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In this paper we show that ψ-ontic models, as defined by Harrigan and Spekkens (HS), cannot
reproduce quantum theory. Instead of focusing on probability, we use information theoretic con-
siderations to show that all pure states of ψ-ontic models must be orthogonal to each other, in
clear violation of quantum mechanics. Given that (i) Pusey, Barrett and Rudolph (PBR) previously
showed that ψ-epistemic models, as defined by HS, also contradict quantum mechanics, and (ii) the
HS categorization is exhausted by these two types of models, we conclude that the HS categorization
itself is problematic as it leaves no space for models that can reproduce quantum theory.

I. INTRODUCTION

In 2010 Harrigan and Spekkens (HS) proposed a for-
mal classification in order to categorize the nature of
the quantum state, i.e. to establish whether in a certain
model ψ corresponds to a real property of a quantum ob-
ject, in which case the model is called ψ-ontic, or to some
observer information, making it ψ-epistemic [1]. While
their original aim was to clarify Einstein’s view of Quan-
tum Mechanics (QM), the HS framework has been widely
employed in the literature not only to categorize different
formulations of QM, but also to argue what types of in-
terpretations are admissible ([2–9]; cf. [10, 11] for critical
discussions).

Referring to this, one of the most influential works
based on HS classification is due to Pusey, Barrett
and Rudolph who published a formal result in Nature

Physics—widely known as the PBR theorem—showing
that “if the quantum state merely represents informa-
tion about the real physical state of a system, then ex-
perimental predictions are obtained that contradict those
of quantum theory” ([12], p. 475). Alternatively stated,
PBR argued that in every model reproducing the statis-
tics and predictions of QM the quantum state ψ must rep-
resent real physical properties of the system under con-
sideration and not agents’ knowledge—i.e. models must
be ψ-ontic. Consequently, quantum theories cannot be
ψ-epistemic.

Such a theorem had a remarkable resonance [13–25],
and questions about its actual meaning are still discussed
today: on the one hand, some authors believe that it rules
out interpretations of QM where ψ merely represents in-
formation. On the other hand, it has recently been shown
by other scholars that non-trivial epistemic as well as sta-
tistical approaches to QM are not refuted by the PBR
argument [10, 26–29].

While the discussion has been focused mainly on
whether ψ-epistemic models are problematic or whether
the PBR argument itself is problematic, we ask a different
question: what if the underlying HS classification itself is
problematic? In particular, the framework assumes that

once pure states are fully characterized, mixed states are
constructed simply as a standard (i.e. classical) statisti-
cal mixture. However, as it is well-known, classical and
quantummixtures have different properties. For instance,
classical mixtures have a single decomposition in terms of
pure states while quantum mixtures do not. Using infor-
mation theoretic considerations on mixtures, then, pro-
vides a new approach to explore possible violations of
quantum mechanics.
Employing this new approach, in this paper we show

that ψ-ontic models cannot reproduce all the predictions,
results and implications of QM. We start by noting that
the von Neumann entropy plays a crucial role in the
predictions of both quantum statistical mechanics and
quantum information theory. We show that the degree of
overlap between two probability distributions affects how
the entropy of their mixture relates to the entropy of the
components. We find that the lack of overlap of epistemic
states—a necessary condition for a model to be ψ-ontic—
requires that all pure states must be orthogonal, which
directly contradicts quantum theory.
Combining our result with the PBR argument, we con-

clude that the HS classification itself is fundamentally
flawed: both ψ-epistemic and ψ-ontic models contradict
quantum mechanics.1 Consequently, the HS framework
should be employed neither to classify interpretations of
the quantum formalism, nor to draw conclusions about
the nature of ψ.

