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We argue that purely local experiments can distinguish a stationary charged par-
ticle in a static gravitational field from an accelerated particle in (gravity-free)
Minkowski space. Some common arguments to the contrary are analyzed and
found to rest on a misidentification of ‘‘energy.’’
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1. INTRODUCTION

It is generally accepted that any accelerated charge in Minkowski space
radiates energy. It is also accepted that a stationary charge in a static
gravitational field (such as a Schwarzschild field) does not radiate energy.
It would seem that these two facts imply that some forms of Einstein’s
Equivalence Principle do not apply to charged particles.
To put the matter in an easily visualized physical framework, imagine

that the acceleration of a charged particle in Minkowski space is produced
by a tiny rocket engine attached to the particle. Since the particle is radiat-
ing energy which can be detected and used, conservation of energy suggests
that the radiated energy must be furnished by the rocket—we must burn
more fuel to produce a given accelerating worldline than we would to
produce the same worldline for a neutral particle of the same mass. Now



consider a stationary charge in Schwarzschild space-time, and suppose a
rocket holds it stationary relative to the coordinate frame (accelerating with
respect to local inertial frames). In this case, since no radiation is produced,
the rocket should use the same amount of fuel as would be required to hold
stationary a similar neutral particle. This gives an experimental test by
which we can determine locally whether we are accelerating in Minkowski
space or stationary in a gravitational field—simply observe the rocket’s fuel
consumption. (Further discussion and replies to anticipated objections are
given in Appendix A.)
Some authors (cf. Ref. 3) explain this by viewing a charged particle as

inextricably associated with its electromagnetic field. They maintain that
since the field extends throughout all spacetime, no measurements on the
particle can be considered truly local. To the present author, such asser-
tions seem to differ only in language from the more straightforward: ‘‘The
Equivalence Principle does not apply to charged particles.’’
Other authors maintain that the Equivalence Principle does apply to

charged particles. Perhaps the most influential paper advocating a similar
view is one of Boulware, (2) an early version of which formed the basis for
the treatment of the problem in Peierls’ book. (11) This paper claims to
resolve ‘‘the equivalence principle paradox’’ by establishing that ‘‘all the
radiation [measured by a freely falling observer] goes into the region of
space time inaccessible to the co-accelerating observer.’’
A recent paper of Singal (8) claims that there is no radiation at all.

Singal’s argument, which we believe flawed, is analyzed in Ref. 7.
The present work analyzes the problem within Boulware’s framework

but reaches different conclusions. He shows that the Poynting vector
vanishes in the rest frames of certain co-accelerating observers and con-
cludes from this that

‘‘in the accelerated frame, there is no energy flux,..., and no radiation.’’

Singal (8) rederives a special case of this result (his Eq. (7) on p. 962), and
concludes that ‘‘there are no radiation fields for a charge supported in a
gravitational field, in conformity with the strong principle of equivalence.
We obtain a similar result by other means in Appendix C, but

interpret it differently. We believe that the above quote of Ref. 2
incorrectly identifies the ‘‘radiated energy in the accelerated frame,’’ and
therefore does not resolve what he characterizes as a ‘‘paradox.’’
Also, we do not think there is any ‘‘paradox’’ remaining, unless one

regards the inapplicability of the Equivalence Principle to charged particles
as a ‘‘paradox.’’ Even if the Equivalence Principle does not apply to
charged particles, no known mathematical result or physical observation is
contradicted.
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Fig. 1. One space dimension is suppressed. The ‘‘top’’ and ‘‘bottom’’
of the box represent three-dimensional spacelike volumes; the ‘‘sides’’
represent two-dimensional surfaces moving through time; the interior is
four-dimensional.

2. WHAT IS ‘‘ENERGY’’?

The identification of ‘‘energy’’ in Minkowski or Schwarzschild space-
time may seem obvious, but there is a subtlety hidden in Boulware’s for-
mulation. This section examines this issue with the goal of clearly exposing
the subtlety.
To deserve the name ‘‘energy,’’ a quantity should be ‘‘conserved.’’ The

following is a well-known way to construct a conserved quantity from a
zero-divergence symmetric tensor T=T ij and a Killing vector field K=K i

on spacetime. Form the vector v i :=T iaKa (repeated indices are summed
and usually emphasized by Greek and ‘‘ :=’’ means ‘‘equals by definition’’),
and note that its covariant divergence va|a vanishes (Ref. 12, p. 96).
By Gauss’s theorem, the integral of the normal component of v over

the three-dimensional boundary of any four-dimensional region vanishes.2

2When there are points at which the boundary has a lightlike tangent vector, this must be
interpreted sympathetically; see Ref. 5, Sec. 2.8 for the necessary definitions. However, we
shall only need to integrate over timelike and spacelike surfaces, on which the concept of
‘‘normal component’’ is unambiguous.

Such a region is pictured in Fig. 1, in which one space dimension is
suppressed. The particular region pictured is a rectangular ‘‘box’’ with
spacelike ‘‘ends’’ lying in the constant-time hyperplanes t=t1 and t=t2
and time-like ‘‘sides.’’ (We use t as a time coordinate and assume that it is,
in fact, timelike.) The ‘‘end’’ corresponding to time ti, i=1, 2, represents a
three-dimensional region of space at that time. The integral of the normal
component of v over the end corresponding to t=t2 is interpreted as the
amount of a ‘‘substance’’ (such as energy) in this region of space at time t2.
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The integral of the normal component over the sides is interpreted as the
amount of the substance which leaves the region of space between times t1
and t2. Thus the vanishing of the integral over the boundary expresses a
law of conservation of the substance. Similar interpretations hold even if
the boundary of the region is ‘‘curved’’ and does not necessarily lie in
constant coordinate surfaces.
We shall take as T ij the energy-momentum tensor of the retarded

electromagnetic field produced by a charged particle whose worldline is
given. That is, if F=F ij is the electromagnetic field tensor, then

T ij :=F iaFa j−(1/4) FabFab g ij (1)

where gij is the spacetime metric tensor. Given T, to every Killing vector
field K corresponds a conserved scalar quantity as described above. We
have to decide which such quantity deserves the name ‘‘energy.’’
In Minkowski space, the metric is

ds2=dt2−dx2−dy2−dz2 (2)

and there seems no question that the energy is correctly identified as the
conserved quantity corresponding to the Killing vector “t generating time
translations. (We use the differential-geometric convention of identifying
tangent vectors with directional derivatives.) If this were not true, we
would have to rethink the physical interpretation of most of the mathema-
tics of contemporary relativistic physics. Translations in spacelike direc-
tions similarly give Killing vectors whose corresponding conserved quanti-
ties are interpreted as momenta in the given directions.
There are other Killing vector fields which are not as immediately

obvious. For example, consider the Killing field corresponding to the flow
of the one-parameter family lW fl( · , · , · , · ) of Lorentz boosts

fl(t, x, y, z) :=(t cosh l+x sinh l, t sinh l+x cosh l, y, z) (3)

The relevant timelike orbits of this flow (curves obtained by fixing
t, x > 0, y, z and letting l vary) are pictured in Fig. 2. For fixed y, z, they
are hyperbolas with timelike tangent vectors. Any such hyperbola is the
worldline of a uniformly accelerated particle.
On any orbit, the positive quantity X satisfying

X2=(t sinh l+x cosh l)2−(t cosh l+x sinh l)2=x2−t2

is constant, and its value is the orbit’s x-coordinate at time t=0. Thus an
orbit is the worldline of a uniformly accelerated particle which had position
x=X at time t=0.
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Fig. 2. The orbits for the flow of the one-
parameter family of boosts (3).

