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We consider an elementary collision model of a molecular reservoir upon which an exter-
nal field is applied and the work is dissipated into heat. To realize macroscopic irre-

versibility at the microscopic level, we introduce a “graceful” irreversible map which
randomly mixes the identities of the molecules. This map is expected to generate infor-
matic entropy exactly equal to the independently calculable irreversible thermodynamic
entropy.
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1. Introduction

The thermodynamic entropy Sthermo
R of a given equilibrium reservoir is equal to the

informatic (Shannon–von Neumann) entropy

S[ρR] ≡ −tr(ρR log ρR). (1)

The ρR is the corresponding Gibbs canonical state of the reservoir, taken in the infi-
nite volume (thermodynamic) limit. If we switch on a certain external macroscopic
field to perform work on the reservoir then the state ρR(t) starts to evolve reversibly
while, from the thermodynamic viewpoint, part of the work will be dissipated into
heat in the reservoir. There is a common expectation that the irreversible thermo-
dynamic entropy production also equals the change of the informatic entropy of the
reservoir:

∆irrS
thermo
R = S[ρR(t + ∆t)] − S[ρR(t)]. (2)
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As is well-known, this equation does not hold because ρR(t) evolves unitarily and the
right-hand side is always zero. This is the notorious conflict between the reversibil-
ity of the reservoir’s microscopic dynamics and the macroscopically observed irre-
versible dissipation. In our case, this dissipation is “friction” against the external
field. Various resolutions of this contradiction between the microscopic and macro-
scopic theories are possible. None of them are general and none of them are able to
prove the exact identity of the thermodynamic and informatic entropy productions.
Obviously, any resolution must impose some deliberate irreversibility on the unitary
dynamics. For a systematic study, we formalize this irreversibility as a completely
positive map M applied to the reservoir state repeatedly. Then, we expect that

∆irrS
thermo
R = S[MρR(t + ∆t)] − S[ρR(t)] (3)

holds exactly for microscopically short intervals ∆t. The map M we are looking
for must be graceful. It should not alter the macroscopic reaction (e.g. the friction
force) of the reservoir on the field. Moreover, it should be such that it conserves the
free dynamics of the reservoir:

M[HR, ρR(t + ∆t)] = [HR,MρR(t + ∆t)], (4)

where HR is the reservoir’s Hamiltonian.
In our work, we construct an elementary reservoir model composed of distin-

guishable molecules and postulate a discrete reversible (unitary) collision dynam-
ics for its interaction with the external field. In this model, the thermodynamic
entropy production ∆irrS

thermo is exactly calculable. Then, a natural projection
M is found that expected to increase the information entropy of the reservoir by
∆irrS

thermo exactly. The map M symmetrizes the state ρR for all distinguishable
molecules, i.e. it mixes the ones which collided with the external field among all
molecules throughout the reservoir. The identity (3) relies upon a novel conjecture
concerning the increase of the informatic entropy under the projection M. We have
heuristically proved the theorem for the classical case.

2. The Reservoir, Collisions

Assume a single molecule with a Hamiltonian H in the Gibbs-equilibrium state ρ

at inverse temperature β:

ρ =
1

Z(β)
e−βH . (5)

Let the molecule interact with a certain external field and let us describe the inter-
action by the following “collision”:

ρ → UρU † ≡ σ, [U, H ] �= 0, (6)

where U is unitary. Suppose our reservoir is formed by the ideal gas of n such
distinguishable molecules in equilibrium:

ρR = ρ ⊗ ρ ⊗ · · · ρ ≡ ρ⊗n, (7)



March 23, 2006 12:43 WSPC/187-IJQI 00164

On the Exact Identity Between Thermodynamic and Informatic Entropies 101

with the Hamiltonian

HR = H ⊗ I⊗(n−1) + I ⊗ H ⊗ I⊗(n−2) + I⊗(n−1) ⊗ H, (8)

and its thermodynamic limit is n → ∞. Let us assume that the molecules will
reversibly collide with the field in succession, see Eq. (6). Without restricting the
generality, we can assume that the first molecule collides first, the second collides
second, and so on:

ρ⊗n → σ ⊗ ρ⊗(n−1) → σ ⊗ σ ⊗ ρ⊗(n−2) → · · · . (9)

Since S[σ] = S[ρ], the informatic entropy of the reservoir has not changed at all in
the above reversible collisions:

S[ρ⊗n] = S[σ ⊗ ρ⊗(n−1)] = S[σ ⊗ σ ⊗ ρ⊗(n−2)] = · · · = nS[ρ] = nS[σ]. (10)

For simplicity, we consider the first collision and implement our idea for it. If
we calculate the mean energy transfer from the field to the molecule, we obtain

∆E ≡ tr(σH) − tr(ρH) =
tr(σ log σ) − tr(σ log ρ)

β
> 0. (11)

The proof is straightforward if we express log ρ = −βH − log Z from (5), sub-
stitute it, and observe that tr(ρ log ρ) = tr(σ log σ). The right-hand side above is
proportional to the informatic relative entropy S[σ|ρ] of the post- and pre-collision
states, which is always positive. In a reversible process, a Gibbs-state will always
absorb energy from the field. If the molecule is part of a reservoir and the field
interacts with many molecules in succession then, thermodynamically, we expect
that the above mean energy is dissipated to the reservoir. Therefore, the average
thermodynamic entropy production per collision is, on thermodynamic grounds:

∆irrS
thermo = β∆E = S[σ|ρ]. (12)

We see that ∆irrS
thermo is always positive since S[σ|ρ] is always positive if σ �= ρ.

We emphasize that the above identity is part of common knowledge and is different
from our target identity. The relative entropy which is microscopic plays an auxiliary
role in the calculations. We are looking for the informatic entropy production whose
value shall coincide with the relative entropy. Our target identity is

∆irrS
thermo = ∆SR , (13)

where ∆SR is the increase of the informatic entropy between the post- and pre-
collision states of the whole reservoir. We already noticed that ∆SR would remain
zero after the first unitary collision. The point is that we have to define a new
post-collision state of the reservoir, which differs from σ ⊗ ρ⊗(n−1).
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3. The Graceful Irreversible Map

Now we have to postulate a (completely) positive map M which is irreversible and
graceful:

σ ⊗ ρ⊗(n−1) → M
(
σ ⊗ ρ⊗(n−1)

)
. (14)

The map should correlate the molecules. Single-molecule maps can increase the
informatic entropy but they would not produce the requested value S[σ|ρ]. We need
a map which only smears out information whose loss is heuristically justifiable in
a molecular reservoir. Let the map M be the total randomization over the identity
of the n molecules. In our case:

M
(
σ ⊗ ρ⊗(n−1)

)
=

σ ⊗ ρ⊗(n−1) + ρ ⊗ σ ⊗ ρ⊗(n−2) + · · · + ρ⊗(n−1) ⊗ σ

n
. (15)

It is clear that this post-collision map is irreversible and increases the informatic
entropy of the reservoir. Moreover, it is consistent with Eq. (4) in conserving the
energy.

In the appendix, we are going to illustrate for the classical case that the infor-
matic entropy increases by the relative entropy of the post- and pre-collision states.
According to this novel mathematical conjecture:

∆SR ≡ lim
n=∞

(
S[M(σ ⊗ ρ⊗(n−1))] − S[σ ⊗ ρ⊗(n−1)]

)
= S[σ|ρ]. (16)

This would confirm the central physical identity (3). This says that our model yields
exact identity between the independently defined thermodynamic and informatic
entropies. The key element of the model is a graceful irreversible map postulated
after each reversible interaction of the field with a molecule.

4. Discussion

Realistic microscopic models of dissipation are not calculable exactly. Note that
both the irreversible thermodynamic ∆irrS

thermo and the informatic ∆SR entropies
should be calculable independently and exactly. Our model is less realistic while it
allows exact calculation and confirmation of ∆irrS

thermo = ∆SR. Our elementary
model can be improved or varied in certain ways. For instance, the map M does not
need to be repeated after each collision, it may be applied after several collisions —
the main result remains. The collision dynamics is, however, essential. If we resolved
it into a smooth Hamiltonian evolution the model would become fundamentally
sensitive to the repetition frequency of the irreversible map M.