II. SUMMARY OF THE HARRIGAN &

SPEKKENS MODEL

We briefly review the main features of the classifica-
tion provided by HS starting with the usual operational

1 In principle, PBR leaves open the possibility of ψ-epistemic mod-
els that violate statistical independence. Given that statistical in-
dependence is linked to entropy additivity, we will see that that
loophole can be closed as well.
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setting for QM. We have a preparation protocol P , asso-
ciated with a density operator ρ on the relevant Hilbert
space, and a measurement protocol M , represented by a
POVM {Ek} where each k represents a possible measure-
ment outcome. The probability of obtaining a particular
k given a particular preparation P and measurement M
is given by the generalized Born rule

p(k|M,P ) = tr(ρEk). (1)

An ontological model, as defined by HS, additionally
assumes that there exists a set of states Λ, called on-

tic states, that provide the complete specification of
the properties of a given physical object. A preparation
P will prepare a particular ontic state λ according to
the probability distribution p(λ|P ), which is referred to
as epistemic state. The measurement outcome will de-
pend only on the ontic state with probability p(k|λ,M)
([1], p. 128). This leads to the following expression:

∫

Λ

dλp(k|λ,M)p(λ|P ) = tr(ρEk). (2)

It is also assumed that a mixture of pure states {ψi} with
probabilities {wi} will be represented by

∑

i

wip(λ|Pψi ). (3)

As the epistemic states for mixed preparations are simply
linear combinations of epistemic states for pure prepara-
tions, the HS model concentrates on the latter.
To classify an ontological model, we look at the rela-

tionship between quantum and ontic states. There are
two broad categories. In a ψ-ontic model the wave func-
tion is a physical property of the ontic state, in the sense
that given an ontic state λ there is only one pure state
preparation Pψ that could have prepared λ. As we can
see in figure 1 (a), this happens if the probability distri-
butions do not overlap, i.e. if we have

p(λ|Pψ)p(λ|Pφ) = 0 (4)

for all pairs of states ψ and φ. If a model is not ψ-
ontic, then it is ψ-epistemic. In this case, λ can be de-
scribed by more than one quantum state and the wave
function is taken to represent knowledge about the state
preparation—in such models quantum states generate
overlapping probability distributions over Λ as shown in
figure 1 (b). A ψ-ontic model is said ψ-complete if the
quantum states and the ontic states coincide. More pre-
cisely if

p(λ|Pψ) = δ(λ− λψ). (5)

All other models are ψ-incomplete. For specific exam-
ples of ontological models, see [1], sections 2.4.1–3.
To make this classification more concrete, let us give

an example from classical mechanics. Consider the case
where we prepare a particle according to a specific value

a)

b)

p(λjP )

λ

λ

p(λjP )

p(λjPφ)

p(λjPφ)

∆

p(λjP )p(λjPφ) = 0

p(λjP )p(λjPφ) 6= 0

FIG. 1. Harrigan and Spekkens’ distinction between ψ-ontic (a)
and ψ-epistemic (b) ontological models.

of energy. The energy partitions phase space into mutu-
ally exclusive regions, and therefore we can understand
the energy of the preparation as a property of the particle
itself. According to HS, this would be an ontic property.
Consider now the case where we prepare a particle ac-
cording to a specific temperature. When we take the par-
ticle from the oven, we are sampling from a Boltzmann
distribution over different energies. However, unlike en-
ergy, temperature does not partition phase space because
the same particle state could have been prepared by ovens
at different temperature. Temperature is a property of
the preparation and therefore an epistemic property.

After having introduced the relevant definitions of the
HS ontological model framework, it should be noted that
it has been subject to several criticisms, as already said
in the previous section. For instance, Oldofredi & Lopez
in [10] analyzed the implicit assumptions made by Har-
rigan & Spekkens in order to define their categoriza-
tion, and showed that relevant interpretations of quan-
tum theory—such as the statistical, relational and per-
spectival readings of the quantum formalism—cannot be
classified according to the HS approach, given that their
principles are in tension with those employed in [1]. Simi-
larly, Hance, Rarity and Ladyman argued in [11] that the
dichotomy “ontic vs. epistemic” proposed by HS is artifi-
cial, since there are cases in which the quantum state can
represent both ontic properties of quantum systems as
well as agents’ knowledge of them. Thus, they claim, the
definitions of ψ-ontic and ψ-epistemic introduced a few
lines above do not capture the intuitive ideas with which
physicists and philosophers alike use the terms “ontic”
and “epistemic”.

