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Internal Absorption Properties of Accelerating Detectors 

The existence of electronragnetic radiation fronr a unifornily accelerated 
charge has appeared in some recent work to present a prohlern suggesting the 
inadequenry of the equivalence principle. For a proper treatment of the prob 
tern, it is desirable to show how the absorptjion properties of detectors are 
efl’ectrd by being physically attached to noninert,ial franres of reference. An 
invariant criterion of internal absorption is fornlulatjed, and is identified with 
the observable behavior of an elenlentarq- detector. It is shown that the proper- 
tics of a deterbr fixed in a uniformly accelerated frame are dif?‘erent frl,rrr the 
properties of an inertial detector of similar construction, and t,hat this differ- 
ence is consistent, with the usual form of the equivalence principle. 

I. 1iYTROl)IlCTION 

In 1920, l’auli ( 1) argued that a uniformly accelerated elect,ric charge does 
not radiate energy, and that the classical expression for radiation rate 23e’n’ ‘c’ 
(where a is proper acceleration) applies only to a bound or periodically moving 
charge e. I’auli’s argument is based on the circumstance that at the instant8 a 
uniformly accelerated charge comes to rest in a given inertial frame (the turning 
point of its hyperbolic motion), the magnetic field is everywhere zero, and hence 
the I’o,ynting vector is everywhere zero. Since a Lorentz transformation can 
reduce any point of a world line to rest, Pauli concludes that the radiation from 
any point on the world line of a uniformly accelerated charge vanishes. 

The limitations of this argument were first noted by Drukey (2) and have 
been further clarified by Bondi and Gold (,?) and Fulton and Rohrlich (4). 
HG and FR are in apparent agreement (for essentially different reasons) that 
energy is radiated from a uniformly accelerated charge, but their separate 
agruments will not be restated here. 

Bondi and Gold draw the further conclusion that the gravitational principle 
of equivalence cannot be generally applied to radiation phenomena. Their 
argument proceeds in two steps. I’irst, it is recognized that a static charge in a 
static gravitational field cannot radiate, for otherwise energy would have to be 
transferred through the surrounding space (including the flat space at large 
distances from real gravitating masses) by time independent fields. Second, we 
are asked to restrict attention to the local uniform gravitational field of the 
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charge, and consider a freely falling coordinate frame relative to which the 
charge is uniformly accelerating. According to the principle of equivalence, this 
falling frame is an inertial system in which Alaxwell’s eyuations are valid; 
and so the accelerating charge must be radiating energy to its surroundings. 
We therefore have a case in which radiation exists in one (inertial) frame hut 
not in another (gravit)ational) frame. This is claimed to be paradoxical because 
the obse:vation of radiation should he invariant. To solve the paradox, these 
aut’hors suppose that the local gravitational field (,the first order limit of the 
equivalence principle) must be cont,ained in the local electromagnetic field where 
radiation of this origin is not detectable. In the wave zone of this radiation, it, is 
supposed that higher order gravitational effects just compensate the electro- 
magnetic field in such a way as to prevent detection. 

In the present paper we assume that a uniformly accelerated charge in an 
inertial frame does radiate relative t’o that frame, and that the equivalence prin- 
ciple can he extended into the wave zone as far as the usual gravitational approxi- 
nlation permits. These assumptions do not imply conflicting detector observa- 
Cons, for we are able to show that detectors physically attached to different 
reference frames have different absorption properties. In particular, we show 
that a detector at rest in a static uniform gravitational field will not absorb 
internal energy from an electric charge held static in that frame, whereas a 
free falling detector may (generally) absorb internal electromagnetic energy 
from such a field. 

The argument here rests on the claim that t,he invariant absorption properties 
of a detector are dependent on the constraints which physically attach it to a 
given reference frame. This question is essentially untouched in the literature, 
and so in Section II we explain the method and criterion to be used. In Sections 
III and IV, we apply the method to the case of the uniformly accelerated re- 
ference frame given by the AIgller transformation equations (;i), and arrive 
at the results stated above in terms of the equivalent gravitational field. 

In Section 17, the method of this paper is applied to the physically different 
case of a charge which is free falling in a uniform gravitational field, or static 
in the associated inertial frame. Our conclusion in this case is that a free falling 
detector will not absorb internal energy from such a charge, but that a detector 
held stationary in the gravitational field will (generally) absorb internal energy. 
Again, this can be given an invariant meanin, m only if one includes an account 
of the constraints which act in the latter case. Rohrlich (6) has arrived at similar 
conclusions, but, without making use of an invariant criterion to identify the 
observable absorption characteristics of detectors. 