Such an orbit can conveniently be described in terms of X as the locus
of all points (X sinh l, X cosh l, y, z), as l varies over all real numbers.
The tangent vector of such an orbit is

“l :=(X cosh l, X sinh l, 0, 0)

This is the Killing vector field, expressed in terms of X and l. Its length
is X, so that a particle with this orbit has its proper time y given by

y=lX (4)

its four-velocity “y is

“y=
1
X
“l (5)

and its proper acceleration is 1/X.
The conserved quantity corresponding to the Killing vector “l has no

recognized name, but it does have a simple physical interpretation which
will be given below. We then argue that it is this quantity which (Ref. 2,
p. 185) identifies (mistakenly, in our view) as the relevant ‘‘energy flux’’ in
the accelerated frame.
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3. ENERGY IN STATIC SPACE-TIMES

Consider a static spacetime whose metric tensor is

ds2=g00(x1, x2, x3)(dx0)2+ C
3

I, J=1
gIJ(x1, x2, x3) dxIxJ (6)

The important feature is that the metric coefficients gij do not depend on
the timelike coordinate x0, so that “x0 is a Killing field.
Another way to say this is that the spacetime is symmetric under time

translation. In general, the flow of a Killing field can be regarded as a
space-time symmetry. The symmetry of time translation was obvious from
looking at the metric, but for some metrics there may exist less obvious,
‘‘hidden’’ symmetries. An example is the Minkowski metric (2), which pos-
sesses symmetries corresponding to one-parameter families of boosts which
might not be obvious at first inspection.
Consider now the most important spacetime after Minkowski space,

the Schwarzschild space-time with metric tensor

ds2=(1−2M/r) dt2−(1−2M/r)−1 dr2−r2(dh2+sin2 h df2) (7)

It can be shown (Ref. 12, Exercise 3.6.8) that the only Killing vector fields
K are linear combinations of “t and an ‘‘angular momentum’’ Killing field
A=Kh(r, h, f) “h+Kf(r, h, f) “f, where Kh and Kf satisfy some additional
conditions which are unimportant for our purposes. The fields “t and A
commute, as do their flows. In other words, the only Killing symmetries of
Schwarzschild spacetime are the expected ones arising from rotational and
time invariance: there are no hidden Killing symmetries.
In this situation, the only natural mathematical candidate for an

‘‘energy’’ is the conserved quantity corresponding to the Killing field “t; for
one thing, it is the only rotationally invariant choice. It is also physically
reasonable in our context of analyzing the motion and fields of charged
particles. If we surround a stationary charged particle3 by a stationary

3 By a ‘‘stationary’’ particle we mean one whose worldline is x0W (x0, c1, c2, c3) relative to the
static coordinate frame with respect to which the metric is (7), where the c i are constants
independent of x0.

sphere which generates a three-dimensional ‘‘tube’’ as it progresses through
time, the integral of the normal component of T0i over the tube between
times t1 and t2 physically represents the outflow of the conserved quantity
corresponding to “t between these times. When the calculation is carried
out, it is seen to be the same as integrating the normal component of the
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Poynting vector E×B/4p over the sphere and multiplying by a factor
proportional to t2−t1. It is usually assumed that the field produced by a
stationary charged particle may be taken to be a pure electric field, and
Appendix C proves this under certain auxiliary hypotheses. In other words,
B=0, so the integral vanishes, and there is no ‘‘radiation’’ of our con-
served quantity. We expect no energy radiation; otherwise we would be
able to garner an unlimited amount of ‘‘free’’ energy, since it takes no
energy to hold a particle stationary in a gravitational field.
Thus it seems eminently reasonable in this situation to identify the

conserved quantity associated with “t with the energy. We expect a con-
served ‘‘energy,’’ this is the only natural mathematical candidate, and its
physical properties turn out to be reasonable.
However, these arguments lose force when hidden symmetries exist.

Consider a metric

ds2=c(x)2 dt2−dx2−dy2−dz2 (8)

Here c(x) represents the x-dependent speed of light as observed from the
coordinate frame. Such a metric corresponds to a pseudo-gravitational field
in the x-direction. By a ‘‘pseudo’’ gravitational field we mean that a sta-
tionary particle has a worldline which is accelerated in the x-direction, but
the Riemann tensor may happen to vanish for some functions c( · ), in
which case there is no curvature of space-time and no true gravitational
field. It is well known that when the Riemann tensor vanishes, spacetime
may be metrically identified with a piece of Minkowski space.
Routine calculation shows that the only nonvanishing connection

coefficients are, in an obvious notation,

C ttx=C
t
xt=
c −

c
, Cxtt=c

−c

The four-velocity u of a stationary particle is u=c−1“t , so a stationary
particle has acceleration (Duu)k=ua“auk+C

k
abu

aub given by

Duu=
c −

c
“x (9)

That is, the acceleration is in the x-direction with a magnitude given by the
relative rate of change of c in the x-direction. This acceleration Duu is what
we mean by ‘‘acceleration with respect to local inertial frames.’’
It might seem reasonable, even natural, to identify the conserved

quantity associated with “t with energy, in analogy with Schwarzschild
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spacetime. However, the reasonableness of such an identification must
ultimately be justified by its mathematical and physical consequences. We
shall argue that such an identification is sometimes inappropriate.
The ‘‘obvious’’ Killing symmetries of (8) are those associated with time

translation, translations in spatial directions perpendicular to the x-axis,
and rotations about the x-axis. Only for very special choices of c( · ) will
there exist other, ‘‘hidden’’ symmetries. One such choice yields the follow-
ing metric, in which for later purposes we replace the coordinate symbol x
by X and t by l:

ds2=X2 dl2−dX2−dy2−dz2 (10)

The Riemann tensor vanishes for this spacetime, and it can be iden-
tified with a piece of Minkowski space. If t, x, y, z denote the usual
Minkowski coordinates with metric given by (2), then this identification is:

t=X sinh l

x=X cosh l

Moreover, the present Killing field “l is the same as the Minkowski space
Killing field “l discussed in Sec. 2.
The part of Minkowski space covered by the map l, X, y, zW t, x, y, z

consists of the region |x| > |t|, but we will only be concerned with the
smaller region x > |t|, which is called the ‘‘Rindler wedge.’’
The coordinates l, X, y, z for this portion of Minkowski space are

known as Rindler coordinates (Ref. 13, Sec. 8.6). They are also sometimes
known as elevator coordinates because we shall see below that X, y, z may
be regarded as space coordinates as seen by occupants of a rigidly
accelerated elevator. Boulware (2) uses y in place of l for the timelike coor-
dinate. We prefer l because it seems more natural to reserve y=lX for the
proper time on the worldlines of points of the elevator.
For constant y and z, a curve X=constant is the orbit of t=0, x=X

under the flow (3). This curve is also the worldline of a uniformly
accelerated particle with proper acceleration 1/X. The set of all such curves
for all X, y, z may be regarded as the worldlines of a collection of uni-
formly accelerated observers all of whom are at rest in the Minkowski
frame at time t=0.
The Rindler coordinates X, y, z specify the particular worldline in the

collection. The spatial distance between two points with the same Rindler
‘‘time’’ coordinates say l, X1, y1, z1 and l, X2, y2, z2, is just the ordinary
Euclidean distance [(X2−X1)2+(y2−y1)2+(z2−z1)2]1/2. Moreover, the
corresponding spatial displacement vector is orthogonal to the worldlines
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of constant X, y, z. This says that an observer following such a worldline
sees at any given moment other such worldlines at a constant distance in
his rest frame at that moment. Thus we may take a collection of such
worldlines and imagine connecting them with rigid rods (the rods can be
rigid because the proper distances are constant), obtaining a rigid acceler-
ating structure which we might call an ‘‘elevator.’’
However, it would be misleading to call it a uniformly accelerating

elevator. Though every point on it is uniformly accelerating, the magnitude
1/X of the uniform acceleration is different for different points. Because
of this, the everyday notion of a uniformly accelerating elevator gives a
potentially misleading physical picture. A more nearly accurate picture is
obtained by thinking of each point of the elevator as separately driven on its
orbit through Minkowski space by a tiny rocket engine. Observers moving
with the elevator experience a pseudo-gravitational force which increases
without limit as the ‘‘floor’’ of the elevator at x=0 is approached; observers
nearer the floor need more powerful rockets than those farther up.
We have two ways to view the physics of such an elevator. On the one

hand, since the elevator is a subset of Minkowski space, we can transform
the well-understood physics of Minkowski space into elevator coordinates
to derive what residents of the elevator should observe. In particular, if a
particle of charge q is situated at X=1, say, its motion being driven by a
tiny rocket attached to it, then the energy required by the rocket per unit
proper time would be the energy required for an uncharged particle of the
same mass plus the radiated energy, the proper-time rate of radiated energy
being (2/3) q2 as required by the Larmor Law for proper acceleration
1/X=1.
A second approach would be to emphasize the analogy of the metric

(10) with the Schwarzschild metric (7), interpreting the conserved quantity
corresponding to “l as the ‘‘energy.’’ We want to emphasize that these two
approaches are essentially different and yield different physical predictions.
We’ll see below that the second approach (which seems similar to that

of Ref. 2) yields a conserved quantity whose integral over the ‘‘walls’’ of
(say) a spherical elevator surrounding the particle is zero. That is, there is
no radiation of this conserved quantity, which we’ll call the ‘‘pseudo-
energy’’ to distinguish it from the above Minkowski energy. If we inter-
preted this pseudo-energy as energy radiation as seen by observers in the
elevator (such as the pilot of the rocket accelerating the charge), then by
conservation of energy we should conclude that no additional energy is
required by the rocket beyond that which would be required to accelerate
an uncharged particle of the same mass.
This is a different physical prediction than the corresponding predic-

tion based on Minkowski physics, and the difference between the two
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predictions is in principle experimentally testable. It is precisely at this
point that we differ from Ref. 2. That reference does distinguish between
the Minkowski energy and the pseudo-energy, but it gives the impression
that they are somehow the same ‘‘energy’’ measured in different coordinate
systems. We think it is worth emphasizing that they are not the same
energy measured in different systems; instead, they are different ‘‘energies’’
derived from different Killing fields. The observation that the pseudo-
energy radiation is zero does not validate the equivalence principle.