While we agree with the main messages of these critical
responses to the HS framework, the argument offered in
this paper follows a different and complementary strat-
egy. In fact, instead of criticizing the assumptions used
by Harrigan & Spekkens, we consider them valid (for the
sake of the argument) and derive a no-go theorem for ψ-
ontic models directly from them, as we are going to show
in the next section.
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III. ENTROPY AND THE ONTOLOGICAL

MODEL

Looking at the HS classification it may seem that one
has complete freedom in choosing the overlap between
epistemic states. In this section we will show that this is
not the case: this choice is in fact constrained by entropy
of mixtures. Moreover, these constraints cannot be repli-
cated by a ψ-ontic model with standard (i.e. classical)
information theoretic techniques. Since quantum statis-
tical mechanics and quantum information theory depend
on the correct value of entropy on mixtures, ψ-ontic mod-
els will violate quantum theory.
Let us denote M(Λ) the space of all probability distri-

butions (i.e. all probability measures) over the space of
ontic states Λ. Let us denote H the Hilbert space of the
corresponding quantum system and M(H) the space of
all mixed states (i.e. the space of positive semi-definite
trace-one Hermitian operators). An ontological model,
then, must give us an appropriate ρ(λ) ∈M(Λ) for every
ρ ∈ M(H) such that all predictions are satisfied. This
includes those given by statistical mechanics and infor-
mation theory, which depend on the von Neumann en-
tropy HH : M(H) → R. Given that M(Λ) is the space
of probability measures over Λ, it is natural to use the
Shannon/Gibbs entropy function HΛ : M(Λ) → R, as
this is what is typically done in statistical mechanics.2

Since we want to be able to replicate the predictions of
statistical mechanics and information theory, a very rea-
sonable request is that these two entropies, calculated on
the different representations, agree.
We now introduce two lemmas that show how the en-

tropy behaves when mixing two states, both for the Shan-
non/Gibbs entropy HΛ and the von Neumann entropy
HH.3 The first will be used to calculate entropy of statis-
tical mixtures of epistemic states, since equation 3 tells
us the mixture is done according to a standard (classi-
cal) measure of probability. The second will be used to
calculate the entropy on the quantum case.
Information entropy of mixed non-overlapping

probability distributions. Let ρ1, ρ2 ∈ M(Λ) be two
probability density functions over a space Λ with measure
λ.4 That is, they are the Radon-Nikodym derivatives of
the respective probability measures with respect to the
measure λ. The entropy for each distribution is given by
the usual formula5, for example

HΛ(ρ1) = −
∫

Λ

ρ1(λ) log ρ1(λ)dλ. (6)

2 Note that, while many functions called “entropy” exist, the Shan-
non entropy is the only indicator of variability that is continuous,
monotonic and linear in probability [30]. It is also the one that
provides the correct link to the thermodynamic entropy.

3 Full calculations with all steps are included in the appendix.
4 The notation of HS uses λ as both the value and measure for
integration, as often done in single variable integrals.

5 The logarithm is assumed to be in base 2.

Suppose the two distributions are disjoint, and let ρ =
1

2
ρ1+

1

2
ρ2 be a uniform mixture of the two distributions.