II. INTERNAL ABSORPTIOS 

We are concerned with deciding when an electromagnetic field in a given 
region of space-time is capable of delivering energy to a given detector in that 
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region. This ought to have an invariant meaning identifiable with real transi- 
tions in the internal state of the detector. The absorption criterion we use for 
this purpose is classical and refers to the properties of an “elementary detector” 
which can simulate the absorption behavior of more complex detectors in the 
same region. 

The elementary detector consists of a pair of + and - charges which are 
constrained to move over some specified closed path in the region of interest. 
The charges are assumed to begin together at some space-time point’ ;I, and 
to move over independent paths from t,here to a second point of coincidence 
R, thereby closing a “detector loop.” If one observes such a detector loop from 
a covering inertial system, then the total electromagnetic four-momentum 
absorbed by the charges +q and -y in a single cycle is given by: 

s B s II AP, = ‘1 F,, d~“( pat,h +q) - q FPP rJX”(path (I) 
rl A 

(2.1 ) 

AP, = (I F,,, dh” 

where F,, is the electromagnetic field tensor. The positive direction around the 
loop is given by the motion of the + charge. 

The proposed invariant criterion now states that if the impulse Ap, is timelike, 
then the specified detector loop has absorbed int,ernal energy,’ and if it is space- 
like, then it has not absorbed internal energy. The null case is special, but it is 
invariantly meaningful to say that the fourth component of a null four-vector 
is or is not zero. In the former case we say that internal energy has not been 
absorbed, and in the latter case that it has been absorbed. Our assumption is 
that if the electromagnetic field is at all capable of delivering internal energy 
to any detector in a given spacetime region, then it should be possible to con- 
struct an elementary detector loop in that region that yields a timelike four- 
vector Ap, or a null four-vector Ap, having nonzero components.” The work 
done against radiation reaction, and the external forces which constrain the 
charges to move over any specified loop is not included because it is not relevant 
to the energy transfer capability of the electromagnetic field by itself. 

In art inertial frame of reference, this criterion adequately describes what we 
mean by internal absorption; for if the impulse Ap, received in any cycle is 
timelikt: for a given detector (such as a simple atom), then there is a Lorentz 
frame in which field energy is transferred to the detector without a net transfer 

1 We will refer always to absorption of internal energy, although emission is obtained by 
interchanging the signs on the charges. 

9 Inasmuch as an elementary detector cannot simulate a blackbody, the amount of energv 
absorbed hears no necessary relation to the total energy in the field. The detector is only a 
yes-no indicator of the possibility of absorpt~ion. However, it will be shown t.hat one can 
nrake some use of the magnitude of LICK 
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of momentum. That is, the internal variables of the detector must have under- 
gone a real transition corresponding to a change of total internal energy. On the 
other hand, if the impulse received is spacelike, then there is a Lorentz frame 
in which a net momentum is transferred to the detector without effecting its 
total energy. Mthough this may be accompanied by internal changes in the 
detector corresponding to a migration to degenerate states under the influence 
of the external field (as in the case of polarization), this is just the kind of process 
we mean to exclude by the criterion. The observable effects of such a process 
are always distlinguishable from those transitions which absorb a net energy in 
all Lorentz frames. 

=2pplying Stokes Theorem to (2.1) and using Jlaxwell’s equations gives: 

AP, = ?;(I 8 @,A, - F,,J) dc~“” I 
(2.2) 

where -+ I is any surface of the loop. 
Equation (2.2) shows that if the field Fao is time independent, then whatever 

the geometry of the loop, Ap, must be zero. That is, no elementary detector can 
be constructed which will absorb internal energy from time independent electro- 
magnetic fields in an inertial system. 