4. DISCUSSION OF CALCULATION OF RADIATION

We want to briefly discuss what we think is the physically correct way
to calculate the energy radiated by an accelerated charge in Minkowski
space. Almost everything we shall say is well known, but we want to
present it in a way which will make manifest its applicability to the present
problem. The analysis to be given does not apply to nonflat spacetimes for
reasons which will be mentioned later. It applies to any simply connected
subset of Minkowski space. In particular, it applies to the Rindler ‘‘elevator’’
described in Rindler coordinates by the metric (10) with X > 0, and alter-
nately as the Rindler wedge x > |t| in Minkowski space.
Suppose we are given the worldline of a (not necessarily uniformly)

accelerated particle and a proper time y. Surround the particle by a two-
dimensional surface Sy. It may be useful to think of Sy as a sphere, but we
don’t assume any metrical properties for S, such as rigidity. All we assume
is that Sy surrounds the particle.
As the particle progresses on its worldline, let Sy move with it in such a

way that the particle is always surrounded. As proper time progresses from
an initial value y1 to a later value y2, the surface Sy generates a three-
dimensional manifold S(y1, y2) in Minkowski space which is customarily
called a ‘‘tube,’’ because it looks like a tube surrounding the worldline in a
picture of Minkowski space in which one space dimension is suppressed.
The integral of the energy-momentum tensor T=T ij over this three-

dimensional manifold will be denoted

F
S(y1, y2)

T ia dSa (11)

The precise mathematical definition of (11) is discussed in detail in Ref. 5.
Since the definition entails summing vectors in different tangent spaces, it
does not make sense in general spacetimes, in which there is no natural
identification of tangent spaces at different points.
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The intuitive meaning is that for fixed i, we integrate the normal
component of the vector T ia over the tube, the integration being with
respect to the natural volume element on the tube induced from Minkowski
space. Physically, (11) is interpreted as the energy-momentum radiated
through Sy for y1 [ y [ y2. The energy radiated is (11) with i=0.
Suppose we have two tubes, say Sy and S̄y, which coincide at the initial

and final proper times y1 and y2: Sy1=S̄y1 and Sy2=S̄y2 . Such a situation is
pictured in Fig. 3, in which two space dimensions are suppressed. Taken
together, they form the boundary of a four-dimensional region, and since T
has vanishing divergence off the worldline,

F
S(y1, y2)

T ia dSa=F
S̄(y1, y2)

T ia dSa (12)

In other words, the calculated radiation is independent of the tube, so long
as the tubes coincide at their ends. Put another way, no matter how the
sphere distorts on its journey, (11) always produces the same numerical
results for the radiated energy-momentum.
This leads to considerable conceptual and mathematical simplification

in the important special case in which the particle is unaccelerated in

Fig. 3. Two three-dimensional tubes which coincide at their ends.
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the distant past, put into accelerated motion for a while, and re-enters an
unaccelerated state in the distant future. We can take the ends of the tube
as any convenient geometrical shape in the rest frame of the unac-
celerated particle in the distant past (or future), say a sphere of given
radius. The field energy-momentum inside the sphere is the infinite energy
of the Coulomb field, which is discarded in a mass renormalization. It is
unfortunate that the energy is infinite, but at least it is well understood
and can be unambiguously calculated in this special case; this is the
reason for insisting that the particle be unaccelerated in distant past and
future.
Picture the two-dimensional surrounding surface as the walls of an

elevator with the charged particle at its center. Suppose the elevator is
initially at rest, and then both elevator and particle are gently nudged into
uniformly accelerated motion, with both particle and elevator at rest in the
Rindler frame (10).4 The state of rigidly accelerated motion is then main-

4 It is not essential that the elevator be at rest in the Rindler frame, but this case is particularly
easy to visualize and calculate. Our argument requires only that the elevator be initially and
finally in uniform motion, and that it always surround the particle.

tained for an arbitrarily long period, after which the acceleration is gently
removed and the elevator enters a state of uniform motion thereafter. The
result of the integral (11) for a spherical elevator of initial radius E is well-
known. Denoting the particle’s four-velocity at proper time y as u(y), the
proper acceleration as a(y) :=du/dy, and a2 :=aaaa [ 0, it is (Ref. 5,
p. 160):

F
S(y1, y2)

T ia dSa=−
2
3
q2 F

y2

y1

a2(y) u i(y) dy+
q2

2E
[u i(y2)−u i(y1)] (13)

where q is the particle’s charge. The last term on the right is traditionally
discarded in a mass renormalization. The energy component of the first
term is always positive. We conclude that there is energy radiation through
the walls of the elevator.
This energy radiation can be detected in several ways in an arbitrarily

small elevator. First of all, if we believe in conservation of the usual
Minkowski energy, the pilot of the rocket driving the charge will observe
an additional fuel consumption when his payload is a charged particle,
relative to the corresponding identical motion of an uncharged particle, the
additional fuel consumption being exactly the amount necessary to ‘‘pay’’
for the radiated energy. (However, the details of how this ‘‘borrowed’’
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energy must be repaid may be controversial, as discussed in Appendices A
and B.)
A more fundamental way to meaure it, at least in principle, is to divide

the elevator walls into a large number of small coordinate patches with an
observer stationed on each patch. Instruct the observers to measure the
fields, calculate the corresponding energy-momentum tensor, and approx-
imate to arbitrary accuracy the energy component of the integral (11).
We want to emphasize that this is not the same as having each observer

calculate his local energy outflow n · (E×B/4p) DS Dy (where n is the
outward unit normal vector to the wall in the observer’s rest frame, DS the
area of his patch, Dy the increment in his proper time, and E and B his
electric and magnetic fields, respectively), and finally adding up the total
energy outflow of all the observers. For arbitrary motion (i.e., elevator
allowed to distort), this last procedure would have no invariant meaning
because each observer has his own private rest frame at each instant of his
proper time. The ‘‘energy’’ obtained as the final result of this procedure
would in general depend on the construction of the elevator. For instance,
if on the same trip we had a small elevator surrounded by a larger one,
there is no reason to suppose that the observers on the larger elevator
would obtain the same number for ‘‘energy’’ radiation as those on the
smaller. Neither number would be expected to be related in any simple way
to the additional energy required by the rocket for a charged versus
uncharged payload.
In the procedure just described, the observers are not measuring

‘‘energy;’’ they are measuring something else. It may seem tempting to call
it something like ‘‘energy as measured in the (curvilinear) elevator frame,’’
but it is conceptually and experimentally distinct from the usual
Minkowski energy. For arbitrary motion, it is not a conserved quantity
and therefore probably does not deserve the name ‘‘energy.’’ For the
special case of an elevator with constant spatial Rindler coordinates, it does
happen to be independent of the elevator’s shape (in fact, it’s zero for all!),
but it is still not ‘‘energy’’ as the term is normally used. We’ll show below
that it is the conserved quantity corresponding to the Killing vector for “l;
i.e., the quantity which we previously named the ‘‘pseudo-energy.’’
The pseudo-energy as physically measured by the procedure just

described for a spherical elevator S of radius R in Rindler coordinates is
mathematically given by the following integral in spherical Rindler coor-
dinates R, h, f (which bear the same relation to rectangular Rindler coor-
dinates X, y, z that ordinary spherical coordinates r, h, f bear to Euclidean
coordinates x, y, z). In the integral, u=u(y, R, h, f) denotes the four-
velocity of the point of the elevator located at Rindler spherical coordinates
R, h, f at its proper time y (i.e., Rindler time coordinate l=y/X), and
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n=n(R, h, f) is the spatial unit normal vector to the sphere at the
indicated point (i.e., n is orthogonal to u and normal to the sphere, so that
in Rindler coordinates, n=(0, n)):

pseudo-energy radiation=F
y2

y1

dy F
p

0
dh F

2p

0
df R2 sin h uaTab(−nb) (14)