More precisely, ρ is the Radon-Nikodym derivative of the
average of the two probability measures with respect to
λ. The entropy of ρ is given by

HΛ(ρ) = 1 +
1

2
HΛ(ρ1) +

1

2
HΛ(ρ2). (7)

Note how the non-overlapping assumption fixes the en-
tropy of the mixed state.
Quantum information entropy of quantum

mixed states. Now suppose ψ and φ are two pure quan-
tum states and let p = |〈ψ|φ〉|2 be the probability of tran-
sition from one to the other. Consider the mixed state
ρ = 1

2
|ψ〉〈ψ| + 1

2
|φ〉〈φ|. Its entropy is given by

HH(ρ) = HS

(

1 +
√
p

2
,
1−√

p

2

)

= −1 +
√
p

2
log

1 +
√
p

2
− 1−√

p

2
log

1−√
p

2
,

(8)
where the right side of the equation is the Shannon en-
tropy calculated on the given values.6 Therefore the en-
tropy of an equal mixture of two pure states depends only
on the probability of measuring one having prepared the
other.
Theorem: Since non-overlapping distributions

can only represent orthogonal states, ψ-ontic
models cannot be consistent with quantum the-

ory.7

Proof : Suppose we have a ψ-ontic model defined ac-
cording to [1]. The epistemic states p(λ|Pψ) and p(λ|Pφ)
consist of non-overlapping probability distributions over
a space Λ. That is, they are two non-overlapping proba-
bility density functions defined to be the Radon-Nikodym
derivatives between the respective probability measures
over Λ and the measure λ. Equation 3 tells us that
the probability measures combine in the usual way, and
therefore an equal mixture of the two states must obey
equation 7. Given that ψ and φ are pure states, and the
entropy for pure states in quantum mechanics is zero, we
must have

HΛ(p(λ|Pψ)) = HΛ(p(λ|Pφ)) = 0, (9)

and therefore

HΛ

(

p(λ|1
2
Pψ +

1

2
Pφ)

)

=

HΛ

(

1

2
p(λ|Pψ) +

1

2
p(λ|Pφ)

)

= 1.

(10)

6 Note that HS is the “discrete” Shannon entropy that acts on a
countable set of coefficients that sum to one.

7 Note that the theorem applies to all ψ-ontic models, including
the ψ-supplemented ones.
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If we compare the above with eq. 8, it follows that p
must be zero. In fact, the only case in which the Shannon
entropy for a two-element distribution is equal to one is
for the uniform distribution HS(1/2, 1/2) = 1. That is,
we must have that

〈ψ|φ〉 = 0 (11)

no matter what ψ and φ are.
Hence, the non-overlapping assumption built into the

ψ-ontic model necessarily implies that all pure states are
orthogonal. Since this is not true in quantum mechan-
ics, any ψ-ontic model will fail to reproduce the results
of quantum information, quantum statistical mechanics
and, therefore, quantum theory in general. �

IV. THROWING OUT INFORMATION

THEORY

Note that our conclusion relies on the use of standard
information theoretic tools. In principle, this does not
exclude that someone may find a different construction
to reproduce the correct entropies. That is, one may give
a different definition of entropy to use on the ontic space.
We believe this to be highly unlikely as there are, at least,
two objective difficulties that cannot be circumvented.
First of all, information entropy, in all its versions,

is strictly concave, meaning that H(pρ1 + (1 − p)ρ2) ≥
pH(ρ1) + (1− p)H(ρ2) with the equality valid only if ρ1
and ρ2 are the same exact state. That is, we can check
whether two states ρ1 and ρ2 are the same state simply
by creating a mixture ρ = 1

2
ρ1 + 1

2
ρ2 and see whether

we end up with the same entropy or not. In other words:
entropy fixes equality. The issue here is that the mapping
between epistemic states and density matrices is not in-
jective. Quantum mixtures, in fact, do not have a sin-
gle decomposition in pure states. For example, the max-
imally mixed state of a qubit for a spin-1/2 system can
be achieved with either an equal mixture of spin up and
down or an equal mixture of spin left and right. Therefore
epistemic states cannot be mapped one-to-one to quan-
tum density operators, but rather each density operator
corresponds to an equivalence class of epistemic states.8