The invariance of the absorption criterion permits it to be extended to non- 
inertial frames of reference. However, Eq. (2.1) is not correct in more general 
frames, for the integrand at each point should be parallel displaced to a common 
point if Ap, is t,o he a four-vector. This is meaningful to do only when a uniquely 
definable displacement bitensor exists between any two points, as when the 
curvat,ure of the space is zero, or when the loop is small enough to justify neglect- 
ing second order gravitational effects over its area.3 If w is the common point, 
then the displacement bitensor a,“(w) will carry any four-vector A, at the field 
point into a four-vector A,(w) = iZ,“(w)A, at point w. In a finite region of 
zero curvature, we calculate A,“(w) by first transforming 4, to the local Cartesian 
inertial frame where it’ is parallel displaced (without distortion) to point w, 
and there transforming it back to the original frame. That is, let, ii,“(w) = 
afiU( w ) E,“, where a,“(w) is the transformation from the inertia frame to the 
given (gravitational) reference frame at point w. 

Equations (2.1) and (2.2) now become: 

APT = Q h,,‘(w)F,, dX” (2.la) 

3 Dewitt and Brehrne (7) give a general treatment of bitensors showing their transforrna- 
tion properties, and define a bitensor of geodesic parallel displacement which can be applied 
in cases on nonzero curvature. 
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where 

We see that time independent electromagnetic fields in conjunction with a 
static gravitational field does not generally guarantee a spacelike result in up, . 
-411 example of a timelike impulse arising in static fields is given below. 

III. ITNIFORMLY ACIC:EI,EI~ATP:I) FRAhlP: 

To he interesting for the prohlem at, hand, a uniformly accelerated frame 
must have a time independent’ metric. The transformation which meets this 
requirement and which preserves the simplest special geometry (i.e., Cartesian, 
and coinciding with the instantaneous inertial frame) is the transformation 

,‘lr gi$~:_~by Jbller ( 5). Let 2 = ( ~‘.r’!/‘f’) he the coordinates of the inertial frame, 
. == (q/f) he the coordinates of the accelerated frame, where t = c( time). 

We want a charge e to have fixed coordinates .c’ and to have a constant proper 
acceleration in the $2 direction. I;or convenience, the charge is assigned co- 
ordinate values (2 = I Ia, .r = !/ = O), where a = (const. proper accel.)/c”. 
If the two frames coincide with zero relat,ive velocity at t = 0, then the Al@ller 
transformation equations are written: 

2’ zz 2 cash 7, .r’ = .(‘, y’ = y, I’ = x sinh 7 (3.1) 

where 7 = at. The metric in the accelerated frame is: 

g11 = y,, = g:t:i = 1) 
2 2 

y44 = --ax, Y -0 w - (P z v) (3.2 ) 

The displacement hitensor from any point (~.r!/r) on the accelerated frame to 
the point w is then given by: 

,11’(w) = cosh(T,,. - T) A&w) = ix,,.,‘z) cosh(T>c - 7) 

Ai = a~,,. sinh( Tu - 7) ‘I??( 20) = A:(“( w) = I (3.3) 

At(w) = ( I /ax,) sinh(r,,. - T) others equal t,o zero 

The electromagnetic fields produced by the charge e can he calculated in the 
fx part of the accelerated frame from retarded potentials alone.4 These were 
found by Born ( 8, J, ,/t) to he: 

4 The -+z and --z park of t,he accelerated frnme are not continuously connected, but only 
one part is needed for comparison with an equivalence gravitational field. 



where FLV is the electromagnetic field tensor in t,he inertial frame, 1; = 8eu4, 
I? 

P = xl2 + yt2, and 
[,f = ja”[l!‘a2 _ ZIL _ pl? + p]? + 4a’p12/-~::! 

Using (3.1) to transform (3.4), the Born solutions on the accelerated frame 
are (6): 

F14 = +a&[z’ - ;’ - ( l/a’)] I: Fz4 = aXx”.rI: Fe4 = act&C’ 
( X.5) 

F,, = 0 F31 = 0 F,, = 0 

where F,, is the electromagnetic field teusor in the accelerated frame, p? = 
x2 + $, and 

[: = $[( l,la’) _ X? _ p2,2 + 4u?p?l-:l? 

,iz static charge on this frame of static metric (3.2) therefore produces a time 
independent electromagnetic field with vanishing axial components. 