(The minus sign is because the spatial inner product is negative definite.)
Recall from (5) that u=“y=“l/X, so that in Rindler coordinates in

which “l=: “0 is associated with the zeroth tensor index, u0=1/X, so
u0=X. Hence uaTabnb=XT0bnb=X;3

J=1 T
0JnJ. Recalling also from (4)

that y=Xl and that K0=X2, we may rewrite (14) in Rindler coordinates
as:

pseudo-energy radiation=F
l2

l1

dl F
p

0
dh F

2p

0
df R2 sin h C

3

J=1
−KaTaJnJ (15)

with li :=yi/X, i=1, 2. Equation (15) demonstrates that (14) is actually
computing the radiation of the conserved quantity corresponding to the
Killing vector K=“l.
A sufficient condition for (15) to vanish is for T0J=0 for all spatial

indices J in Rindler coordinates. Equation (IV.3), p. 185 of Ref. 2
establishes that T0J=0 and from this draws the conclusion that:

‘‘in the accelerated frame there is no energy flux,..., and no radiation.’’

That T0J=0 is essentially the well-known ‘‘fact’’5 that a stationary charged

5We put ‘‘fact’’ in quotes because although this assertion is often made, we know of no proof
in the literature, and in fact, it seems unlikely that it has been proved. Appendix C discusses
this problem and furnishes a proof under certain auxiliary hypotheses.

particle in a static spacetime does not radiate energy, where ‘‘energy’’ is
defined as the conserved quantity corresponding to translation by the
formal time coordinate (in this case, l) in this spacetime.
We agree with Ref. 2 that there is no radiation of the conserved quan-

tity corresponding to the Killing vector “l, but we believe that this fact is
irrelevant to questions concerning physically observed radiation and to
questions about the applicability of the Equivalence Principle. Whether it is
Minkowski energy radiation or pseudo-energy radiation which corresponds
to energy that must be furnished by the driving forces is an experimental
question. In principle, it could be settled by uniformly accelerating a large
charge in a rocket and observing if more fuel were required than for a
neutral payload of the same mass. We would bet that more fuel would be
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required, which would mean that Minkowski energy is the physically rele-
vant ‘‘energy.’’
On the other hand, in the Schwarzschild spacetime (7), the energy

corresponding to the analog “t of “l is universally accepted as the physi-
cally relevant ‘‘energy.’’ The spacetime (10) provides an interface between a
Schwarzschild-type spacetime and Minkowski space within which questions
about the Equivalence Principle can be conveniently addressed. If our
hypothesis that Minkowski energy is the physically relevant ‘‘energy’’ in
(10) is correct, then the vanishing of (15) not only does not validate the
Equivalence Principle, but strongly suggests that it does not apply to
charged particles. If we treat questions of radiation in the spacetime (10)
in exactly the same way that such questions are treated in Schwarzschild
space (7), then we are led to the probably incorrect conclusion that the
rocket accelerating the charge does not require any extra fuel, since there is
no radiation.
The assertion that T0J=0 for spatial indices J implies that ‘‘in the

accelerated frame there is ... no [energy] radiation’’ merits further discus-
sion because similar arguments are used by other authors (cf. Ref. 18), and
we believe that language such as ‘‘energy radiation in the accelerated
frame’’ encourages a subtle error. The 3-vector T0J is the Poynting vector:
(T01, T02, T03)=(E×B)/4p, so that T0J=0 says that every elevator
observer sees a zero Poynting vector. If we identify seeing a zero Poynting
vector with seeing no energy radiation, then this says that no elevator
observer sees any energy radiation, which seems to lead to the conclusion
that there is no energy radiation ‘‘in the elevator frame.’’
Of course, one could obtain this conclusion by taking the vanishing of

the Poynting vector in the elevator frame to be the definition of ‘‘no energy
radiation in the elevator frame,’’ but we argue that such a definition would
be physically inappropriate. This is the main point of this section:

Although each observer in a rigidly accelerating elevator surrounding the
particle measures a vanishing Poynting vector in his own private rest frame,
nevertheless, taken as a whole there is radiation through the elevator walls.
Adding the (zero) energy fluxes measured by each observer on the wall in his
private rest frame to (incorrectly) conclude zero total energy radiation is an
illegitimate operation because these energy fluxes refer to different rest frames.

5. REMARKS ON DETECTING ENERGY RADIATION NEAR
A PARTICLE

Reference 2 (unlike Ref. 8) does recognize that Minkowski energy
radiation is nonzero but concludes that it cannot be detected within the
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elevator (and thence that there is no violation of the Equivalence Principle).
It discusses and discards several possible methods to observe Minkowski
radiation within the elevator. For example, ‘‘if one identifies the radiation
by the 1/r dependence of the field along the light cone, one cannot ...
remain within [the region covered by the elevator coordinates] and let r
become large enough for the radiation field to dominate.’’ This overlooks
the fact that the field components are analytic functions off the worldline,
and an analytic function is uniquely determined by its values on any open
set, however small. To pick off the radiation terms that go to zero like 1/r
as rQ., we need only evaluate the field at a few points, which can be as
close to the worldline as we want, and perform a few algebraic calculations
to find the coefficients of the 1/r terms. For example, if we write the fields
in terms of the retarded distance rret, the field components in a given direc-
tion from the retarded (emission) point are simple quadratic polynomials in
1/rret, whose coefficients can be easily determined.

6. CONCLUSIONS

Does Einstein’s Equivalence Principle hold for charged particles? We
cannot definitively answer this because a mathematically precise statement
of the ‘‘equivalence principle’’ seems elusive—most statements in the liter-
ature are not sufficiently definite to be susceptible of proof or disproof.
However, we do conclude that most usual formulations seem not to hold in
any direct and obvious way for charged particles.
We believe that Ref. 2, which is widely cited in contexts suggesting

that its analysis supports the validity of the Equivalence Principle for
charged particles, does not in fact validate any form of the Equivalence
Principle. We argue that its conclusion that ‘‘in the accelerated frame, there
is no energy flux, ... and no radiation,’’ is correct only if ‘‘energy’’ is mis-
identified (in our view) as the conserved quantity associated with a one-
parameter family of Lorentz boosts in Minkowski space, instead of with
the one-parameter family of time translations.

APPENDIX A: THE RELATION OF THE LORENTZ–DIRAC
EQUATION TO THIS PROBLEM

We anticipate that some readers may be uneasy about our assertion
that a uniformly accelerated charge in gravity-free (i.e., Minkowski) space
may be locally distinguished from a stationary charge in (say) Schwarzschild
space-time by observing how much energy an external force, such as our
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fanciful rocket, must supply to maintain the worldline. Some may observe
that in Minkowski space, the radiation reaction term in the Lorentz–Dirac
equation vanishes, so one might think that no more energy would be
required in either case than would be needed for a neutral particle of the
same mass. This appendix discusses this point, which is important but
peripheral to the main text.
The Lorentz–Dirac equation (4) for a particle of mass m and charge q in

an external field F=F ij is:

m
du
dy
=qF(u)+

2
3
q2 5da
dy
+a2u6 (16)

where y is proper time, u=u i the particle’s four-velocity, a :=du/dy its
proper acceleration, a2 :=aaaa and F(u) i :=F iaua.
The left side is the rate of change of mechanical energy-momentum, the

term qF(u) is the Lorentz force, and the remaining term (2/3) q2[da/dy
+a2u] is the ‘‘radiation reaction’’ term which describes the effect of the
particle’s radiation on its motion.
For a uniformly accelerated particle (i.e., a2 is constant) moving in one

space dimension, the radiation reaction term (2/3) q2[da/dy+a2u] vanishes
identically.6 It is tempting to interpet this as implying that there is no phy-

6 To see this, write u=(c, vc, 0, 0) with v the velocity and c :=(1−v2)−1/2, and let w :=
(vc, c, 0, 0) be an orthogonal unit vector associated with the same spatial direction. By
general principles, the proper acceleration a is orthogonal to u, so that a=Aw for some
scalar function A, and A2=−a2 is constant. Since w is a unit vector, dw/dy is orthogonal to
w, and hence da/dy=A dw/dy is a multiple of u. That the multiple is −a2 can be deter-
mined by taking the inner product ua daa/dy=d(uaaa)/dy−aa dua/dy=−a2.