This degeneracy means that the notion of equality among
epistemic states is different than the notion of equality
among density operators. In turn, this means that what-
ever definition we have for entropy on epistemic states

8 The degree of degeneracy one has to require is also extreme. For
a qubit, in the simplest case, we would have a ψ-ontic state for
each direction on the Bloch sphere, meaning the space of ontic
states is the sphere S2. The space of all possible epistemic states
is the set of all possible distributions integrable to one. This is an
infinite dimensional function space. However, the space of mixed
states for a quibit is the interior of the Bloch sphere, which is a
bounded three-dimensional manifold. The equivalence classes of
epistemic states, then, must be infinite dimensional.

must not satisfy strict concavity, if we want the value
of entropy to agree between epistemic states and den-
sity operators. Entropy cannot fix equality for epistemic

states. In other words, one can make mixtures of differ-
ent epistemic states without increasing entropy, which is
questionable on physics grounds.
Secondly, as equation 8 shows, computing the entropy

requires the inner product. In fact, if we had the en-
tropy for all uniform mixtures of all pairs of pure states,
we could reconstruct the inner product. Therefore, what-
ever other structure one puts on top of epistemic states
essentially redefines the inner product. Also, it has to do
it in a way compatible with the other definitions of the
model, therefore this structure will likely be ad-hoc for
each model. In other words, the idea that the inner prod-
uct just represents transition probabilities, which, in our
view, is the key idea the ontological model uses to explain
“what really happens” does not work.
In other words, the use of standard probability mea-

sures to describe the mixing is problematic in the same
way that the use of standard probability measures would
be a problem to describe the probability of transition. If
we step back, we can understand our result and the PBR
result in a broader context.

V. THE PROBLEM WITH ONTOLOGICAL

MODELS

If we combine our result with the PBR theorem, the
only HS ontological models that are not ruled out are
ψ-epistemic models in which quantum objects are not in-
dependently prepared. That is, where the joint distribu-
tion over ontic states is not the product of the marginals.
However, this loophole can also be closed with informa-
tion theoretic considerations. It is a well-known result
in both classical and quantum information theory that
the entropy of a joint distribution is the sum of the
marginal if and only if the subsystems under consider-
ation are independent ([31], [32]). Therefore an epistemic
state that represents independent quantum states must
also be the joint distribution of statistically independent
epistemic states of the individual systems. This tells us
that ψ-epistemic models must represent composite states
of independently prepared systems with independently
distributed epistemic states, and therefore PBR applies.
This closes the last loophole: no model in the HS cate-
gorization can reproduce quantum theory in its entirety,
which includes quantum information and quantum sta-
tistical mechanics.
Thus, one concludes the following:

No ontological model can reproduce

quantum theory.

Although this result may at first sight seem paradoxical,
once we analyze in detail the mathematics behind HS
categorization we see that both results—ours and PBR—
are finding something, in retrospect, self-evident.



5

It is well established that classical probability theory
cannot recover the probability of quantum transitions.
So, how does the HS model try to accommodate this?
Given that p(λ|P ) combines using classical probability
theory, all the “quantumness” must be in p(k|λ,M). In
fact, note that this second expression does not allow us
to write the joint probability distribution for multiple
observers; therefore, each ontic state is not partitioned
further. Therefore, if λ is the state of a single quantum
system, we can “hide” the inner product inside p(k|λ,M);
this is enough to reproduce quantum probability for pure
states of single quantum systems, but not much more.
In our result, we saw that the use of standard measure

theory when creating mixtures as in equation 3 generates
a problem because the convex space of classical distribu-
tions is significantly different from the convex space of
quantum mixed states. For this case, ontological models
are “not quantum enough”.
In PBR, the issue is breaking a composite system into

parts. They find that if the probability measure on λ is
factorized, that is ([12], eq. 5)
∫