We will now construct an elementary detector loop such that the first three 
components of Ap, evaluated in the accelerated frame are zero. Between end 
points ,4 and B of the loop, a path is chosen which overlaps at a point C, thereby 
creating two subloops 1 and 2. The space projection of subloop 3 is made the 
same as that of subloop 1, but the projections of the two subloops into any 
space-time plane are made mirror images. With this choice of path, for each 
differential area da”‘( 1 ) in suhloop 1 there is a corresponding area &“‘( 2) in 
subloop 2 such that: 

da”( 2) = aP( 1 ) ; fzcTi4( 2) = -tbi4( 1) i,j = 1, 2, 3 (Xci) 

l’or convenience, let t,he space part, of point w be z,,. = 1,/a, and let the time 
part be simultaneous with event C in the accelerated frame. The integrand 
XpaiO(~:, 2) from (2.2a) evaluat,ed at the area rla”‘t2) is then simply related to 
the corresponding integrand iu subloop 1. 

dl;jk(W, 2) = -1l/ij/c(W, 1) .Ilij4(W, 2) = :1ltj.i(W, 1) 

lll4ij( W, 2) = IIlllj(W, 2) Jll,J(W, 2) = -M,,,(w, 1) (3.7) 

i, j, Ii = 1, 2, 3 

For this choice of path and point w, the impulse Ap, is found to be: 

Ap, = 0; AP, = rl I 
n/4ij dCTtJ + 2Cj 

s 
M,i, hi4 (3.8) 
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Another choice of w would rotate the vector, but would not change its time- 
likeness which indicates that the system absorbs internal energy from the 
electromagnetic field. In the special case in which the loop is located in the J.-Y 



plane at x ~1 /a, and is in a weak (gravitational) field, a << (dimensions of 
loop )-I : 

The loop path chosen above brings the charges back to their starting points 
ou t,he accelerated frame, and so the process can he repeated indefinitely. It is 
therefore possible to construct a detector, on the accelerated frame which corr- 
tinuously ahsorhs a timclikc fom-momentum from the electromagnetic field. Sot 
only is ;a continuous chauge in total energy suggested hy this result, hut, more 
important, a continuous time depeudent detector behavior is suggested siuce 
local inertial ohservers will see real transitions induced iu each cycle. The result 
raises t’hc Hondi-Gold paradox in a slightly different form since the effect is 
local as well as possibly long range.” 

To settle first t#he question of euergy conservation, WC rwoguize that the 
energy gained in a single cycle is absorbed unevenly over its path giving rise to 
a net displacement in the det#ector’s center of mass, aud that the accompanying 
chauge iu gravitat8ional energy is not iucludcd iu our calculation of Ap, . Consider 
the limit’iug case of a pair of charges moviug in opposit,r directions around an 
area d.r& which is placed in the .PZ plane at 2 2 1 Ia. The field Ft4 may he cow 
sidered constant over t,his area siuce there will he uo contr4xrtion from curl 

E = 0, where E, = F,, The euergp gaiued hy the t,wo charges moving along 
the hot’tom of the area is 2qF2r / t/x ~, and along the top it is -2qFZ4 / dx j in the 
first approximation. The gravitat,ional potential energy cnutained in this mass 
distribution is therefore : 

which cancels the term calculated in (X.9). 
hn exact treatment requires the identification of the couservative electrw 

magnetic field quantity on t’he accelerated frame which is a natural extension of 
the field energy in an inertial frame. I:ollowiug 1Idllerx scheme (9), we identify: 

Fsa = R: F,, = R, FL! = B,, Fl, = 13. F,, = E, F,, = E, 

5 This result is ambiguous in so far as its being identified with radiation in the usual 
sense. The detector does not simulate a blackbodg surface over which one can integrate at 
infinity; nor can we interpret the functional dependence in this metrical field without a 
blarkhody comparison. 



where J and p are current and charge densities relative to the accelerated frame. 
l:rom the covariant form of Naxwell’s equations, it can then he shown that the 
accelerated frame is isomorphic with a universe in which the dielectric constant 
and magnetic permeability of empty space are t = p = Iiaz. The velocity of 
light and index of refraction are respectively ax and I /‘ax, so that light rays 
will be deflected in the --z direct,ion as expected. In addition, one obtains the 
Poynting relation : 

& div(E X H) + s at -~ '," y2LH2)+~.~=~ (3.11) 

which identifies the quantity associated with energy conservation in the acceler- 
ated system. The term J.E in (3.11) integrated over the volume of a charge (I 
is equal to -c!dp:‘“e”“,/df, where &:“““) = c/F&“. The net impulse Ap:“crc’) on 
an elementary detector loop is then to be found by integrating over the loop 
path without parallel displacement as given by Eq. (2.2). Since the fields FPy are 
time independent, it follows from (2.2) that Ap:“cr“” = 0 for any loop con- 
figuration. There is therefore no violation of energy conservation in any region 
of the accelerated frame if gravitational potential is included. However, Api’rcrl) 
is not a four-vector, and SD the invariant criterion cannot apply to it. 