sical radiation reaction for a uniformly accelerated charged particle, by
which we mean that a rocket-driven uniformly accelerated charge requires
no more energy from the rocket than an otherwise identical neutral charge.
However, we believe such an interpretation is unlikely to be correct.
An obvious flaw in the argument just given is that it is inconsistent

with usual ideas of conservation of energy. If we grant that the uniformly
accelerated charge does radiate energy into Minkowski space which can be
collected and used, as nearly all modern authors (Refs. 8 and 21 excepted)
seem to agree, then this radiated energy must be furnished by some
decrease in energy of other parts of the system. Fulton and Rohrlich (15)

suggest that it may somehow come from the field energy but give no proof.
(Since the field energy in a spacelike hyperplane is infinite for a point elec-
tron, it’s not clear what would constitute a proof.)
We look at the matter differently. All derivations of the Lorentz–Dirac

equation are motivated by conservation of energy-momentum: the change
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of energy-momentum of the particle over a given proper-time interval
should equal the energy-momentum furnished by the external forces
driving the particle minus the radiated energy-momentum, assuming that it
is legitimate to absorb infinite terms of a certain structure into a mass
renormalization. Although this principle motivates the derivation, the final
equation unfortunately does not guarantee such conservation of energy-
momentum in general, but only in certain special cases. One such special
case is when the particle is asymptotically free, meaning that its proper
acceleration vanishes asymptotically in the infinite past and future.
Thus it’s not clear that the equation should apply to a particle which is

not asymptotically free, such as a particle which is uniformly accelerated
for all time.7 Since the equation doesn’t guarantee conservation of energy-

7 Actually, the equation is controversial even for asymptotically free particles, but that brings
up issues outside the scope of this article. The reader can find more information in Refs. 16,
5, 6, and 17.

momentum for uniform acceleration for all time, the fact that the radiation
reaction term vanishes implies nothing about the additional force which the
rocket must furnish for perpetually uniformly accelerated motion.
But we should at least try to understand the case of a particle which

is unaccelerated in the distant past, nudged into uniform acceleration,
uniformly accelerated for a long time, and finally nudged back into an
unaccelerated state. For this case, the Lorentz–Dirac equation does imply
conservation of energy-momentum. However, since the radiation reaction
term vanishes for the period of uniform acceleration, the equation implies
that all the radiation energy must be furnished at the beginning and ending of
the trip, while the particle is nudged into or out of its uniformly accelerated
state.
In other words, if we believe in the Lorentz–Dirac equation, we need

to add a bit of energy to start the uniform acceleration, and thereafter the
radiation, which can persist for an arbitrarily long time and add up to an
arbitrarily large amount, is ‘‘free’’ until the end of the trip. In effect, we can
‘‘borrow’’ an arbitrarily large amount of radiated energy (which in prin-
ciple can meanwhile be collected and used by other observers in Minkowski
space), so long as we pay it back at the end of the trip. Although there is
no logical contradiction here, this is hard to accept physically, and seems
one of many good reasons to question the Lorentz–Dirac equation.
Most of the above issues are only peripherally relevant to the present

work, and we present them only to dispel potential confusion. The point is
that the vanishing of the radiation reaction term does not imply that the
rocket accelerating the charged particle in Minkowski space does not have
to furnish the radiation energy. The rocket almost certainly does have to
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supply this energy, and this gives a local experiment which distinguishes
certain accelerated motion in Minkowski space from similar motion in
Schwarzschild space.

APPENDIX B: THE EQUATION OF MOTION OF A CHARGED
ROCKET

A noted expert in the field raised the following interesting objection to
the discussion of Appendix A in an earlier version of this paper. Consider
a charged rocket which undergoes a modest uniform acceleration g (one
gravity, say) from just after an inital time yi to just before a final time yf.
More precisely, the rocket is at rest in some Lorentz frame (the initial
frame) up to some initial proper time yi, nudged into uniform acceleration
over a small proper time interval [yi, yi+d], uniformly accelerated up to
proper time y=yf−d, nudged back into an unaccelerated state over the
interval [yf−d, yf], to remain unaccelerated for y > yf.
He presented a simple estimate showing that the energy required to

accomplish the final deceleration, as measured in the final rest frame at
y=yf, is modest and independent of the period of uniform acceleration. This
can be anticipated without calculation, since from the viewpoint of the final
rest frame, going backwards in time from y=yf to y=yf−d only requires
nudging the rocket back up to a modest uniform acceleration, and this
cannot not require an unbounded energy change. Thus it would seem that
from the point of view of the rocket’s pilot, only a modest amount of fuel
must be burned to start the acceleration at the beginning of the trip and
stop it at the end, with no excess fuel (relative to an uncharged rocket)
required during the period of uniform acceleration (which can be arbi-
trarily long).8

8 This was produced in evidence for the widely held belief (which we think incorrect) that there
is no radiation reaction for a uniformly accelerated charge in Minkowski space. This line of
reasoning suggests that we could allow the uniform acceleration to continue indefinitely
without using any more fuel. (By extension, perpetual uniform acceleration would presum-
ably require no fuel at all.) That would violate conservation of energy, assuming that the
radiation energy is physically accessible, but proponents of this view sometimes use argu-
ments similar to those criticized in Sec. 5 to assert that radiation cannot be observed within a
Rindler elevator.

The modest amount of energy used in the final frame (along with its
associated momentum) can Lorentz-transform into a large amount of
energy in the initial rest frame at y=yi, so there is no apparent violation of
conservation of energy from the standpoint of the initial frame. However,
we can obtain what might appear to be a violation if we imagine reversing
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the proper acceleration a at the final time yf in a time-symmetric way (i.e.,
a(yf+s)=−a(yf−s)) to eventually bring the rocket back to rest in the
initial frame at y=2yf, as depicted in Fig. 4. The expert’s estimate shows
that the excess fuel used over the entire trip from y=yi to y=2yf is modest
and independent of the duration of the uniform acceleration. At the
beginning and end of the trip the rocket is at rest in the initial frame, so the
energy of the radiation plus the exhaust should equal the rest-mass loss of
the rocket (fuel used). If the loss of rest mass is finite and independent of
the duration of the uniform acceleration (hence independent of the arbi-
trarily large energy radiation), we have a violation of conservation of
energy in the initial frame.
The situation was clarified by actually solving the equation of motion

for the radiating rocket, using the Lorentz–Dirac radiation reaction
expression. It turns out that with a fixed amount of initial fuel, one cannot
obtain an arbitrarily large period of uniformly accelerated motion (i.e.,
arbitrarily large yf) unless one allows the rocket mass to go negative. Put
another way, a charged rocket will run out of fuel if it uniformly accelerates
long enough, so our time-symmetric motion is impossible with fixed initial
fuel and arbitrarily large yf. This is in contradistinction to a uniformly

Fig. 4. The worldline of a particle at rest
up to time ti and uniformly accelerated
from time ti+d to tf−d, where d is the
length of a small time interval during
which the particle is nudged into or out of
uniform acceleration. At time tf the accel-
eration is reversed in a time-symmetric
way so as to bring the particle back to rest
at time 2tf.
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accelerated uncharged rocket which can accelerate forever, assuming that
all of its mass can be used as fuel.
In retrospect, this conclusion seems natural and the analysis leading to

it elementary, but I found the expert’s objection sufficiently troubling to
feel it necessary to actually work it out. Having done so, perhaps including
it here may save readers with similar questions some work.
The rocket will always move in the positive x-direction, and the other

two constant space coordinates will be suppressed. If its initial-frame
velocity is v, its initial-frame ‘‘rapidity’’ h is defined by h :=tanh−1(v).
Then its four-velocity u is given in initial-frame coordinates by

u=(cosh h, sinh h)

The scalar proper acceleration A is defined by du/dy=Aw where w is the
unit vector

w :=(sinh h, cosh h)

orthogonal to u. The (four-vector) proper acceleration is a :=Aw.
The scalar proper acceleration is related to the rapidity by A=dh/dy.