Λ

· · ·
∫

Λ

p(k|λ1, · · · , λn)µx1
(λ1) · · ·µxn(λn)dλ1 · · · dλn,

(12)
there is a problem. However, the issue here is not the
factorization, but rather breaking the composite system
into parts, each with its own ontic state as in
∫

Λ

p(k|λ)dλ =

∫

Λ1

· · ·
∫

Λn

p(k|λ1, · · · , λn)µ(λ1, · · · , λn)dλ1 · · · dλn.
(13)

This assumes that a composite system is describable us-
ing a standard classical probability measure, which, in
turn, allows us to express the joint probability distribu-
tion of observables of different subsystems. Again, this in
general will fail because it is “not quantum enough”.
Therefore there are two different ways ontological mod-

els use standard measure theory: one in mixtures, high-
lighted by us; one in composite systems, highlighted by
PBR. The use of measure theory is what drives the failure
of the model.
Now, the fact that quantum theory does not follow the

rules of classical-Kolmogorov probability is nothing new
[33, 34]. However, this does not seem to be enough to
clear confusion on the subject because, admittedly, we
do use classical probability in the context of quantum
mechanics. For example, we can imagine preparing the
direction of spin based on a classical distribution. Fur-
thermore, the output of a measurement is described by
classical probability. The temptation, then, is to simply
assume that all we need to do is just put the right transi-
tion probability between the two spaces, and we are done.
This is exactly what cannot be done and what does not
work. That is

In the context of quantum mechanics,

standard probability measures are al-

lowed over preparations and measure-

ment outcomes, but not over states.

In our approach, we exploited the fact that the entropy
calculation uses the geometry of the inner product with-
out invoking a probability of transition. That is, two pure
states are orthogonal not because one cannot measure
the first having prepared the second, but because their
equal mixture raises the entropy by one bit. Therefore
quantum mechanics is not simply defining a probability
of transition between preparations and measurements: it
is doing something more. While it is not in the scope of
this article to articulate precisely what this “more” is,
which will be the focus of future work, we hope that this
additional insight may provide more precise guidance as
to where classical probability calculus is appropriate and
not in the context of quantum mechanics.
Note that HS do not claim that all interpretations must

adhere to their framework, stating ([1], p. 134), “There-
fore, to categorize any given interpretation of the quan-
tum formalism as ψ-ontic or ψ-epistemic, it is first nec-
essary to cast it into the mold of an ontological model.
If an interpretation resists being so cast, then it cannot
be fit into our categorization.” The result is that a suc-
cessful interpretation of quantum mechanics must resist
being so cast.

VI. ON INTERPRETATIONS

Our analysis entails an interesting consequence for the
philosophical discussion concerning the interpretation of
quantum theory. Indeed, many scholars use the PBR
result to vindicate the empirical adequacy of a given
framework—especially those in which the quantum state
is somehow supposed to represent real physical objects—
or to rule out a specific reading of the quantum formal-
ism. Here we warn physicists and philosophers that no
argument resting on the Harrigan & Spekkens approach
should be employed in such metaphysical debates, given
that no theory satisfying the requirements imposed by
their categorization is able to reproduce all the results of
quantum mechanics.
Therefore, we not only agree with Hance, Rarity and

Ladyman in saying that the HS definitions of ψ-ontic and
ψ-epistemic models do not capture the actual meaning
usually assigned to the terms “ontic” and “epistemic” as
they are employed when interpreting quantum theories,
but also say the following:

If a certain interpretation of the quan-

tum formalism9 is fully empirically

9 As for instance de Broglie-Bohm theory, Everett’s relative state
formulation, relational quantum mechanics or the many-worlds
perspective etc..
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equivalent to quantum mechanics, then

it cannot be categorized as a ψ-ontic
model.

