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Role of potentials in the Aharonov-Bohm effect
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There is a consensus today that the the main lesson of the Aharonov-Bohm effect is that a picture of
electromagnetism based on the local action of the field strengths is not possible in quantum mechanics. Contrary
to this statement, it is argued here that when the source of the electromagnetic potential is treated in the framework
of quantum theory, the Aharonov-Bohm effect can be explained without the notion of potentials. It is explained
by local action of the field of the electron on the source of the potential. The core of the Aharonov-Bohm effect
is the same as the core of quantum entanglement: the quantum wave function describes all systems together.
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Before the Aharonov-Bohm (AB) effect [1] was discovered,
the general consensus was that particles can change their
motion only due to fields at their locations, fields which were
created by other particles. The main revolutionary aspect of the
AB effect was that this is not generally true, and that in certain
setups two particles, prepared in identical states, move in the
same fields but end up in different final states. In particular,
the electromagnetic field can vanish at every place where
the electron has been, yet the electron motion is affected by
the electromagnetic interaction. The AB effect states that the
motion of an electron is completely defined by the potentials
in the region of its motion and not just by the fields. The
potentials depend on the choice of gauge, which cannot affect
the motion of particles, but there are gauge-invariant properties
of the potentials (apart from the fields) that specify the motion
of particles. The validity and the meaning of the AB effect
has been extensively discussed [2–15]. I argue that there is an
alternative to the commonly accepted mechanism which leads
to the effect, and that we might change our understanding of the
nature of physical interactions back to that of the time before
the AB effect was discovered. The quantum wave function
changes due to local actions of fields.

The discussion will be on the level of gedanken experi-
ments, without questioning the feasibility of such experiments
in today’s laboratory. Consider a Mach-Zehnder interferometer
for electrons tuned in such a way that the electron always
ends up in detector B; see Fig. 1. We can change the electric
potential in one arm of the interferometer such that there
will be no electromagnetic field at the location of the wave
packets of the electron but, nevertheless, the electron will
change its behavior and sometimes (or it can be arranged
that always) will end up in detector A. This is the electric
AB effect. Alternatively, in the magnetic AB effect, the
interference picture can be changed due to a solenoid inside
the interferometer which produces no electromagnetic field at
the arms of the interferometer.

Let us start our analysis with the electric AB effect. In the
original proposal, the potential was created using conductors,
capacitors, etc. While those are closer to a practical realization
of the experiment, a precise theoretical description of such
devices is difficult. I consider, instead, two charged particles,
the fields of which cancel at the location of the electron.

For simplicity of presentation, instead of the Mach-
Zehnder interferometer, I shall consider a one-dimensional

FIG. 1. Mach-Zehnder interferometer with electron as a test
bed of the AB effect. Introduction of a relative electric potential
between the arms of the interferometer or of a solenoid inside the
interferometer spoils the destructive interference in detector A.

interferometer; see Fig. 2. (In fact, for an observer moving
with a constant velocity in a perpendicular direction, this
interferometer looks very much like the one described in
Fig. 1.) The electron wave packet starts moving to the right
toward a barrier which transmits and reflects equal-weight
wave packets toward mirrors A and B. After reflection from
the mirrors, the wave packets split again on the barrier. The
interferometer is tuned in such a way that there is a complete
destructive interference toward mirror A, and the electron
reaches mirror B with certainty.

Another modification (the sole purpose of which is simplic-
ity of the quantitative analysis of the experiment) is design of
a special mirror for the electron which makes it spend a long
time τ near it. For this purpose we introduce an interaction
between the electron and the mirror with potential energy as
a function of the electron distance from the mirror shown in
Fig. 3. It goes to infinity at the surface of the mirror, smoothly
becomes a constant value V at x ∈ (0,d), and smoothly goes
to zero for x > d. The energy of the electron is only slightly
higher than V . The dimensions of the interferometer are much
larger than d and we state that the electron is near the mirror
when x ∈ (0,d).

The source of the AB potential will be two particles of mass
M and charge Q placed symmetrically on the perpendicular
axis at equal large distances from mirror A. They have equal
initial velocities toward the location of mirror A. At equal
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FIG. 2. A realization of the electric AB effect. Identical charges
brought symmetrically to the electron wave packet in the left arm of
the interferometer create a potential for the electron without creating
an electric field at its location.

distance r from the mirror, the charged particles bounce back
due to other similarly designed mirrors, which make the
charges spend a time T near these mirrors. We choose T < τ ,
so that the charges Q are near their respective mirrors during
the time the electron’s wave packets are near their mirrors.
We then can approximate the potential that the electron in the
left arm experiences as −2eQ

r
for the time T . Indeed, when

the charges are far away, their potential can be neglected, and
the time the charges travel toward and from the mirror is much
smaller than T . Thus, the phase difference between the two
wave packets of the electron is

φAB = −2eQT

rh̄
. (1)

The electron does not experience an electric field at any place
where its wave packet passed, but it exhibits an interference
pattern which is different from the pattern obtained in such an
experiment by a neutral particle.