In particular for constant scalar proper acceleration A(y) — g, we have
h(y)=gy+h(0).
The Lorentz–Dirac expression for the proper-time rate of energy-

momentum radiation of a charge q is:

rate of energy-momentum radiation=(2q2/3)(da/dy+a2u)

=−(2q2/3)(dA/dy) w (17)

The second line follows from the first in a fashion similar to that of the
first footnote in Appendix A. We eliminate the constant factor by choosing
units so that 2q2/3=1.
Let m(y) denote the rocket’s rest mass, so that −dm/dy is the rate of

ejection of rest mass into the exhaust. (This is not the same as the rate at
which the exhaust acquires rest mass, as will be apparent from the expres-
sions to follow. Rest mass is not conserved in general.)
There are two parameters which can be used to control the rocket’s

worldline: the exhaust velocity and the rate −dm/dy of ejection of rest
mass into the exhaust. The analysis to follow assumes that the exhaust
velocity as seen from the rocket is always constant and that dm/dy is
varied so as to produce the desired worldline. The rocket is always moving
to the right in the initial frame, so the exhaust is always moving left. We
allow dm/dy to have either sign. A positive dm/dy means that the rocket is
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taking on mass. This could physically be accomplished by shooting bullets
into it from the right, with the bullets constituting the ‘‘exhaust.’’
Let − n denote the exhaust rapidity in the rocket’s instantaneous rest

frame. That is, n is positive, and an exhaust particle has velocity tanh(−n)
in the this rest frame. Then the exhaust’s four-velocity is:

four-velocity of exhaust=u cosh n−w sinh n (18)

Let r=r(y) denote the proper-time rate at which the exhaust rest
mass is increasing. Let Rw=R(y) w(h(y)) denote the proper-time rate at
which electromagnetic energy-momentum is being emitted. It is assumed
that this rate is a multiple of w because the above Lorentz–Dirac expres-
sion is of this form. It is convenient to allow arbitrary R because this
enables us to simultaneously treat the case of an uncharged rocket by
setting R — 0. The uncharged case is also worked out in Ref. 19, in a
similar fashion with identical results.
The equation of energy-momentum balance is:

0=
d(mu)
dy
+(u cosh n−w sinh n) r+Rw

=1dm
dy
+r cosh n2 u+(mA−r sinh n+R) w (19)

The first term in the first line is the proper-time rate of change of energy-
momentum of the rocket, the second term the proper-time rate at which the
exhaust is acquiring energy-momentum, and the third the proper-time rate
of energy-momentum radiation.
Since u and w are orthogonal, the last line separates into two inde-

pendent equations:

r=−
1

cosh n
dm
dy

(20)

and

mA−r sinh n+R=0 (21)

Equation (20) may be regarded as defining r, and then (21) becomes,
setting l :=1/tanh n:

dm
dy
+lmA+lR=0 (22)
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Recalling that A=dh/dy, we can immediately write down the solution with
zero initial rapidity in terms of h:

m(y)=e−lh(y)m(yi)−le−lh(y) F
y

yi

elh(s)R(s) ds (23)

For R — 0, corresponding to an uncharged rocket, we see that m(y)
decreases exponentially with h(y). It also decreases exponentially with y
during the first period of uniformly accelerated motion, since in that
period, h(y)=(y−yi−d) g+h(yi+d). In particular, m can never vanish for
an uncharged rocket. An uncharged rocket can uniformly accelerate
forever, assuming that all of its rest mass can be used as fuel.
Now consider a charged rocket with R given by the Lorentz–Dirac

expression R(y) :=−dA/dy. Then (23) becomes:

m(y)=e−lh(y)m(yi)−le−lh(y) F
y

yi

elh(s) 1 −dA
ds
2 ds (24)

To dispel the notion that the charged rocket can uniformly accelerate
for an arbitrarily long period without using any more fuel than would an
uncharged rocket, we want to show that if A decreases monotonically from
a constant value g down to 0 over a final proper-time interval [yf−d, yf]
of fixed length d, then m(yf) must become negative for large yf. That is, for
such an A and for a fixed initial mass m(yi), we cannot find positive-mass
solutions defined for arbitrarily large proper times yf. This can be seen
from the following simple estimates, in which it is helpful to remember that
both l and −dA/ds are positive.9

9 That −dA/ds is positive follows from the previous assumption, made for simplicity, that A
decreases monotonically from g to 0. If we agree to eject mass at a positive rate (i.e.,
dm/dy < 0) until A=0, and if we define yf to be the first time that A=0, then this assump-
tion follows from (22) with R :=−dA/dy.

First observe that from the Mean Value Theorem, for yf−d [ s [ yf,

h(yf)−h(s)
d

[
h(yf)−h(s)
yf−s

=
dh
dy
(ŷ) for some ŷ with s [ ŷ [ yf

=A(ŷ)

[ g
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Using this, we have:

e−lh(yf) F
yf

yf −d
elh(s) 1 −dA

ds
2 ds=F

yf

yf −d
e−l(h(yf)−h(s)) 1 −dA

ds
2 ds

\ e−lgd F
yf

yf −d

1 −dA
ds
2 ds

=e−lgd(−A(yf)+A(yf−d))

=e−lgdg (25)

Substituting (25) in (24), we see that to obtain a positive mass solution for
arbitrarily large yf (and arbitrarily large radiated energy), we need arbi-
trarily great rocket mass (i.e., fuel) m(yi) to start with.
In other words, a charged rocket in Minkowski space which starts

with a finite amount of fuel cannot uniformly accelerate for an arbitrarily
long time, after which the acceleration is removed. Unlike a corresponding
uncharged rocket, it must eventually run out of fuel. What is peculiar is
that if it has sufficient fuel to get into the uniformly accelerated state, it will
not run out of fuel until after the uniform acceleration is removed! It can
uniformly accelerate for an arbitrarily long period, radiating all the while,
but the physical contradiction of running out of fuel followed by the mass
going negative will not be revealed until after the uniform acceleration is
removed.
We emphasize that this is a rigorous mathematical conclusion from

the given assumptions—there are no approximations in the analysis which
led to it. Physically, it is very hard to believe. The most questionable
assumption seems to be the Lorentz–Dirac expression (17) for the radiated
energy.
It is enlightening to follow the solution further to the final resting state

at y=2yf, but before doing this let’s think about what we would expect for
an uncharged rocket. Since our formulation assumes that the exhaust
velocity cannot be varied, the deceleration after y=yf is accomplished by
taking in mass (and momentum), so we will have dm/dy > 0 for yf < y <
2yf−d. In effect, deceleration is accomplished by returning some of the
previous exhaust energy-momentum to the rocket. For an uncharged
rocket, the symmetry of the situation suggests that this energy-momentum
return will be accomplished in time-symmetric fashion, and we can antici-
pate without calculation that all the exhaust energy-momentum will have

430 Parrott



been returned to the rocket at the final resting time y=2yf. In particular,
the final rest mass should be the same as the initial rest mass. Indeed, this is
what Eq. (24) does give if the radiation term dA/dy is omitted.
However, the result is quite different for the charged rocket. In this

case, m(2yf) differs from m(yi) by the amount of the second term contain-
ing the integral. We have h(2yf)=0, so the exponential factor in front of
the integral doesn’t contribute. The mass deficit at the end is

m(yi)−m(2yf)=−F
yi+d

yi

elh(s)
dA
dy
ds−F

yf+d

yf −d
elh(s)

dA
dy
ds−F

2yf

2yf −d
elh(s)

dA
dy
ds

The first and third integrals are of moderate size, while the second integral
over the interval [yf−d, yf+d] is large for large yf because elh is large
on this interval. In effect, the large initial-frame energy furnished over
[yf−d, yf+d] (corresponding to a small loss of rest mass at y % yf with
high initial-frame velocity) has been transferred to the same large energy
loss caused by a correspondingly large initial-frame rest mass loss.
To put it more physically, by observing his fuel gauge, the charged

rocket pilot sees only a modest excess fuel loss over [yf−d, yf+d] (relative
to an uncharged rocket), but he does observe this loss, and he can figure
out that because he is going very fast in the initial frame, it corresponds to
a large initial-frame energy loss. Moreover, as he decelerates back to rest at
y=2yf, this modest rest mass loss grows exponentially to an initial-frame
excess rest mass loss large enough to pay for the radiated energy.
This last observation may sound strange, but properly viewed it is to

be expected. The rest mass of an uncharged rocket, will increase exponen-
tially during the period [yf+d, 2yf−d] of uniform deceleration, and the
same is true of the charged rocket. Over this period, the charged rocket
behaves identically to an uncharged rocket with the same rest mass at
y=yf+d. However, the uncharged rocket which started with initial rest
mass mi at y=0 does not have exactly the same rest mass at yf+d as the
charged rocket with the same worldline and initial mass. There is a differ-
ence due to the radiation in the time interval [0, yf+d]. This difference is
modest even when the radiation is large. If yf is large enough to give large
radiation, this modest difference in rest masses at y=yf+d is amplified by
the exponential growth to a correspondingly large difference in rest masses
at y=2yf−d.
This analysis provides additional insight into the discussion of

