VoLUME 47, NUMBER 14

PHYSICAL REVIEW LETTERS

5 OCTOBER 1981

Indirect Evidence for Quantum Gravity

Don N. Page
Depavtment of Physics, The Pennsylvania State University, University Pavk, Pennsylvania 16802

and

C. D. Geilker
Depavtment of Physics, William Jewell College, Liberty, Missouri 64068
(Received 9 June 1981)

An experiment gave results inconsistent with the simplest alternative to quantum gra-
vity, the semiclassical Einstein equations. This evidence supports (but does not prove)
the hypothesis that a consistent theory of gravity coupled to quantized matter should also

have the gravitational field quantized.
PACS numbers: 04.60.+n

Quantum mechanics appears to govern all non-
gravitational fields (here called matter), and
most people believe it also applies to the gravita-
tional field. However, there has been no explicit
experimental test of this, Gravity is so weak
that Feynman' has questioned whether it must
be quantized. As an alternative, Mgller? and
Rosenfeld® have proposed a theory in which grav-
ity is described by a classical field which obeys
the semiclassical Einstein equations

G =87(y| Ty l9) . (1)

Here G,, is the Einstein tensor of the unquan-
tized metric g.g, . T, is the stress-energy quan-
tum operator, and ¢ is the wave function or quan-
tum state of the matter. (One could replace y by
a density matrix or a C*-algebra state with no
essential changes.) In the Heisenberg picture,
which we adopt, (1) is to be supplemented by
the appropriate covariant field equations and com-
mutation relations for the quantized matter field
operators in the presence of the classical metric.
The functional dependence of g,z upon ¢ by (1)
introduces a nonlinearity into the metric -depen-
dent quantum evolution of the matter.*® This
makes it crucial to specify what happens during
a measurement. In the conventional view, the
wave function collapses into an eigenstate of the
measured variable.® This would change the right-
hand side of (1) and produce objectionable conse-
quences.>”?® For example, assuming that one
can make a measurement which collapses the
wave function outside one’s future light cone,
Eppley and Hannah show?® that one could use semi-
classical gravity to transmit observable signals
faster than light. Such consequences might well
lead one to reject the conventional view in the
context of the semiclassical theory of gravity,
though one could argue that such unexpected ef-

fects have not been ruled out experimentally and
thus should not yet be dismissed as unphysical.
A more conclusive argument against the col-
lapse of the wave function in the semiclassical
theory is that if y collapses, in general the right-
hand side of (1) will not be conserved, whereas
the left-hand side is automatically conserved.
That is, if ¥ =);¢;(x*)y; with constant y,’s in
the Heisenberg picture but with ¢;(x%)’s which
change during a measurement, then for almost
all conceivable reductions of the wave packet,

8niylT*" [y, ,
=8my; (ci*c;) WY [T [9;)20=G*" . (2)

One might seek to avoid the inconsistency by
simply abandoning (1) during a measurement.
However, one would need a replacement of (1)
in order to determine the evolution of the gravi-
tational field for any particular collapse of the
wave function, and this would differ from the
semiclassical Einstein equations.

Therefore, in order to retain (1) as the sim-
plest semiclassical theory of gravity, we must
assume that the universal matter wave function
Y never collapses, as in the Everett formulation
of quantum mechanics.® One might think that the
conventional collapse view is equivalent to this,
as it is in practice for linear quantum theories
in which one may ignore components of the wave
function which have negligible interference with
the ones of interest. But in semiclassical grav-
ity the metric depends upon all components of y,
none of which can be ignored. Nevertheless,
once the evolution of the gravitational field is
determined by using the full wave function in (1),
Y may be decomposed into linear components on
that four-dimensional metric and any standard
interpretation may be applied to the components.
One must simply remember that the individual
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components do not give the full source of the
gravitational field.

Having chosen a formulation of quantum mechan-
ics that may be meshed with (1) without creating
an immediate inconsistency, we ask whether the
resulting semiclassical theory may be distin-
guished from a theory of quantum gravity in
which the gravitational field is included in the
full wave function of the universe. The key is
to look for the nonlinear gravitational coupling
between different components of the matter wave
function that exists in the semiclassical theory,
but which would be absent in a linear quantum
theory of gravity. This coupling would occur
through the classical metric even if the compo-
nents of § were eigenstates of T,,, and so it is
not a gravitational quantum interference effect
that would be nearly impossible to detect. In
order for the coupling to be observable in the
semiclassical theory, the gravitational field
must simply be measurably different from what
would be if each component alone (suitably nor-
malized) were the full source of the field. This
requires that y be a superposition of components
with macroscopically different stress-energy
configurations, since current experimental tech-
niques can only detect the gravitational fields of
macroscopic sources.

