
of histories satisfies Z decoherence. 

(3) For each history a in a decoherent family of his- 
tories, one can define an "effective" density operator for 
the system pz; P T  decoherence then implies, and is es- 
sentially implied by, a consistency condition for these ef- 
fective density operators: 

(4) If p, the density operator for the world, repre- 
sents a pure state, then GH decoherence implies [I, 21 
the existence of "generalized records" of the histories. 
PT decoherence then implies further that these general- 
ized records exist in the environment. 

(5) To the extent to which it is possible to  neglect 
the interaction between the system and the environment 
for times later than t,, histories extended past t, satisfy 
the following property: any two histories which are P T  
decoherent a t  t, will continue to  be P T  decoherent at all 
later times, for any choice of projections at  these later 
times. In the case where p represents a pure state, this 
would imply the persistence of records. 

In this paper we are considering a world with a fixed - - - 
split into "system" and "environment," and so we have 
required that all projection operators act trivially on E .  
However, we will only need this requirement to establish 
the properties numbered (2) and (5) above, and then 
only for projection operators a t  time tn  or later. Thus, 
we could drop this requirement at times earlier than t, 
without changing any of our results. 

111. IMPLICATIONS OF THE FORMALISM 

First, any two histories which are P T  decoherent 
[Eq. (8)] are necessarily GH-decoherent [Eq. (3)]. This 
follows from Eq. (5). 

Second, to discuss a relationship between P T  decoher- 
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ence and Z decoherence, suppose we sum a family of 
histories over all projectors at all times earlier than t,; 
if a represents such a summed history, it follows from 
Eq. (1) that C, = Pzne-iH(t--to). Since all of our pro- 
jectors act trivially in &, we can write P& = ps, @ I&, 
where Ps, is a projection operator acting on S. So if a 
and a' are two such histories, we have 

Thus, since when a' # a, P T  decoherence requires 
D(a l ,  a )  = 0, Eq. (9) implies, in this case, 

So ps(t,) has no matrix elements between the subspaces 
of S projected onto by Ps,, and Ps,. If each member 
of the set {Ps,) projects onto a one-dimensional sub- 
space of S, i.e., if Ps, = Ia)(al, then Eq. (10) obviously 
says that ps(tn) is diagonal in the basis {la)}. More 
generally, Eq. (10) says that ps(t,) is block diagonal in 
the subspaces projected onto by the {Psa); since it is 
always possible to diagonalize ps(t,) on each such sub- 
space separately, this means that there exists a basis in 
which ps(t,) is diagonal and such that each Ps, is a sum 
of projectors onto that basis. 

This establishes that the set of projectors for the fi- 
nal time t, of a PT-decoherent family necessarily project 
onto (possibly a coarse graining of) a basis which diag- 
onalizes ps(tn). Therefore, at time t, a PT-decoherent 
family also exhibits Z decoherence. However, at earlier 
times the situation is not so simple. If we consider, for 
example, two histories a and a' for which the only non- 
trivial projections are a t  t = t,-l, we could write, in 
place of Eq. (9), 

The exponential factors in Eq. (11) do not necessarily 
cancel because Tr& is not cyclic in operators which act 
upon S. Hence we cannot conclude that,  in analogy with 
Eq. ( lo) ,  Psa,ps(tn-l)Psa = 0, which would be the Z- 
decoherence condition at t = tnPl. 

Third, for each history a in a GH-decoherent family 
one can define an "effective" density operator pa by 

Using this effective density operator corresponds, in the 
case of a pure state, to  the "collapse of the state vector." 
We can also define the effective density operator for the 
system by 

which implies 

Now let a and p represent two alternative histories; from 
Eq. (4) with C, ., p = C, + Cp we get 

b(ct.orp, a o r p )  = b ( a ,  a )  + D(P, P) + b ( a ,  P) + D ( P ,  a ) .  

If a and p represent alternative members of a PT- 
decoherent family, the last two terms in Eq. (15) vanish; 
then Eqs. (14) and (15) imply 

or if we sum over all alternative members of the family, 
we get 

Equation (16) is the consistency condition for the effec- 
tive density operator which is implied by P T  decoherence. 
A necessary and sufficient condition for Eq. (16) is that 
the sum of the last two terms in Eq. (15) vanishes, for 
any alternative histories a and p ;  by using Eq. (6), we 
can write this condition as 

b ( a ,  P) + D+ (a ,  P) = 0. (18) 

This condition is somewhat weaker than is P T  decoher- 
ence; it implies the weak, but not the medium, decoher- 
ence condition defined by GH. 