How can this result be understood if we consider all
particles? The quantum state of the composite system is a
superposition of two product states which I name branches. In
the first one, the wave packet of the electron is on the left and in
the other, it is on the right. The energy in the left branch is equal
to the energy in the right branch, so energetic considerations
cannot explain the phase difference. The electron does not
experience any electric force, so the electron’s wave packets
are not shifted and thus cannot provide an explanation of
the effect. The charges Q, however, do experience different
forces in different branches. Thus, their wave packets in the
left branch are slightly shifted relative to their wave packets in
the right branch.

FIG. 3. The potential of the mirror forces. The potential energy of
the particle as a function of its distance from the mirror. The particle
with an energy slightly higher than V spends long time near the
mirror.

Let us calculate the shift of position of the wave packet of
one of the two Q charges due to its electromagnetic interaction
with the electron. The shift is developed during the time T

when this charge is near its mirror. The interaction with the
electron leads to a small perturbation in the motion of the
charge and, since d � r , the velocity of the charge during
this time, v, can be considered to be constant. The change in
the kinetic energy of the charge due to its interaction with the
electron allows us to find the change in its velocity and thus
the shift δx we are looking for:

−eQ

r
= δ

(
Mv2

2

)
� Mvδv ⇒ δx = −eQT

Mvr
. (2)

To observe the interference in the AB experiment, this shift
should be much smaller than the position uncertainty of the
charges. The de Broglie wavelength of the charge λ = h

Mv
.

Both charges Q are shifted in the same way, creating the AB
phase: 2 δx

λ
2π = φAB.

The entanglement between the electron and the charges,
which could be created if the uncertainty in the velocity of the
charges when they are near their mirrors is smaller than δv,
disappears when the charges Q travel back. Note, however, that
if, contrary to our assumption, the position uncertainty of the
charges is smaller than δx, then the entanglement will remain
and will lead to decoherence, washing out the AB effect.

Let us turn now to the magnetic AB effect. I will show that
the AB effect arises from different shifts of the wave packets
of the source which experiences different local electric fields
created by the left and the right wave packets of the electron.

Consider the following setup. The solenoid consists of two
cylinders of radius r , mass M , large length L, and charges
Q and −Q homogenously spread on their surfaces. The
cylinders rotate in opposite directions with surface velocity
v. The electron encircles the solenoid with velocity u in a
superposition of being in the left and in the right sides of the
circular trajectory of radius R; see Fig. 4.

The flux in the solenoid due to the two cylinders is

� = 2πr2 4π

c

Qv

2πrL
= 4πQvr

cL
. (3)

Thus, the AB phase, i.e., the change in the relative phase
between the left and the right wave packets due to the
electromagnetic interaction, is

φAB = e�

ch̄
= 4πeQvr

c2Lh̄
. (4)

To simplify the alternative calculation based on direct action
of the electromagnetic field, we assume r � R � L. Before
entering the circular trajectory, the electron moves toward the
axis of the solenoid and thus it provides zero total flux through
any cross section of the solenoid. During its motion on the
circle, the magnetic flux through a cross section of the solenoid
at distance z from the perpendicular drawn from the electron
is

�(z) = πr2euR

c(R2 + z2)3/2
. (5)

When the electron enters one arm of the circle, it changes
the magnetic flux and causes an electromotive force on the
charged solenoids which changes their angular velocity. In
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FIG. 4. The magnetic AB effect. The electron wave packet
coming directly toward the solenoid splits into a superposition of
two wave packets which encircle the solenoid from two sides and
come out almost in the same direction, interfering toward detectors
A and B.

order to calculate the change in the velocity of the surface of
the cylinder we have to integrate the impulse exerted on all
thin slices of the cylinder. For simplicity, I consider here the
surface motion as a linear motion. The contribution of a slice
with an infinitesimal charge dQ to the impulse is �(z)dQ

c2πr
, and

integration over the slices yields

δv = 1

M

∫ L/2

−L/2

πr2euR

c2(R2 + z2)3/2

1

2πr

Q

L
dz � uQer

c2MRL
. (6)

Then, the shift of the wave packet of a cylinder during the
motion of the electron is

δx = δv
πR

u
= πQer

c2ML
. (7)

The relevant wavelength of the de Broglie wave of each
cylinder is λ = h

Mv
. For calculating the AB phase we should

take into account that both cylinders are shifted and that they
are shifted (in opposite directions) in the two branches. This
leads to a factor 4 and provides the correct expression for the
AB phase: 4 δx

λ
2π = φAB.