In the spirit of the present work, a particular version of the model already
appeared in Ref. 2 as the model of classical mechanical friction. The relationship
of the map M to the Gibbs principle of molecular undistinguishability has been
discussed although not fully persued. This is probably a deeper issue and a subject
of future research.
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Analysis of friction phenomena in a reduced single molecule description can be
based on a two step cyclic process.5 The first is identical to Eq. (6). The second step
is an irreversible map generated by the phenomenological Lindblad operator which
restores the system to its initial state. The cyclic requirement means that all entropy
has to be generated in the reservoir. Unlike the present model, in the Lindblad
formulation there is no explicit description of the graceful map that generates the
desired entropy production.

5. Asher

Asher strived for internal consistency between independent but related branches
of physics. This outlook is reflected in his book,1 where he has linked numerous
thermodynamical aspects to quantum theory and vice versa.

Following von Neumann, Asher proves that the equilibrium quantum informatic
entropy is genuine thermodynamic entropy (p. 270). One can read the derivation
of a version of our Eq. (11) [see p. 269, Eq. (9.24)]. One also learns the heuristic
derivation of the Shannon informatic entropy (p. 260), we exploited in the appendix.
Asher invoked thermodynamical argument particularly in a debate on hypothetic
nonlinear Schrödinger equations (p. 278; see also Refs. 3 and 4). The power of
thermodynamic arguments may show itself in our present work: the novel mixing
entropy conjecture (appendix) for quantum entropies has so far not been proven
but it is strongly supported by the physical wisdom that the thermodynamic and
informatic entropy productions should coincide.
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Appendix A. Conjecture on Entropy of Mixing

We consider n + 1 uncorrelated identical systems, where n systems have the same
state ρ and a single system has a certain different state σ, and where both ρ and σ

can be given arbitrarily. Consider the following uncorrelated composite state:

σ ⊗ ρ⊗n. (17)

Then, we assume that the single different system “loses” its identity among the
other components, i.e. it becomes totally mixed with them. Let the resulting state
be

R =
σ ⊗ ρ⊗n + ρ ⊗ σ ⊗ ρ⊗(n−1) + · · · + ρ⊗n ⊗ σ

n + 1
. (18)

We define the entropy of mixing:

Smix[σ|ρ; n] = S[R]− nS[ρ] − S[σ]. (19)
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We conjecture that in the limit n → ∞ the entropy of mixing is identical to the
relative entropy of σ with respect to ρ:

Smix[σ|ρ;∞] = −tr(σ log ρ) − S[σ] ≡ S[σ|ρ]. (20)

The proof of the general quantum case is missing. We present a heuristic proof for
the classical case [σ, ρ] = 0.

Heuristic proof — Classical case. We can directly estimate the increase of Shannon
entropy caused by mixing. Let us consider a discrete d-state system and its diagonal
density matrices with elements ρab = ρaδab and σab = σaδab, where a, b = 1, 2, . . . , d.
If n is large, we can ignore all but the statistically relevant terms in ρ̂⊗n. Look at
the components

ρa1ρa2 · · · ρan , (21)

and consider the string

a1a2a3 · · · an (22)

of labels. In the statistically relevant terms, the multiplicity of a given index a

must approximately be nρa for each a = 1, 2, . . . , d. Therefore, each relevant term
has the same weight and the total number of relevant terms can be estimated
combinatorically as

n!
(nρ1)!(nρ2)! · · · (nρd)!

∼ 2nS[ρ], (23)

which is the number of all different orderings within the string (22). Now, take the
single state described by σa, insert the latter into the string at random and try to
calculate the expected increase of the number of relevant configurations. Assume
temporarily that σa = δa1. Then, the above number of combinations acquires a
factor

n + 1
nρ1 + 1

∼ 1
ρ1

. (24)

Equation (24) means that the entropy increases by − log ρ1. Generalizing this result,
we can estimate the average increase of the entropy for any distribution σa:

−
∑

a

σa log ρa − S[σ] = S[σ|ρ], (25)

which is the classical special case of our conjecture (20).
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