The real problem is not in any case the discovery of formally conserved 
quantities in a gravitational held. Rather, it is the second apparent difficulty 
raised by the invariant calculation (3.8); for it is suggested by this timelike 
result that a stationary detector in a static gravitational and electromagnetic 
field will show a time dependent behavior of a kind associated with internal 
transitions to higher energy states. We can fmthermore identify this behavior 
with a continuous lowering of the detector’s center of mass. But then it is also 
clear that we have not fully satisfied the claimed conditions, for a detector 
cannot he said to be stationary if its center of mass is continually falling. 

To satisfy definition, additional supports or constraints must be added to the 
detector system in the presence of a Coulomb source, where these perform the 
function of raising the center of mass in each cycle. Since these forces are not 
applied to the charge q directly, but only to the mass absorbed in each cycle, 
they are not formally included in ( 2.2a). However, they are crucial to recognize, 
for they oppose the internal transitions induced by the electric held, thereby 
establishing the required equilibrium. To the extent that they fulfill this re- 
quirement, their effect plus the effect of the electromagnetic forces must on 
average transfer either spacelike impulses to the detector system, or uull impulses 
with zero components. 

IV. THE AI>I)ITIONAL CONSTI1AINTS 

One can analyze these forces in more general fields, where again we limit con 
sideration to a region of zero space-time curvature. At each point X on a de- 



tector loop, a momentum Dp, = qF,,&” is received by the detector system from 
the electromagnetic field. When this momentum is evaluat,ed at another space- 
time point ‘10 it, is eclual to Dp,( w) = A,“( w)Dp, , where k+‘(w) is the displacr- 
ment hit,rnsor. :\s before, t’hc location of w will not affect the formal coilclusion, 
but for clarity in this section we suppose it to he at the center of the mass distri- 
hution, and at, a time which is quasistatically long after the completion of the 
given angle. Point w will then also he made the point to which all of the clratro- 
magnetic moment,um cont,rihutions Dp, are physically transported by the a& 
dit,ional support forces. 

The slIpport impulse required to lift Dp, from X to ‘10 is given hy t,he total 
change in Dp, , where both the initia,l value Dp:” and the final value 1)~:” arc 
evaluated at’ w. That is: 

f(w) = f)p:“(w) - A,“(w)l~p~“(w) 
(4.1) 

For a differential displacement C/X’ from h to w, the cluantity (6,” - A,“) = 
- r$d.rfi, as assured by the definition of gamma ( IO). 

When the lifting impulse (4.1 ) is added t,o the electromagnetic impulse 
,i,“l)p~“( A). The total received from point X on the detector loop becomes: 

f(w) = (Dp”‘(W) - up:yx,) + Ilp:“(x) (4.2) 

The value of (4.2) is conditioned hy the further requirement that the lifting 
force along the path from X to w makes no contribution to the momentum- 
energy ot,her than that necessary t(o overcome gravitational force. This is equira- 
lent to the usual quasistatic recluirement. We know t,hat the dynamical mom 
ment,nnh~energy is given by a covariant four-momentum, since a covariant 
vector if: obtained from the derirat,ive of the action dH ~&r“. Hence, the cluasistatic 
requirement states that the force at each point along the path is such t,hat, 
d[llp,( s)] = 0. When this is integrat,cd over the path, we obtain Dhe first term 

in (4.2) equal to zero. Therefore, the sum of the electromagnetic impulse and 
t,he additional support impulse coming from A and evaluated at w is just Dp:“( A) 
= r/F,JX”. Iiitcgrat’ing this over the loop gives: 

which is ident,ical with ( 2.2). 
The four-vector Ap, is here understood t.o be evaluated at the point ‘w where 

the loop momentum has been physically transported by the added constraints. 
The reason the rhs of (4.3) does not refer to w is that different lifting constraints 
are required for different choices of w, and in such a may that the numerical 
value of the resulting four-vector is the same for all w. That is, changing w here 
implies a physical change and not just, a formal one. 
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In the special case of the static charge in a Llgller accelerated frame, we have 
seen that the fields FaB are time independent (X.5). Therefore, the fourt,h com- 
ponent of (4.5) will be Ap4 = 0, assuring that a static elementary detector in 
such a field will not absorb internal energy in the sense of our criterion. The 
observational paradox is then removed by the addition of constraints which 
insure that the detector is stationary in the given reference frame. 