If the uncertainty in the velocity of the cylinders is smaller
than δv, then, during the electron circular motion, the electron
and the cylinders become entangled. But when the electron
leaves the circular trajectory, it exerts an opposite impulse on
the cylinders and this entanglement disappears.

I have explained both electric and magnetic AB effects
through actions of local fields on the quantum wave function.
The electron in states |L〉e and |R〉e causes, via action of
its electromagnetic field, different evolutions for the quantum
state of the source: |�L〉S and |�R〉S . The total wave function
of the electron and the source is

1√
2

(|L〉e|�L〉S + |R〉e|�R〉S) . (8)

During the evolution, the source states |�L〉S and |�R〉S might
become orthogonal, or mostly differ only in their phase, but
at the end of the process, the states of the source are identical
except for the AB phase. Thus, the total wave function becomes

1√
2
|�〉S(|L〉e + eiφAB |R〉e), (9)

and the AB phase can be observed in the electron interference
experiment.

The celebrated manifestation of a quantum wave function
for a combined system is the nonlocal correlations which are
generated by entangled states. The AB effect is conceptually
different, since it can appear even if in the state (8) there is
almost no entanglement at all times.

One might wonder why, instead of performing exact cal-
culations in the framework of quantum mechanics, I consider
particles and cylinders pushed by fields in the framework of
classical mechanics and then use the correspondence principle
to calculate the shifts of the quantum wave packets of particles
and cylinders. I have to follow this path because the standard
formulation of quantum mechanics, and the Schrödinger
equation in particular, are based on potentials. I hope that a
general formalism of quantum mechanics based on local fields
will be developed. It will provide a solution to the problem
of motion of a quantum particle in a force field even if there
is no potential from which it can be derived. Meanwhile my
assertion provides one useful corollary: If the fields vanish at
locations of all particles then these fields yield no observable
effect.

Let us test this corollary. Consider a modification of the
electric AB effect described above in which the charges Q do
not automatically perform their motion toward mirror A and
back, but only when the electron on the path A triggers this
motion, i.e., only in the left branch. I choose a particular value
of the charge of the external particles, Q = 4e for which the
total electric field at the location of each particle created by
other particles is zero. Neither the electron nor the charges Q

experience an electromagnetic field in any of the branches. My
assertion is that there will be no AB effect in this setup, in spite
of the fact that the electron of the left branch has an electric
potential, while the electron of the right branch has not. The
original treatment of the AB effect is invalid since we do not
have here a motion of an electron in a classical electromagnetic
field, but a treatment of the problem using a “private potential”
created by induced charges [16] shows that indeed there is no
AB effect in this case.

I believe that we can find an explanation of the kind pre-
sented above for any model of the AB experiment. However,
the pictorial explanation of the creation of a relative phase due
to spatial shifts of wave packets disappears when we go beyond
the physics of moving charges. We can replace the charged
cylinders by a line of polarized neutrons producing magnetic
flux due to quantum spins. In this case there is no spatial shift
of wave packets. I am not aware of any pictorial explanation
of the change of the phase of the spin state of the neutron,
but in contrast to the phase of the electron in the standard
approach to the AB effect, the phases of neutrons are changed
locally due to the magnetic field of the electron. This is also
an explanation of the Aharonov-Casher (AC) effect [17]: the
local electric field acting on the moving neutron is responsible
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for the appearance of the AC phase. Note, however, that it
does not lead to a classical lag of the center of mass of the
neutron [18,19].

I have not presented a general proof that in order to have
an observable effect, the particles must pass through regions
of nonzero fields. Rather, what I have shown is that the setups
of the electric and magnetic AB effects do not contradict this
assertion. Note, however, that the last example, in which there
is an electric field almost everywhere except at the locations of
the particles and this field causes no effect, strongly supports
my claim.

Since the electromagnetic potential at any point along the
trajectory of the electron can be gauged away, the standard
approach to the AB effect leads to a paradoxical, in my
view, nonlocal feature of quantum mechanics: the AB phase
which has observable manifestation is acquired inside the
interferometer in spite of the fact that there is no particular
place or time where this happens. I have shown that this

peculiarity disappears when all relevant parts of the system
are considered: the phase is gradually acquired by the source
of the electromagnetic potential.

This result does not question the validity of the AB effect
and does not diminish the importance of its numerous ap-
plications. It removes, however, conceptual claims associated
with the AB effect regarding nonlocality and the meaning of
potentials. The AB effect does not prove that the evolution of
a composite system of charged particles cannot be described
completely by fields at locations of all particles. The potentials
might be just a useful auxiliary mathematical tool after all.
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