Appendix A. It demonstrates by explicit calculation that contrary to widely
held beliefs, there is indeed physical radiation reaction for a particle which
is uniformly accelerated for a finite time even though the Lorentz–Dirac
radiation reaction expression vanishes identically during the period of
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uniform acceleration.10 However, if we believe in the Lorentz–Dirac equa-

10Whether there is radiation reaction for a perpetually uniformly accelerated particle depends
on one’s definition of ‘‘radiation reaction.’’ The ‘‘radiation reaction’’ term in the Lorentz–
Dirac equation does vanish identically, but there is no good physical reason to identify this
term with physically observed radiation reaction. Instead, it seems more reasonable to
obtain the answer for uniform acceleration for all time as a limit of whatever answer is
eventually generally accepted for uniform acceleration for finite times. There is probably no
reasonable way to do this without rejecting the Lorentz–Dirac equation, since the above
answer for uniform acceleration for finite times (which is a consequence of the Lorentz–
Dirac equation) is so strange.

tion (and many experts don’t), we must accept the very strange conclusion
that all of this radiation reaction occurs at the beginning (t % ti) and end
(t % tf) of the trip while the particle is being nudged into or out of its uni-
formly accelerated state.

APPENDIX C: THE FIELD OF A STATIONARY PARTICLE
IN A STATIC SPACETIME

It is often stated in the literature (e.g., Ref. 2) that a charged particle
which is stationary with respect to the coordinate frame in a static space-
time generates a pure electric field in that frame; since the Poynting vector
vanishes, there is no radiation. However, we know of no proof in the liter-
ature, and the matter seems to us not as simple as it apparently does to the
authors who make this assertion.
Implicit in such statements is that the field generated by the particle

is the ‘‘retarded field’’ for its worldline. The problem is that there is no
generally accepted, mathematically rigorous definition of ‘‘retarded field’’
in general spacetimes. In Minkowski space one can define the retarded field
via the usual explicit formula, but no similar closed-form expressions are
known for general spacetimes.
A retarded-field construction should be a rule which assigns to each

charged particle worldline yW z(y) (defined as a curve in spacetime with
unit-norm tangent u(y) :=dz/dy) a 2-form F=F(x) satisfying Maxwell’s
equations with source the distribution current associated with the world-
line. Symbolically, these equations are

dF=0

(fdfF)(x)=F d(x−z(y)) quÅ(y) dy
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where d is the differential operator on alternating forms, f the Hodge
duality operation, d the four-dimensional Dirac delta distribution, q the
particle’s charge, and uÅ the 1-form corresponding to u (see below).
To make the field ‘‘retarded,’’ it is also required that the value of F(x)

at any spacetime point x off the worldline should depend only on the part
of the worldline on or within the backward light cone with vertex x. In
other words, any two worldlines which are identical inside this cone should
yield the same F(x).
Other assumptions might also reasonably be imposed. For example,

one expects that for x off the worldline, the components of F(x) would be
an ordinary infinitely differentiable 2-form (a priori it is only a distribution).
This assumption is not necessary for our purposes, but it does no harm and
simplifies thought. One very plausible assumption which we shall need is
that in a static spacetime, the retarded field for a stationary particle is time-
independent.
Unfortunately, no mathematically rigorous retarded-field construction

seems to be known for general spacetimes or even for static spacetimes.
The discussion of Sec. 5.6 of Ref. 20, p. 220 gives the flavor of the mathe-
matical difficulties.
Despite the lack of rigorous mathematical proof, most physicists seem

prepared to believe that in any given spacetime, a unique retarded-field
construction with the above properties ought to exist. Under this meta-
mathematical assumption, we can show that the retarded field of a sta-
tionary particle in a static spacetime (6) is a pure electric field and that
consequently the particle does not radiate. More precisely, there is no
radiation through a stationary closed surface (stationary with respect to the
‘‘static’’ coordinates of (6)) surrounding the particle.
The idea is very simple. Given a retarded field, we can project out the

electric part of it (relative to the static coordinates), and this projected
electric part will still be ‘‘retarded.’’ It is not obvious that it will satisfy
Maxwell’s equations (with the particle’s worldline as source as above), but
we shall show that it does. It follows that the electric part is also a retarded
field.
If we believe in the uniqueness of the retarded field construction for

the given spacetime, then this shows that the original retarded field was
already a pure electric field. If we are not willing to make the uniqueness
assumption, then at least we have shown that there exists a retarded field
construction for static spacetimes for which the retarded field is pure elec-
tric and the particle does not radiate. If the retarded field construction is
not unique, then we need additional physics to select the physically relevant
retarded field in order to answer the question of whether a stationary
charge radiates.
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Now we prove the above assertion that the pure electric part of the
retarded field for a stationary particle in a static spacetime is itself a solu-
tion of the above Maxwell’s equations. As mentioned above, we assume
that the retarded field is time-independent, and this is the only use of the
‘‘retarded field’’ assumptions. Thus we are really proving that the pure
electric part of a time-independent solution is itself a solution.
Consider a particle stationary at the origin in a spacetime with the

static metric (6). The four-velocity of the particle will be denoted u(=u i),
and the corresponding index-lowered one-form as uÅ(=ui :=giaua). Expli-
citly, u=g−1/200 “x0 , and u

Å=g1/200 dx
0. Suppose we have a time-independent

distribution 2-form F=Fij satisfying the Maxwell equations

dF=0

fdfF=−d3uÅ
(26)

where f denotes the Hodge duality operation, d the differential operator on
alternating forms, and d3(x, y, z) :=d(x) d(y) d(z) is the three-dimensional
Dirac delta distribution.11 Time-independence means that the coefficients

11Definitions of the differential-geometric quantities such as the Hodge dual can be found in
Ref. 5, Chapter 2. The proof can be given within the rigorous framework of distribution
theory, but we write it in the traditional physics language of Dirac delta ‘‘functions.’’

Fij=Fij(x1, x2, x3) do not depend on the coordinate time x0. We may
uniquely write

F=EÅNuÅ+b (27)

where E=;3
I=1 E

I
“xI is a purely spatial vector field, EÅi :=giaE

a the cor-
responding index-lowered 1-form, and b is a purely spatial 2-form. (We use
bold-face for vectors in 4-space which are purely spatial with respect to the
coordinate system used in (6), and we generally use capital Roman letters
for space indices. All index lowering and raising is with respect to the
spacetime metric rather than the Euclidean 3-space metric.) To say that b is
purely spatial means that

b= C
3

I, J=1
bIJ dxI dxJ

Physically, b is the 3-space Hodge dual of the 1-form corresponding to the
magnetic field vector B. The proof of (27) follows routinely from expand-
ing F as a linear combination of dxaNdxb, noting that u is proportional to
dx0, and collecting terms involving u.
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We shall now show that if F satisfies (26), then the electric part EÅNuÅ
of F also satisfies (26).

(a) Consider the first Maxwell equation 0=dF=d(EÅNu)+db. We
want to show that d(EÅNu)=0. By routine calculation (directly,
or cf. Ref. 5, Sec. 5.4),

duÅ=uÅNaÅ

where a :=du/dy is the acceleration of a stationary observer.
Hence

d(EÅNuÅ)=−d(uÅNEÅ)

=−duÅNEÅ+uÅNdEÅ

=uÅN (EÅNaÅ+dEÅ) (28)

The point is that d(EÅNuÅ)=uÅN (something) and hence is
orthogonal to any purely spatial 3-form (with respect to the inner
product on two-forms induced by the spacetime metric). On the
other hand, db is a purely spatial 3-form because its coefficients
are time-independent by assumption. Hence d(EÅNuÅ) and db
must separately vanish.

(b) Now we consider the other Maxwell equation fdfF=d3uÅ and
try to prove that this can happen only if fdfb=0. The 2-form b
is purely spatial, so its Hodge dual fb=uÅNSÅ for some purely
spatial vector S. Apply the argument of part (a) with S in place
of E to conclude that dfb=uÅN (something). Now take a Hodge
dual to see that fdfb is a purely spatial 1-form; i.e., fdfb is the
1-form corresponding (under index-raising) to a vector orthogo-
nal to u.
On the other hand, f(EÅNuÅ) is purely spatial with time-

independent coefficients, hence df(EÅNuÅ) is a purely spatial
3-form, hence fdf(EÅNuÅ) is a multiple of uÅ. Thus we have

d3uÅ=fdf(EÅNuÅ)+fdfb

with the first term on the right a multiple of uÅ and the second
term orthogonal to uÅ; this can happen only if fdf(EÅNuÅ)=d3uÅ
and fdfb=0.