If an elementary detector were constructed in a Lorentz frame, and in the 
Coulomb field of a static electric charge, then it is clear from (4.8) that there 
could be no internal absorption. Suppose, however, the detector is accelerated 
uniformly in such a way as to make it stationary in a LIoller accelerated frame. 
The difference between an accelerated and unaccelerated detector lies only in the 
constraints which are added to insure its being stationary in a preferred chosen 
frame. It is then a matter of interest to ask if such an a,ccelerated detector can 
absorb internal energy from a static Coulomb field. 

We must analyze this case from the accelerated frame using (4.:3), where 
physically this case corresponds to asking if a stationary detector can absorb 
internal energy from a charge which is free falling in a gravitational field. 

Let the charge e be fixed at the point x’ = I ,‘a, .c’ = !I’ = 0 of the primed 
inert#ial frame. Then the electric field is given by: 

Er = i7i4 = e(x’ - l,/a)R’; E:, = F6, = ex’R’ 

E, = F;, = UJ’R’; R’ = (pl? + (zI _ l,.a)“J-31” I? 
P = *r’Z + y’ 

From the accelerated frame reached by the transformation (3.1), the electro- 
magnetic field tensors has values: 

Fr2 = sinh r Fi2 ; Fla = sinh 7 F:, 

F14 = axF:4 ; F,, = ax cash 7 F& ; F:G = az cash 7 F:d 

where in terms of the coordinates of the accelerated frame, the inertial frame 
fields are: 

F:4 = ez(,cosh r - 1lax)R; F:, = erR 

Fi4 = eyR; R = lp” + (z cash T - ~:cL)‘]-~‘~ 

We now construct a special elementary detector loop consisting of two sub- 
loops similar to the one of Section III, where the corresponding areas satisfy 
(3.6). In this case, however, the loop is further specialized by requiring that 
event C, the event connecting the two subloops, occurs at time 7 = 0. Then 
the field derivatives at corresponding areas are related by: 



F,4,,( 2) = Fij,,j( 1); Fi].k(2) = --Ftj,k(l ) 

F,4,4(2) = -Fi~,l( 1 ) ~,,,,(~) = F,j,.l(,l) 

Clomhirling (8.6) and (5. I ) with (4.3) yields: 

Api = 0; AP, = ry F.ij.4 dc’” + 211 Fi1,4 doi” 

11 

(5.1) 

(5.2, 

It is therefore apparent that OIW cm construct an elementary detector on a 
RI#llrr accelerated frame which can absorb internal energy from a free falling 
charge. IThen described from the inertial frame of the charge, the same detect01 
is of course seen as an accelerating debector in a static Coulomb field. 

We have found that a stationary detector in a static electromagnetic field will 
not absorb int,crnal energy, and that this result is independent, of the existence 
of first order gravitational field. In part.icular, a static charge in a M@ller ac- 
celerated frame will not induce internal transitions in a detector which is sta- 
tionary in that frame. On the other hand, if a detector is accelerated through a 
static electromagnetic field, it can in general absorb internal energy. We have 
demonstrated this in Section V for the case of a detector which uniformly ac- 
celerates relative to an inertial frame containing a static electric charge. That is, 
a detector which is stationary in an accelerated frame will in general absorb 
internal energy from a free falling electric charge. 

It is t#o be emphasized that the elementary detector loop which was used t,o 
establish au absorption criterion caunot simulate a blackbody, and so we camlot 
use it to confirm the results of others (5, .I) t,hab a uniformly accelerated charge 
or a free falling charge radiates a net energy, or to furnish magnitudes of radi- 
ation reaction. The present method is good only for investigating the consistency 
of such conclusion with possible invariant, detector observations, and for in- 
vestigat(ing the effects of the constraining forces which physically attach de- 
tector to noninertial frames of reference. 

The author wishes to t,hank Professor _ Yundor Bal:tzs for rmny helpful discussions and 
suggestions. 
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