In turn, the logical conjunction of our result and the PBR
theorem entails that no interpretation of quantum the-
ory can be correctly categorized according to the HS ap-
proach.
Another philosophical issue affecting the definition of

ψ-ontic model must be mentioned. In their paper Harri-
gan & Spekkens require that if a model is ψ-ontic, the
ontic state λ fully identifies the quantum state, i.e. only
one quantum state is compatible with the ontic state of
the system. This fact, in turn, means that ψ should be
understood realistically, as an entity representing some
real physical property of the system, or even the sys-
tem itself as in ψ-complete models. However, as interest-
ingly noted by Halvorson, realism towards the quantum
state is highly problematic, since each representation re-
lation proposed in the literature entails several conun-
drums that should be avoided—cf. [35] for details. With
regard to this, the HS framework does not clearly spell
out what is meant by the fact that ψ “represents” a real
property of physical systems. In other words, to claim
that in ψ-complete models λ is uniquely represented by
a single quantum state leaves many ontological questions
unanswered. For instance, it is not specified in which way
ψ represents the ontic state: is it a direct or indirect rep-
resentation? If ψ is a real object, as one would expect
in ψ-complete models, is there a literal identification be-
tween ψ and λ? On these and other issues the Harrigan
& Spekkens framework does not give guidance.
Therefore, not only is their categorization shown to be

empty, but also it does not offer a rigorous philosophical
ground on which to cast the interpretational debate.

VII. CONCLUSION

By using standard information theoretic techniques, we
have shown that ψ-ontic models are not compatible with
quantum information theory, and therefore with quan-
tum mechanics itself. Given that the PBR theorem al-
ready ruled out ψ-epistemic models, the HS categoriza-
tion of ontological models is found to be fundamentally
empty. Thus, such a framework should be employed nei-
ther to classify quantum interpretations, nor to draw con-
clusions on the nature of the quantum state.
The key problem of the HS categorization is that it is

“not quantum enough”. The framework in fact tries to
hide the non-classicality at the level of each ontic state
which, by construction, cannot be decomposed further
using a standard probability measure. However, HS def-
initions entail that statistical mixtures are simply clas-
sical mixtures in the sense that they are captured by a
standard probability measure. But quantum mixtures are
non-classical in the same way that the quantum transi-
tion probabilities defined by the inner product are non-
classical.10 Therefore, the HS categorization prevents one
from describing quantum statistical mixing.
Our conclusion is that the PBR theorem finds that ψ-

epistemic models are untenable not because there is a
problem with epistemic models in particular, but rather
there is an underlying problem in the HS definitions.
Specifically, the problem of the HS categorization is the
use of standard probability theory in composite systems.
If understood in this manner, the PBR result is the first
part of a more general argument showing the inadequacy
of the HS framework to categorize quantum theories, an
argument that we have completed with the proposed no-
go theorem against ψ-ontic models. The direct conse-
quence of this is that the HS categorization should not be
employed as a tool to classify quantum interpretations or
to draw philosophically sound conclusions on the nature
of quantum mechanics.
As a final note, one may argue that our result cannot

possibly be correct because there are actual examples of
ψ-ontic models. To our knowledge, however, none of them
is able to reproduce all results from quantum statistical
mechanics (e.g. derive the Boltzmann distribution from
entropy maximization) or quantum information theory
(e.g. derive the Holevo bound). Since these are derived
from the more general framework of quantum mechan-
ics, one cannot cherry pick which results a model has
to reproduce to be a valid model of quantum theory: all
results must be correctly reproduced.
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APPENDIX: CALCULATION

Entropy of mixed non-overlapping distribu-

tions. We want to show that, given two non-overlapping
probability distributions ρ1 and ρ2, the entropy of ρ =
1

2
ρ1 +

1

2
ρ2 is given by

H(ρ) = 1 +
1

2
H(ρ1) +

1

2
H(ρ2). (7)

Let U1, U2 ⊂ Λ be the respective supports of the dis-
tributions, which are non-overlapping i.e. U1 ∩ U2 = ∅.
We then have