This completes the proof that EÅNuÅ satisfies the Maxwell equations (26).
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However, the field E is not usually a Coulomb field, contrary to
impressions given by Ref. 2 and other authors.12 To see that E is not

12 This is probably more a question of language than of substance. For instance, although
Ref. 2 states on page 172 that for the metric (10), ‘‘the accelerated observer ... only detects a
Coulomb field,’’ the expressions derived for the field are not precisely Coulomb fields in
either the accelerated or Minkowski frames. Probably what was meant was something like
‘‘Coulomb-type’’ field.

necessarily a Coulomb field, consider a metric of the special form (8), for
which (9) gives the acceleration as a=(c −/c) “x ] 0. A Coulomb field

C :=(x“x+y“y+z“z)/(x2+y2+z2)3/2

would satisfy dCÅ=0 except at the spatial origin (i.e., N×C=0 in 3-space),
but this is inconsistent with the vanishing of (28) because

uÅNCÅNaÅ=(c −/c2) dtNdxNCÅ ] 0 (29)

Finally, we note that with F :=EÅNuÅ, the energy-momentum tensor
(1) has T0J=0 for J=1, 2, 3, which says that the Poynting vector vanishes
and there is no radiation through any stationary closed surface surrounding
the particle. This was worked out in Ref. 2 for the metric (8), and Ref. 8
obtains a special case of the same result in different language.

APPENDIX D: LATER REFERENCES

This body of this paper was originally posted in the Internet archive
[4] www.arXiv.org/abs/gr-qc/9303025 in March, 1993, in response to a
discussion in the Internet newsgroup sci.physics concerning the applica-
bility of the Equivalence Principle to charged particles. Appendices B and
C were added later in response to questions from readers.
Appendix B was posted in July, 1994. In the interim, minor errors in

the body of the paper have been corrected, and minor stylistic changes
made. A minor revision with the addition of Appendix C and references to
Singal’s 1995 paper (8) was posted in January, 1996. The present Appendix D
comments on work published since 1994 and bearing on the substance of
this paper.
It was noted above that Singal’s 1995 paper (8) in General Relativity and

Gravitation (GRG) expresses a view opposite to that of the present work:
he believes that a perpetually uniformly accelerated charged particle would
not radiate. In response, our 1997 GRG paper (7) pointed out that Singal’s
unusual method implies that a charged particle uniformly accelerated for
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only a finite time (as in Appendix B) does radiate, in quantitative accor-
dance with the Larmor law.
Thus the answer given by Singal’s method for uniform acceleration for

all time is different than the answer which would be obtained from the
same method by calculating radiation from uniform acceleration over a
long but finite time y, and then taking a limit as yQ.. This suggests that
the question of radiation for a perpetually accelerated particle may be too
singular for traditional mathematical analysis. This is because two reason-
able methods, whose mathematics are unchallenged, lead to different con-
clusions. For details, see Ref. 7.
In the same issue of GRG in which Ref. 7 appeared, Singal published

a sequel (9) entitled ‘‘The Equivalence Principle and an Electric Charge in
a Gravitational Field II. A Uniformly Accelerated Charge Does Not
Radiate.’’ Although Refs. 7 and 9 happened to appear simultaneously in
GRG, the two authors were corresponding and were familiar with each
others’ work during the acceptance process. As its title suggests, Singal was
unconvinced by Ref. 7, though he has not challenged its mathematics.
Singal’s sequel (9) comments on various aspects of the problem, but does not
address the analysis of the comment (7) on his original paper. (8)

It should be emphasized that our disagreement with Singal’s work, is
solely a matter of definition. Our Ref. 7 does not question the mathematics
of Ref. 8 (which indeed we have checked carefully and believe correct), and
Ref. 9 does not question. (7)

In 1999, Shariati and Khorrami published Ref. 21. This work comes to
conclusions opposite to those of the present paper (which is cited, but not
discussed in detail). They define a ‘‘supported’’ observer as one whose
worldline is that of a point on a Rindler ‘‘elevator’’ in Minkowski space
(i.e., a point stationary in the Rindler frame (10)), while an unaccelerated
observer is ‘‘freely falling.’’ They conclude:

‘‘A supported charge does not radiate according to another supported observer.’’

They identify the truth of this statement with the mathematical fact that
any supported observer sees a vanishing Poynting vector13 (except in the

13 Their argument that the Poynting vector vanishes for stationary observers in a static space-
time (of which ‘‘supported’’ observers in a Rindler elevator is an instance) is basically that
of Appendix C, expressed in more traditional notation.

singular case when the observer coincides with the charge). This is precisely
Boulware’s argument quoted above in Sec. 4, that

‘‘in the accelerated frame there is no energy flux,..., and no radiation.’’
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Since regarding this point, Shariati and Khorrami’s analysis is essentially
that of Boulware, our concluding remarks for Sec. 4 apply verbatim to
their analysis also:

‘‘Of course, one could obtain this conclusion [of no energy radiation] by taking
the vanishing of the Poynting vector in the elevator frame to be the definition of
‘no energy radiation in the elevator frame’, but we argue that such a definition
would be physically inappropriate.’’

We feel that the main contribution of the present paper was pointing
out that Boulware’s conclusion rested on the hidden assumption of this
definition, which we regard as unlikely. It is not clear whether Shariati and
Khorrami recognize this assumption; if they do, evidently they disagree
that it is unlikely. Thus mathematically, the issue reduces to a question of
definition.
The physically correct definition could be determined by doing exper-

iments discused above, such as comparing the fuel consumption of a uni-
formly accelerating charged rocket with that of an uncharged rocket.
Shariati and Khorrami state that they believe the fuel consumptions would
be identical:

‘‘In the previous section, it was shown that a uniformly accelerated charge in a
Minkowski spacetime does not radiate, in the sense that for the Rindler observer
the Poynting vector vanishes, and an energy-like quantity for the electromag-
netic field is constant. This means that, according to Rindler observers, no extra
force is needed to maintain the uniform acceleration of such a charged particle
(of course no extra force beside the force needed for a neutral particle of the
same mass to have that acceleration). In other words, the world-line of the
charged particle will be the same as that of a neutral particle.’’

No one can prove or disprove this assertion without doing the experiment.
Their ‘‘energy-like quantity’’ is what we called the ‘‘pseudo-energy.’’
Shariati and Khorrami (21) also maintain that

‘‘ ... in a static spacetime, ..., a freely falling charge do[es] not radiate, in the
sense that no extra force is needed to maintain [its] world-line the same as that
of a neutral particle.’’

This is an issue not addressed in the present work, but those interested in
the analysis of Shariati and Khorrami should be aware that it may be
inconsistent with the DeWitt/Brehme/Hobbs (DBH) equation.
The DBH equation is a generalization of the Lorentz–Dirac equation to

arbitrary spacetimes. A similar equation was originally derived by DeWitt
and Brehme, (3) but an error in the very complicated derivation eliminated
important terms. The error was corrected eight years later by Hobbs. (14)

Shariati and Khorrami assume without proof a different equation of
motion (their Eq. (20)) for charged particles. It differs from the DBH
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equation by the omission of terms involving the Ricci tensor, and also
omission of a so-called nonlocal ‘‘tail’’ term. They observe that their equa-
tion implies that a freely falling charge (i.e., a charge with zero acceleration)
experiences no radiation reaction.
This conclusion does not seem to follow from the DBH equation.

A particle satisfying the DBH equation can fall freely only if some math-
ematical miracle causes the terms omitted by the Shariati/Khorrami equa-
tion to vanish. Shariati and Khorrami do not discuss this issue; indeed,
they do not mention the DBH equation.14

14 This should not be interpreted as our endorsement of the DBH equation. Like the proposed
equation of Shariati and Khorrami, it reduces to the Lorentz–Dirac equation in flat space-
time, and hence implies the usual zoo of bizarre predictions of that equation, such as those
worked out in Appendix B. But those who do believe in the Lorentz–Dirac equation typi-
cally also believe in the DBH equation. It seems strange that Shariati and Khorrami base
their analysis on yet another variant of the Lorentz–Dirac equation, which may not have
been proposed before, and certainly is not widely accepted.
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