Because of the enormous complexity of the full
wave function of the universe, it does seem high-
ly likely that it may have significant components
in which the earth, moon, sun, and other astro-
nomical bodies are in positions greatly different
from those in our component, the relative state®
corresponding to our nongravitational observa-
tions. This would lead to a semiclassical gravita-
tional field quite in conflict with gravitational
observations.'® However, it is plausible (though
perhaps intrinsically unlikely) that y has all
astronomical bodies at macroscopically well-
defined positions. A quick calculation then shows
that the quantum-mechanical uncertainty of their
positions could remain observationally negligible
during their lifetimes. Hence to make a more
definite test of semiclassical gravity, one needs
to make certain that the wave function does have
components that would give measurably different
gravitational fields.

We performed an experiment to make such a
test of semiclassical gravity. A quantum-mech-
anical decision and amplification process was
used to set the positions of certain macroscopic
masses. As amplitudes for different decisions
occurred, ¥ developed simultaneous components
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in which the masses were in macroscopically
different configurations. The gravitational field
induced by the masses was measured in our com-
ponent and was found to be highly correlated with
the mass distribution in our component alone.
There was no indication of any gravitational
coupling with other components of §. This was
consistent with quantum gravity but inconsistent
with the semiclassical Einstein equations.

The experiment included ten runs of a procedure
which had two parts that were done at different
times but were coupled by the action of the ex-
perimenter., The first part was a simultaneous
30-sec measurement of y rays from a small
cobalt-60 source by two nearby Geiger counters.
The application of quantum mechanics to the
radioactive decay and detection events leads to
various amplitudes for all possible results of
this decision and amplification process. Those
in which the ratio of counts in the two counters
was greater than an overall average were classi-
fied as decision ¢, and those in which the ratio
of counts was less than average were classified
as B. This classification was selected so that
for each run the Born-Dirac square-amplitude
measure on the components of § in which o was
registered should be roughly equal to that on the
components in which 8 was registered, We as-
sume that there was no precise correlation of
nuclei and incoming 7y rays in the initial state to
upset this approximate equality predicted.

The second part of the experiment used a
Cavendish torsion balance to measure the gravi-
tational field induced by two macroscopic masses
whose configurations were determined by the
quantum decision process. The balance consisted
of two small lead balls mounted 10 cm apart
(center to center) on a light horizontal rod hung
in its center by a thin metallic fiber. A mirror
attached to the balance reflected a light beam to
a scale 1283 cm away to determine the angle of
twisting which would result from a gravitational
torque. The macroscopic masses were two
larger lead balls, 1497 g each, which could be
placed in stationary positions 4.63 cm in front
or behind the mean equilibrium positions of the
smaller balls, In position A the large balls were
each on the clockwise side of the respective
small ball (as seen from above); in position B
they were on the counterclockwise side. The
gravitational field corresponding to the large
balls in each definite position should thus exert
either a clockwise or a counterclockwise torque
on the torsion balance.
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The procedure for each run was to generate a
quantum decision with the Geiger tubes, position
the macroscopic masses accordingly, and meas-
ure the gravitational field by the torsion balance.
If the quantum decision was a, we set the masses
in configuration AB, meaning the four-dimension-
al configuration in which the large balls were
placed in position A for 30 min of Cavendish
balance measurements and then in position B for
30 min. If the Geiger counters gave S, we set
configuration BA, meaning position B first and
then A. (Using a sequence of two positions rath-
er than one increased the sensitivity and reduced
the effects of slowly varying nongravitational in-
fluences on the torsion balance, but it is in prin-
ciple unnecessary.) In each experimental run,
the appropriate configuration was started at a
predetermined time, independent of the quantum
decision.

Since the quantum process caused the wave
function to have amplitudes of comparable weight
for both decisions a and B, the corresponding
positioning of the masses led to simultaneously
occurring amplitudes for both mass configura-
tions AB and BA. We of course assume that the
full wave function never collapses and that it in-
cludes all aspects of the positioning (including
the experimenter who recorded the Geiger tube
counts, calculated the ratio to classify the deci-
sion, and then placed the masses in the corre-
sponding positions), as is necessary even to dis-
cuss the semiclassical Einstein equations con-
sistently., We also assume that the positioning
was generally faithful to the quantum decision
rather than being determined by some systematic
effect. A refinement of the experiment might
employ a completely inanimate positioning proc-
ess, but this is not necessary so long as it is
assumed that the experimenter did not put the
masses in nearly the same configuration in near
ly all components of the wave function, disre-
garding the quantum measurements. With these
assumptions we conclude that the wave function
really did have a comparable measure of ampli-
tudes for components with both mass configura-
tions. We had no information about the compli-
cated phase relations between these amplitudes,
but that was not necessary since we were not
doing an interference experiment.