Fourth, if the density operator p represents a pure 
state, we can write p(t0) = /Q)(Ql. The decoher- 
ence functional defined in Eq. (2) is then D(a l ,  a )  = 
(QICLC,, IQ), and the GH decoherence condition is that,  
for a and a' representing alternative histories, C, IQ) and 
C,, 19) are orthogonal. The fact that alternative histories 
lead, a t  time t = t,, to  orthogonal states implies what 
GH refer to  as "generalized records" of the histories. The 
PT-decoherence condition becomes, in the case of a pure 
state, 

It can be shown that Eq. (19) is equivalent to the condi- 
tion that there exist subspaces E, and &,I of E such that 
C,IQ) E S @ E,, C,tIQ) E S 8 &,I, and E, is orthogonal 
to E,,. We can call this condition "orthogonality in the 
environment ." 

In the case in which p represents a pure state, the 
PT-decoherence condition is therefore equivalent to the 
statement that C, IQ) and C,! IQ) are orthogonal in the 
environment. We can thus say that a PT-decoherent fam- 
ily of histories produces records in the environment. 

Fifth, the histories we have discussed so far extend until 
a time t,, which we can call the "present." Suppose 
we now consider further extending these histories to  a 

'1f &, and/or &,, has dimension greater than one, it is pos- 
sible to make a finer graining (perhaps in a branch-dependent 
way). For our discussion it is simpler not to assume this has 
been done. 
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time t, > t,, the "future." Let a represent, as before, 
a sequence of alternatives at  times t l . .  .t,, and let ,8 
represent a sequence at  times tn+l . . . t,. Then if we 
denote by ( a  and p)  the sequence consisting of first a 
and then p, we can write, using an obvious extention 
of the notation introduced in Eq. ( I ) ,  C,.,dp = CpC,. 
The generalized decoherence functional becomes 

b ( a l  and p', a and p)  = ~ r &  [ c ~  C , ) ~ ( ~ ~ ) C ~ C ; ] .  (20) 

Now let us suppose that we could ignore the interaction 
between the system and the environment for all times in 
the future. Then, for future times, we could write the 
Hamiltonian H of the world as a sum: H = Hs 8 I& + 
Is @HE. This means that Cp could be written 

where Csp is an operator on S; there would be a similar 
expression for Cp. Then Eq. (20) would imply 

b ( a l  and pl, a and p )  = c s p f ~ r &  [cat P ( ~ ~ ) c ~ I c J ~  

= cSp, b ( a l ,  a )cLp .  (22) 

If the original histories a and a' are P T  decoherent, then 
D(al, a )  vanishes and so the extended histories are P T  
de'coherknt also. Then (under the assumption that we 
could ignore interaction between the system and the en- 
vironment in the future), we see that two histories which 
are P T  decoherent in the   resent will continue to  be P T  
decoherent when extended into the future; this is true 
for any choice of projection in the future. In the case in 
which p represents a pure state, GH decoherence, and so a 
fortiori P T  decoherence, implies the existence of records; 
then if P T  decoherence persists, the records will persist 
also. In a sense, the PT-decoherence condition picks out 
those GH-decoherent histories which would be expected 
to  continue to  decohere in the future. 

Of course it is completely unrealistic to  expect that a 
system would not interact with its environment in the 
future. Rather, we would expect that interaction would 

continue, but that coherence, once lost to the environ- 
ment, would never be recovered by the system. However, 
this last expectation is not guaranteed by the formalism 
we are using (although the authors cited in [6] might 
consider that it should be part of the definition of Z de- 
coherence); we have not specified, for example, that the 
environment be large. 

Finally, let us summarize the relationship between the 
three kinds of decoherence we have discussed, in the spe- 
cial case in which p represents a pure state. In this 
case, GH decoherence implies the existence of "gener- 
alized records," i.e., orthogonal states at  the end points 
of each history. However, these records might not be in 
the environment, where they would be expected to  per- 
sist. Perhaps a family of histories which satisfied GH 
decoherence, but not P T  decoherence, should be called a 
family of "orthogonal histories." Z decoherence, on the 
other hand, does describe a mechanism by which records 
of the present state of the system will appear in the en- 
vironment. However, histories are more general than is 
the present state of a system; for example, two clearly 
distinguishable histories, with records set in stone out 
there in the environment, minht not be Z decoherent if , - 
they happened to  lead to  the same state of the system. 
P T  decoherence distinguishes those sets of histories for - 
which there are records in the environment. 

Consider again the two states C,lQ) and Cat IQ). If 
they are orthogonal, they are GH decoherent; if they are 
orthogonal in the environment, they are P T  decoherent; 
if they are orthogonal both in the system and in the en- 
vironment, they are Z decoherent. 

Note added. After this work was completed, I received 
a copy of a paper by Zurek [7] which also discussed the re- 
lationship between GH decoherence and Z decoherence. 
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