H(ρ) = −
∫

Λ

ρ log ρdλ

= −
∫

U1

ρ log ρdλ−
∫

U2

ρ log ρdλ

= −
∫

U1

1

2
ρ1 log

1

2
ρ1dλ−

∫

U2

1

2
ρ2 log

1

2
ρ2dλ

= −1

2

∫

U1

ρ1 log
1

2
dλ− 1

2

∫

U1

ρ1 log ρ1dλ

− 1

2

∫

U2

ρ2 log
1

2
dλ− 1

2

∫

U2

ρ2 log ρ2dλ

= −1

2
log

1

2
− 1

2
log

1

2
+

1

2
H(ρ1) +

1

2
H(ρ2)

= 1 +
1

2
H(ρ1) +

1

2
H(ρ2).

Entropy of quantum mixed states. We want to
show that, given two states ψ and φ, the entropy of the
mixed state ρ = 1

2
|ψ〉〈ψ|+ 1

2
|φ〉〈φ| is

H(ρ) = H

(

1 + |〈ψ|φ〉|
2

,
1− |〈ψ|φ〉|

2

)

. (14)

− +

ψ

φ

ρ

Note that ψ and φ will identify a two-dimensional sub-
space which can be thought, without loss of generality,
as a qubit and therefore can be represented by a Bloch
sphere. The picture represents the intersection of the
Bloch sphere with the plane identified by ψ and φ. As
ρ is an equal mixture of the two states, it will be repre-
sented by the midpoint between the two. Taking the line
that goes through ρ and the center of the sphere, we can
see that ρ can also be seen as the mixture of the states
+ and − which, since they represent equal and opposite
directions, form a basis. To diagonalize ρ, then, means to
express it in terms of + and −.

If θψφ is the angle between ψ and φ, we have

|〈ψ|φ〉|2 = cos2
θψφ
2
. (15)

The angle is divided by two because the angle on the
Bloch sphere (i.e. in physical space) is double the angle
in the Hilbert space. For example, for z+ and z− the angle
on the Bloch sphere would be π and the inner product is
zero (i.e. opposite directions in physical space correspond
to orthogonal states).
Now we express ψ and φ in terms of + and −, re-

membering that they form a basis. Given that ρ is at the
midpoint, the figure is vertically symmetric. The angle
between ψ and +, then, is half of θψφ. The inner product
between ψ and + is

|〈ψ|+〉|2 = cos2
θψ+
2

= cos2
θψφ
4
.

(16)

Keeping in mind that we are composing vectors in the
Hilbert space (and not in the geometry of the physical
space) we have

|ψ〉 = cos
θψφ
4

|+〉+ sin
θψφ
4

|−〉

|φ〉 = cos
θψφ
4

|+〉 − sin
θψφ
4

|−〉 .

The density matrices corresponding to the pure states
are

|ψ〉 〈ψ| = cos2
θψφ
4

|+〉 〈+|

+ cos
θψφ
4

sin
θψφ
4

(|+〉 〈−|+ |−〉 〈+|)

+ sin2
θψφ
4

|−〉 〈−|

|φ〉 〈φ| = cos2
θψφ
4

|+〉 〈+|

− cos
θψφ
4

sin
θψφ
4

(|+〉 〈−|+ |−〉 〈+|)

+ sin2
θψφ
4

|−〉 〈−| .

We can now calculate the mixture

1

2
(|ψ〉〈ψ|+ |φ〉〈φ|)

= cos2
θψφ
4

|+〉 〈+|+ sin2
θψφ
4

|−〉 〈−|

=
1 + cos

θψφ
2

2
|+〉 〈+|+ 1− cos

θψφ
2

2
|−〉 〈−|

=
1 + |〈ψ|φ〉|

2
|+〉 〈+|+ 1− |〈ψ|φ〉|

2
|−〉 〈−| .

As ρ is in a diagonal form, the entropy is given by 14.