Now in a quantum theory of gravity, we would
predict that the quantized gravitational field
would differ from component to component of the
wave function and be highly correlated with the
mass configuration, Thus we would expect the

torsion balance to respond in each component
according to the mass configuration in that com-
ponent. But in the semiclassical theory of grav-
ity, we would predict a definite classical four-
dimensional (i.e., not necessarily static) gravita-
tional field that would correspond to the expecta-
tion value of the stress-energy operator. Since
the amplitudes for different components have
rapidly varying relative phases, there would be
negligible contributions from cross terms in the
right-hand side of (1). For our nonrelativistic
configurations it would essentially be a square-
amplitude-weighted average over the mass dis-
tributions of the different components of the wave
function. Because the configurations AB and BA
have nearly equal weights, we would expect only
a small response by the torsion balance in the
semiclassical theory, and no correlations with
the particular mass configuration in our compo-~
nent of the wave function.

The series of ten experimental runs gave 30-
sec y-ray counts with means and standard devia-
tions 1509.1+31.0 and 887.6+23.0 for the two
respective Geiger counters. The fluctuations
are consistent with Poisson statistics and thus
were attributed to the quantum mechanics of the
radioactive decays and detections. There was a
negligible background count rate when the cobalt-
60 source was removed. The ratios of counts in
the two counters in our present component of the
wave function gave the sequence of decisions
a,q,q,B B8 a8 a3 8 and the masses were
set in the appropriate configurations. During
each run the torsion balance responded to each
repositioning of the masses and then underwent
damped oscillations with a mean period of 710
sec. By fitting the extrema of the oscillations
to exponentially decaying sine waves during each
half-hour, the change in the equilibrium position
(of the reflected light beam on the distant scale)
as the large balls were moved from A to B or B
to A was determined. The changes in equilibria
(in cm) we measured were —61.3, —63.9,

-36.0, +69.2, +36.1, —-48.8, +46.4, -45.2,
+51.3, and +59.6.

Although the sensitive torsion balance was af-
fected by temperature changes, vibrations, and
other factors not under our control, so that the
data have a large scatter, they give a correla-
tion coefficient with the quantum decisions of »
=0.9788, If our data came randomly from an un-
correlated population, as would be predicted by
the semiclassical Einstein equations, the corre-
lation coeifficient for N — 2 =8 degrees of freedom
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would have a probability distribution'! P(r) d»
=(35/32)(1 —»?®3dr, giving a chance of only 4
X10~7 of being as large as ours was, Thus the
correlation we observed is highly significant,

as would be expected if gravity is quantized.
Under that assumption the data give a gravitation-
al constant G=(6.140.4) x10~% cm® g~' sec™?
where the uncertainty represents one standard
deviation of the mean. Although the accuracy is
poor, this result is within 1.3 standard devia-
tions of the accepted value and thus shows that

at least most of the torque on the torsion balance
can be attributed to gravity (if quantized), so that
there is no evidence that the strong correlation
observed is likely to have arisen from nongravita-
tional forces. Of course, the correlation is what
one would intuitively expect, but it is in conflict
with the predictions of the semiclassical Einstein
equations (cf. Ref. 5).

In conclusion, our theoretical arguments show
that the semiclassical Einstein equations (1) are
mathematically inconsistent if the matter wave
function collapses arbitrarily during a measure-
ment, and our experimental results show that
these equations are inconsistent with nature (to
a high confidence level) if the wave function does
not collapse. (An analogous argument and experi-
ment could easily be used to rule out the semi-
classical Maxwell equations, but we already know
the electromagnetic field is quantized.) Because
there are presumably more complicated schemes
for coupling a classical gravitational field to
matter that we know is quantized, this does not
prove that gravity is quantized, but it may be
interpreted as indirect evidence supporting the
hypothesis of quantum gravity by ruling out what
is probably the simplest plausible alternative.

Since performing our experiment, we have been
informed privately that many other people (in-
cluding Davies,'? D, Deutsch, Kibble,®> and W. G.
Unruh) have suggested such an experiment, per-
haps in a modified form, though we are not aware
of any actual previous experiments that explicitly
tested semiclassical gravity.

Discussions with D. Deutsch, G. N, Fleming,

G. W. Gibbons, R. H. Good, S. W. Hawking,
E. Kazes, J. Stachel, K. S. Thorne, W. G. Unruh,
and R. M. Wald (some of whom independently
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voiced ideas suggested here and others of whom
strongly disagreed) were helpful on the interpre-
tation of the experiment after it was performed,
particularly in suggesting references. This work
was supported in part by the National Science
Foundation under Grant No. PHY79-18430,
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